Analysis of stream sediment reconnaissance data for mineral resources from the Montrose NTMS Quadrangle, Colorado

Share Embed


Descrição do Produto

GJ8X-218(82)

LA-8329-MS Informal Report

Analysis of Stream Sediment Reconnaissance Data

\ for Mineral Resources from the Montrose NTMS Quadrangle, Colorado

.-

«S

U

"t-

O ~

+oJ

~

Q)

>

·eL\SS\. c::

:::>

u.s. DEPARTMENT OF ENERGY AssistanrSe

9.

10.

U/Th ratios (ppm) from sediment samples (-100 mesh) • • • of the Montrose quadrangle, Colorado. •

• • • in pocket

Concentrations of total niobium (ppm) above the threshold of 25 ppm for sediment samples (-100 mesh) in the Montrose quadrangle, Colorado. • • • • • • • • • • • • • • • • • •

• • • in pocket

11.

Concentrations of total dysprosium (ppm) above the threshold of 11 ppm for sediment samples (-100 mesh) in the Montrose quadrangle, Colorado. • • • • • • • • • • • • • • • • • • • • • • • in pocket

12.

Concentrations of total cerium (ppm) above the threshold of 300 ppm for sediment samples (-100 mesh) in the Montrose quadrangle, Colorado. • • • • • • • • • • • • • • • • • • • • • • • in pocket

13.

Concentrations of total hafnium (ppm) above the threshold of 30 ppm for sediment samples (-100 mesh) in the Montrose quadrangle, Colorado. • • • • • • • • • • • • • • ••

• • • in pocket

Concentrations of total lithium (ppm) above the threshold of 65 ppm for sediment samples (-100 mesh) in the Montrose quadrangle, Colorado. • • • • • • • • • • • • • • • • • •

• • • in pocket

14.

7

Page 15.

Factor 9 (uranium) score map for sediment samples, in Area C, Montrose quadrangle, Colorado • • • • • • • • • • • • • • in pocket

16.

Factor 2 (lithium, thorium, hafnium, and uranium) score map of sediment samples in the Montrose quadrangle, Colorado. • • • • • in pocket

17.

Uranium (ppm) in sediments using kriging (based on log interpolation) in the Montrose quadrangle, Colorado

18.

Uranium (ppb) in waters using kriging (based on log interpolation) in the Montrose quadrangle, Colorado

• • • • • • in Docket • • • • • in pocket

19.

Concentrations of total lead (ppm) above the threshold of 40 ppm for sediment samples (-100 mesh) in the Montrose quadrangle, Colorado. • • • • • • • • • • • • • • • • • • • • • • • in pocket

20.

Concentrations of total copper (ppm) above the threshold of 50 ppm for sediment samples (-100 mesh) in the Montrose quadrangle, Colorado. • • • • • • • • • • • • • • • • • • • • • • • in pocket

21.

Concentrations of total zinc (ppm) above the threshold of 180 ppm for sediment samples (-100 mesh) in the Montrose quadrangle, Colorado. • • • • • • • • • • • • • • • • • . • • • • • in pocket

22.

Concentrations of total gold (ppm) above the threshold of 0.2 ppm for sediment samples (-100 mesh) in the Montrose quadrangle, Colorado. • • • • • • • • • • • • • • • • • • • • • • • in pocket

23.

Concentrations of total silver (ppm) above the threshold of 6 ppm for sediment samples (-100 mesh) in the Montrose quadrangle, Colorado. • • • • • • • • • • • • • • • • • • • •

in pocket

24.

Concentrations of total tungsten (ppm) above the threshold of 25 ppm for sediment samples (-100 mesh) in the Montrose quadrangle, Colorado. • • • • • • • • • • • • • • • • • • • • • • • in pocket

25.

Concentrations of total scandium (ppm) above the threshold of 18 ppm for sediment samples (-100 mesh) in the Montrose quadrangle, Colorado. • • • • • • • • • • • • • • • • •

26.

• in pocket

Factor 3 (base metals) score map of sediment samples in the Montrose quadrangle, Colorado • • • • • • • • • • • • • • • • • in pocket

8

~

LIST OF TABLES Page

Table No.

I.

Descriptions of major uranium and thorium districts in the Montrose quadrangle, Colorado. •• • • • • • • • • •

71

II.

Metal-mining districts having greater than one million dollars cumulative production in the Montrose quadrangle, Colorado. • •

72

III. Basic statistics (in ppm) for 21 elements in sediment samples from the Montrose quadrangle, Colorado. • • • • • ••

73

IV. V.

VI.

Threshold values estimated from log probability plots for 20 elements in samples from the Montrose quadrangle, Colorado. • • ••

75

Correlation between clusters of above-threshold values for elements and the geology in stream sediment samples of the Montrose quadrangle, Colorado • • • • • • • • • • • • • • •

76

Basic statistics (in ppm) for 21 elements in sediments from the Montrose quadrangle, Colorado; where uranium, lead, copper, and zinc are above threshold. •

79

VII. Elemental abundance in acid and basic rocks (in ppm).

9

80

----------

"--------------------.

-

ANALYSIS OF STREAM SEDIMENT RECONNAISSANCE DATA FOR MINERAL RESOURCES FROM THE MONTROSE NTMS QUADRANGLE, COLORADO by Michael Beyth, David Broxton, Carlotta Mclnteer, Walter R. Averett, and Newton K. Stablein

ABSTRACT Multivariate statistical analysis to support the National Uranium Resource Evaluation and to evaluate strategic and other commercially important mineral resources was carried out on Hydrogeochemical and Stream Sediment Reconnaissance data from the Montrose quadrangle, Colorado. The analysis suggests that (1) the southern Colorado Mineral Belt is an area favorable for uranium mineral occurrences, (2) carnotite-type occurrences are likely in the nose of the Gunnison Uplift, (3) uranium mineral occurrences may be present along the western and northern margins of the West Elk crater, (4) a base-metal mineralized area is associated with the Uncompahgre Uplift, and (5) uranium and base metals are associated in some areas, and both are often controlled by faults trending west-northwest and north.

11

INTRODUCTION The Los Alamos National Laboratory (LANL) has conducted a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) in the states of New Mexico, Colorado, Wyoming, Montana, and Alaska, as well as in parts of Arizona, Utah, and Idaho for the National Uranium Resource Evaluation of the United States Department of Energy (DOE). All data were reported by 1° x 2° National Topographic Map Series (NTMS) 1:250,000-scale quadrangles, with each quadrangle containing between 1500 and 2000 sample locations. Data were reported for uranium and 12 additional elements for each water sample and as many as 45 additional elements for each sediment sample. A typical HSSR report includes a sample location overlay; concentration overlays for uranium, thorium, and conductivity; data listings for water and sediment samples; and basic statistical measurements such as mean, median, and standard deviation for uranium in each sample type. In its HSSR reports, Los Alamos includes a brief evaluation of areas that may have potential for further uranium exploration. These evaluations are based on comparisons of uranium concentrations and uranium-thorium (U/Th) ratios with the bedrock geology of the quadrangle. Although the data evaluations are logical first steps in identifying potential follow-up areas, incorporation of the large amount of additional analytical information available for each sample location could greatly enhance the interpretation of uranium data. These data could also be used to assess other strategic or economic mineral commodities in each of the quadrangles (Van Eeckhout, 1979). Funding and time constraints, however, eliminated the possibility of a detailed evaluation of multielement data in routine NURE HSSR reports by Los Alamos. The goals of this study are 1) to examine how evaluations of uranium potential based on stream sediment data might be assisted through multivariate statistical analysiS, and 2) to examine the use of multielement data to identify areas with potential for mineral commodities other than uranium. This study extends the methods developed in an ea~lier multivariate statistical analysis of HSSR data for the Craig quadrangle, Colorado (Beyth and others, 1980). Data for the Montrose quadrangle were selected for study because two of Colorado's three major vein-type uranium districts (Marshall Pass and Cochetopa) occur within the quadrangle and because recently released HSSR data indicate that several other areas within the quadrangle have good potential for uranium exploration (Broxton and others, 1979). The large amount of exploration taking place in the quadrangle also reflects industry's belief that potential for discovery of additional uranium deposits is good in this area. Because the Colorado Mineral Belt, a major zone of base and precious metal occurrences, trends northeastward across the area, the quadrangle is also well suited for the study of mineral commoditi~s other than uranium. General Setting The Montrose quadrangle covers approximately 19,200 sq km in southwestern Colorado and includes portions of the Southern Rocky Mountains and Colorado Plateau physiographic provinces. The Sawatch, West Elk, and San Juan Mountains dominate the eastern two-thirds of the quadrangle (Map 1). 12

/

Elevations range from 4393 m above sea level at Mount Harvard in the Sawatch Mountains to 1500 m above sea level in the northwestern corner of the quadrangle. Montrose is the largest city in the area, with a 1970 census population of about 5000. The climate is typical of the mountain and valley regions of the Rocky Mountains. The annual precipitation ranges from more than 600 mm in the higher elevations to less than 250 mm in the valleys. Precipitation during the sampling periods was above average, and temperatures were near seasonal averages. The Continental Divide, which cuts through the eastern third of the quadrangle along the ridges of the Sawatch and San Juan Mountains, separates the quadrangle into the Arkansas River drainage on the east and the Gunnison River drainage on the west. The Gunnison River and its major tributaries, the North Fork and Uncompahgre Rivers, drain most of the quadrangle (Map 1). Geology Good general overviews of the geology and mineral occurrences of the region can be found in Tweto (1968) and Curtis (1975). A regional geologic map for the quadrangle has been compiled by Tweto (1976). The following descriptions of geology and mineral occurrences are summarized from Broxton and others, 1979.

"

The oldest rocks in the quadrangle consist of Precambrian X (age >1700 m.y.) quartzites, metarhyolites, greenstones, metagreywackes, and various types of gneisses and schists exposed in the Sawatch Range and along the Gunnison River. These metasedimentary and metavolcanic rocks are intruded by widespread 1700 m.y. old granitic batholiths and (in the central part of the quadrangle) by smaller Precambrian Y (about 1400 m.y.) granitic and alkali-rich mafic plutons. In the vicinity of the town of Powderhorn, the Precambrian rocks are intruded by th'e Iron Hill carbonatite complex, an early Cambrian alkalic pluton with associated occurrences of thorium (Map 4). Cambrian through Mississippian marine sandstones, shales, and limestones unconformably overlie crystalline rocks of the basement complex in the northeastern and southwestern parts of the quadrangle. Pennsylvanian to Permian uplift of the Uncompahgre Highland resulted in removal of early Paleozoic strata over much of the southern and western parts of the quadrangle. Pennsylvanian and Permian arkosic redbeds in the northeastern and southwestern parts of the quadrangle represent synorogenic clastic sediments shed into the Central Colorado Trough and the Paradox Basin on the flanks of the uplifted terranes. Triassic and Jurassic fluvial and lacustrine sediments were deposited over much of the beveled Precambrian core of the Uncompahgre Highland as well as over the flanking basin deposits. By Cretaceous time, transgressive and regressive seas covered the entire region, resulting in deposition of marine shales and sandstones interfingering with nonmarine sandstones, carbonaceous shales, and variegated mudstones. Mesozoic rocks are exposed principally in the western part of the quadrangle. During the Late Cretaceous to Eocene Laramide orogeny in Late Cretaceous time, the northwest-trending Sawatch Anticline and Uncompahgre Plateau were 13

uplifted, resulting in widespread erosion of older rock units and deposition of orogenic clastic sediments in basins adjacent to the uplifts. ~rosional remnants of these Laramide orogenic sediments (for example, Eocene Ohio Creek and Wasatch Formations) are preserved in the northwest part of the quadrangle. The Sawatch Anticline, which rose along the axis of the late Paleozoic Central Colorado Trough, and the Uncompahgre Plateau, a rejuvenated portion of the late Paleozoic Uncompahgre Highland, are reactivated basement blocks characterized by large vertical displacements. Intermediate to felsic volcanism (recorded in sediments of the Wasatch Formation) and intrusions accompanied the early states of Laramide deformation. Laramide volcanism and plutonism were localized along northeast-trending Precambrian shear zones and are associated with the earliest stages of mineral deposition in the Colorado Mineral Belt. The northern part of the San Juan volcanic field, which covers most of the southern part of the quadrangle, is a deeply dissected Oligocene volcanic plateau made up of a lower sequence of mainly andesitic lavas and breccias and an upper sequence of sheets of rhyolitic and quartz 1atitic ash-flow tuffs. Caldera complexes, stocks, plugs, sills, and dikes represent deeply eroded volcanic centers and epizona1 plutons that were sources for the volcanic rocks. North of the Gunnison River, the lower sequence of lavas and breccias of the San Juan volcanic field coalesces with volcanic deposits of similar age and composition derived from the West Elk Mountains. Numerous felsic epizona1 stocks, laccoliths, dikes, and sills of Oligocene age are exposed at the north end of the West Elk volcanic field and extend northeastward into the Sawatch Range. The Mt. Princeton batholith, on the eastern side of the Sawatch Range, was emplaced at about the same time that the volcanic activity in the West Elk and San Juan volcanic fields occurred. Epeirogenic uplift, bimodal basalt-rhyolite volcanism, and block faulting characterized late Tertiary deformation in the quadrangle. The Arkansas River Basin, a graben superimposed on the crest and eastern flank of the Laramide Sawatch Anticline, is the northernmost segment of the Rio Grande Rift. Late Tertiary orogenic sediments, represented by the Miocene Santa Fe and Dry Union Formations, fill the Arkansas River Basin. Radioactive Mineral Occurrences Nearly 600,000 tons of uranium ore containing between 0.11 and 1.17 percent U308 have been produced in the Montrose quadrangle (compiled from Nelson-Moore and others, 1978). Most of this production has come from mines in the Cochetopa and Marshall Pass districts. These mining districts and other uranium occurrences in the quadrangle are briefly described in Table I, and their locations are shown in Map 4. Individual uranium occurrences in Colorado are described in more detail in Nelson-Moore and others (1978). Uranium deposits in the Cochetopa district are localized along the Los Ochos fault, where sandstones and shales of the Jurassic Morrison Formation adjoin schists and granites of Precambrian X age. The principal orebodies are associated with intensely altered areas within the fault breccia and in the adjacent wall rocks. Most orebodies are related to brecciated rocks of the Morrison Formation, though uraniferous veins also cut the Precambrian schists. Although no mines are active in this area at the present time, 486,000 tons of 14

ore yielding 1,351,000 1b of U308 have been produced from this district, mainly from the Los Ochos and T-2 mines (Nelson-Moore and others, 1978). Uranium deposits in the Marshall Pass district are also structurally controlled. They are concentrated along the Chester fault, which displaces Precambrian X granites and schists against remnants of Paleozoic sedimentary formations. The uranium occurs mainly in Paleozoic rocks, particularly the Ordovician Harding Quartzite, Devonian Chaffee Formation, Mississippian Leadville Limestone, and Pennsylvanian Belden Formation. More than 105,000 tons of ore containing between 0.25 and 1.17 percent U308 have been produced from this district. Most production was from the Pitch Mine, an underground mine that was recently reopened as an open pit. The Powderhorn thorium district is located in the south-central part of the quadrangle. Thorium, principally in the form of pyroch10re, is concentrated in veins and shear zones on the margins of the Iron Hill complex, an Early Cambrian alkalic intrusion made up of pyroxenite, uncompahgrite, ijo1ite, nepheline syenite, and carbonatite. Thorium levels are too low to be of economic interest under present market conditions unless the thorium is extracted as a byproduct of niobium, rare earth, or uranium deposits that may exist within the alkalic complex. Data presented by Phair and Gottfried (1964) indicate that Precambrian granitic and metamorphic rocks as well as Laramide plutonic rocks in the Front Range, 50-100 km east and northeast of the quadrangle, are thorium-rich on a regional scale and define a distinct thorium geochemical province. Furthermore, the segment of the Front Range transected by the Colorado Mineral Belt is considered a metallogenic uranium province because of the unusual number of workable uranium deposits located there. Because of the similarities in Precambrian bedrock geology, the presence of workable uranium deposits, and the projection of the.Co10rado Mineral Belt through the area, portions of the quadrangle might be extensions of the thorium and uranium provinces described in the Front Range. Tweto (1968) suggests that northwest-trending faults intersecting the northeast-trending veins are important sites for uranium occurrences on the fringes of or outside the Colorado Mineral Belt. Base and Precious Metal Occurrences Most of the known base and precious metal mineral occurrences in the quadrangle are within the Colorado Mineral Belt, a northeast-trending zone of major metal deposits associated with Laramide and middle Tertiary plutons aligned along reactivated Precambrian shear zones. This belt extends diagonally across the quadrangle from the Mosquito Range in the northeast to the Uncompahgre and Lake City calderas in the southwestern part of the quadrangle. The major base- and precious-metal mining districts in the quadrangle (Burbank and Luedke, 1968) are described in Table II, and their locations are shown in Map 5. In addition, the Colorado resources map (USGS, 1971) shows the locations and types of many smaller mineral deposits in the report area. An extensive catalog of mineral occurrences and mines in the quadrangle was compiled by Truebe (1979).

J

15

INTERPRETIVE TECHNIQUES There are 1857 sediment samples and 1365 water samples in the data base for the quadrangle. Locations of these sample sites are shown on Map 3. Detailed sample coordinates, listings of field and analytical data, and descriptions of field and analytical procedures are ~iven in Broxton and others, 1979. Because regional background concentrations of elements vary as a function of geology and physiography, data for the quadrangle were divided into three geochemically distinct geologic or physiographic provinces: the Western Plateau area (Area A), the San Juan and West Elk volcanic fields (Area B), and the Sawatch and Gunnison crystalline terrane (Area C) (see Map 3). The Western Plateau is an arid area of low relief, underlain by p,ently dipping Mesozoic formations. The San Juan~est Elk volcanic terrane is a semihumid to semiarid region of moderate to high relief, underlain primarily by mid-Tertiary intermediate and felsic volcanic rocks. The Sawatch-Gunnison crystalline terrane is a complex crystalline area underlain primarily by Precambrian X igneous and metamorphic rocks and to a lesser extent by Paleozoic sediments and Tertiary felsic intrusive rocks. All elements reported in the Montrose HSSR report were examined for potential use in this study. Of the 42 elements reported for sediment samples, 21 elements (AI, Ba, Ca, Ce, Co, Cr, Cu, Dy, Fe, Hf, K, Li, Mg, Mn, Pb, Sc, Th, Ti, U, V, and Zn) were selected for multivariate statistical analysis. Four additional elements (Ag, Au, W, and Nb) have too many values below the detection limit to be included in the statistical analysis, but were examined on a case-by-case basis to determine their usefulness in outlining mineralized areas. Uranium was the only element examined in water data. The elements selected for study in sediment and water samples were chosen because they are recognized or suggested pathfinders for uranium or could be useful in exploration for strategic minerals. The data base for this study was compiled on a CDC-6600, 128K central memory computer. Histograms, scat tergrams , correlation coefficients, and factor analysis were ~enerated usin~ the Statistical Package for the Social Sciences (SPSS, Nie and others, 1975). Data base management system 2000 was used to calculate simple statistical parameters suc~ as average and standard deviation, as well as to transfer data from CDC-6600 computer disk to the SPSS system. In factor analyses and the computation of averages, standard deviations, and correlation coefficients, a value of one-half the detection limit was assigned to elements with analytical values below the detection limit. Therefore, some statistical parameters (such as averages and medians) could be positively skewed in those elements with many values below the detection limit (Table IV; Figs. 1-21). Analyses with values below the detection limit were ignored on scatter~rams and log probability plots. Anomaly thresholds for each element (Table III) were estimated from log probability plots of frequency distribution curves using data for the entire quadrangle (Lepeltier, 1969). Separate thresholds for uranium, copper, lead, and zinc were estimated for each of the three geologic or physiographic provinces (Table IV).

• 16

·

Statistical averages and standard deviations are also strongly positively skewed by contamination due to tailings in established mining districts. The effects of contamination on the statistical data are well illustrated by the extreme standard deviations for copper, lead, and zinc (Table III). Although averages are often used as reasonable approximations of elemental background values, use of the raw statistical data can result in estimates that are far too high. To better estimate elemental background levels for the quadrangle and for each of the three geologic or physiographic provinces, the statistical data in Table III were recalculated after removing samples above the anomaly threshold levels cited in Table IV. This procedure separated the most exotic samples (usually downstream from mine tailings) from those that better represent the bedrock geology, and it resulted in a much better estimate of background concentration for each element. Scattergrams were plotted and correlation coefficients were calculated for all combinations of elements. Selected plots are shown in Figures 22 through 35.

.

Multielement correlation and R-mode factor analysis (PAl and PA2 with Varimax orthogonal rotation) for the whole quadrangle (1857 samples) and for each of the three geologic or physiographic subdivisions (Western Plateau, 409 samples; San Juan and West Elk volcanic fields, 783 samples; Sawatch-Gunnison terrane, 665 samples) were carried out both on raw data and on log-transformed data. The results of the analyses are summarized in multielement correlation charts and factor analysis diagrams (Figs. 36-57) • Concentrations gre~ter than the thresholds for uranium, thorium, niobium, dysprosium, cerium, hafnium, lithium, lead, copper, zinc, and scandium were plotted on 1:250,000-scale maps that were reduced as overlays. Clusters of samples above thresholds were delineated and boundaries were drawn according to topographic drainage basins on 1:62,500-scale and 1:24,000-scale topographic maps of the U.S. Geological Survey. These clusters were then overlain on the geologic map (Tweto and others, 1976) to determine the provenance of anomalous samples (Table V). . To better define the relationships among those samples of interest, additional multielement correlation and factor analyses on log-transformed data were calculated for the anomalous samples above threshold for uranium, copper, lead, and zinc (Figs. 48-57). The basic statistics for the data set are summarized in Table VI. For comparison, elemental abundances in acid and basic rocks are given in Table VII. Three factor score maps were plotted: the factor score for factor 3 out of 9 factors (PAl on raw data for the whole quadrangle), which is loaded mainly by copper, zinc, and lead (Map 26); factor 9 out of 9 factors (PAl on raw data for the Sawatch-Gunnison crystalline terrane), which is loaded mainly by uranium and less by chromium, iron, and vanadium (Map 15); and factor 2 out of 9 factors (PAl on raw data for the whole quadrangle), Which is loaded mainly by lanthanides, thorium, and hafnium, and less by uranium (Map 16). This method helps in locating the areas most favorable for the occurrence of uranium in base metals.

17

Using the above data and elemental concentrations, an attempt was made to determine the probable location of mineralized areas by following the pattern of concentrations in the drainage basins. In cases where it was possible to identify the source of anomalous samples, probable locations were designated by an X on the maps. All available literature was consulted in the attempt to locate mines, mining activity, and prospects. Uranium concentrations in sediment and water samples were mapped by kriging (Planner and Campbell, 1980) (Maps 17 and 18). The following review of information on the methods of sampling, chemical analysis, and statistical evaluation should be noted before the results of the work are discussed: (1) The average sampling density is one sample location per 10 sq km. Many mineralized areas, especially the vein types, may not be detected at that density (Bramlett, 1979). (2) The total elemental concentrations in the sediment samples reported by Broxton and others (1979) and used in this report are for the -100 mesh fraction. (3) The statistical analysis of all elements except uranium was based on sediment samples only; data from both sediment and water samples were used for uranium. All concentrations are reported in parts per million (ppm) for sediment samples and parts per billion (ppb) for water samples.

(4) The data were examined for each geologic or physiographic province (Map 3) by comparing elemental data to the geology of each area. (5) Some geochemical correlations that are almost certain to exist (such as those between lanthanides, thorium, and hafnium) are unreasonably low on raw data and are brought out better by log-transformed data (Figs. 39 and 40). (6) There is widespread mining activity in the quadrangle (see Map 5). The tailings from the mines may produce local point-source contamination. (7) Contouring of factor score maps generally shows the favorable areas for various combinations of elements. On the other hand, the contouring may shift the favorable location on the map; although stream sediment samples represent drainage basins, contouring ignores the boundaries of basins.

PRESENTATION OF RESULTS The results are presented in tables, figures, and maps. Because of the large amount of data, not all results presented are completely discussed in the following section. However, all results are presented in such a way that readers can provide their own interpretation. The use of the original 1:250,000-scale topographic maps (U.S. Geological Survey, 1962) and geologic map (Tweto and others, 1976) is recommended. Reduced copies are included in this report (Maps 1 and 2) for use with the

18

concentration overlays. Map 3 is a sample location map without sample numbers. Other maps are cited in the text. Concentration overlays, a sample location overlay with sample numbers, a listing of field data and elemental concentrations for sediment samples from the Montrose quadrangle can be found in the report by Broxton and others (1979), which should be used in conjunction with this report.

al~

Uranium, Thorium, Lanthanides, Hafnium, Niobium, and Lithium For the sediment samples of the entire quadrangle, the correlations between uranium, lanthanides, thorium, and hafnium are best expressed in log-transformed data (Fig. 37 and factor 2, Fig. 38). Uranium is also associated with base metals, as shown by factor 4, log-transformed data. The five factors on log-transformed data for stream sediment samples of the quadrangle may be interpreted as follows: The first factor, composed mainly of iron, cobalt, scandium, vanadium, titanium, and manganese, probably represents a mafic assemblage. The second factor (the lanthanides, thorium, hafnium, and some uranium) probably represents zircon and heavy resistate rare-earth minerals. The third factor, composed of potassium, aluminum, barium, and titanium, probably represents a felsic assemblage. The fourth factor, composed of copper, lead, zinc, and very little uranium, probably represents a base-metal assemblage. The fifth factor, composed of magnesium, calcium, lithium, and vanadium, probably represents limestone. Western Plateau Area (Area A) The average values for uranium in sediment samples in the area are low (3.7 ppm), whereas the background for uranium in water samples is very high (23 ppm, Map 7). Uranium is moderately correlated with thorium (0.39, Fig. 40). High values of uranium in water samples, uranium values >4.0 ppm in sediment samples, and high values of lithium in sediment samples (Map 14) occur in the Mancos Shale at the margins of the Gunnison and Uncompahgre Uplifts. No values of uranium greater than 20 ppm in sediment samples were found in Area A, but high values were found in water samples (~~ps 7 and 18) associated with sediment samples having high U/Th ratios (Map 9). The most interesting anomaly, located at Waterdog Peak in the west-central part of the area, is associated with the Cretaceous to Tertiary Telluride Conglomerate. The concentrations of uranium in water samples at the location range from 13.2 ppb (sample COSOS7) to 209.5 ppb (sample C080SS) (Map 7). Uranium is loaded 0.50 on factor 1 with calcium, magnesium, and vanadium, and on factor 4 with thorium, lanthanides, and hafnium (Fig. 41, logtransformed data). The moderate correlation with vanadium (0.41, Fig. 40) may indicate carnotite-type minerals (factor 1, Fig. 41, log-transformed data). 19

About 68 percent of the total information about uranium was used in factor analysis. Three areas with high factor 2 scores (whole quadrangle log-transformed data, Fig. 38; Map 16) were identified where all but a few samples lie along the trend of the Gunnison Uplift in the northern part of Area A (Map 16). The highest values of uranium in the northernmost area coincide with high concentrations of uranium in water samples (38.2 ppb; Map 7). Very high factor scores are mainly due to high hafnium (Map 13) and moderate to very high uranium values. The central area has moderate to low scores and is associated with high concentrations of uranium in water. The southern area overlies the Cretaceous Dakota and Burro Canyon Formations and has very high dysprosium and cerium values (Maps 11 and 12). San Juan and West Elk Volcanic Fields (Area B) The statistical analysis, uranium concentrations in water samples, factor score maps, kriging maps, and high values of niobium indicate that parts of this volcanic area may be favorable for uranium occurrences, even outside the Colorado Mineral Belt. On the other hand, only two sediment samples with high uranium were found (Map 6), and the average value of uranium in sediment samples (3.8 ppm) is very low. The correlations between uranium, the lanthanides, thorium, hafnium, and lead are moderate, and other correlations with uranium are low or negative (Fig. 43). The very few U/Th ratios greater than 1 represent samples concentrated along the Colorado Mineral Belt. There are numerous sediment samples with ratios of 0.5-1.0 in the eastern part of the area; only a few of them coincide with high concentrations of uranium in water (Map 7), although they correspond somewhat with anomalous uranium concentrations in water samples as defined by kriging (Map 18). A clearly anomalous area of uranium in sediment samples, also defined by kriging (Map 17), is located near the Bonanza King base-metal and precious-metal mines in the northeastern corner of the area (Maps 4 and 5). Two water samples about 25 km northeast of Cochetopa Dome indicate that uranium may be associated with an east-trending fault line separating Oligocene andesitic lavas and breccias from Tertiary felsic rocks. Sample C09120, a water sample with 5.4 ppb uranium, is near a reported occurrence of uranium (point 41 on Map 4). Sample C08415, near Lake City, illustrates the importance of evaluation by drainage basin. The sample, a sediment, contains 26.9 ppm uranium and represents uranophane in a vein-type occurrence about 1.5 km upstream (Map 4). The area of the basin is about 3 sq km. Niobium is the only element above threshold that is associated with the uranium mine on Soap Creek, in the West Elk volcanic field (Maps 4 and 10). The high values of niobium along the western and northern margins of the West Elk crater could likewise indicate uranium occurrences; similar associations of niobium and uranium were reported from Saudi Arabia (Matzko and Nagvi, 1978). 20

Uranium and lithium are often associated where uranium orebodies occur in volcanic environments (Burt and Sheridan, 1980). In this study, there was a clear correlation in the West Elk volcanic field only where the Cochetopa Dome uranium occurrences (reported by Nelson-Moore and others, 1978) were detected by high lithium in sediment samples (Map 14). In factor analysis, uranium is loaded mainly on factor 2 with thorium, hafnium, and lanthanides (0.60; Fig. 44, log-transformed data). The Bonanza King area is expressed by high factor 2 scores (Map 16). High factor 2 scores also indicate the Wasatch Formation intruded by middle Tertiary felsic intrusive rocks in the northern West Elk volcanic field. One very high score close to the West Elk crater is due to sample C08694, in which uranium, dysprosium, cerium, and thorium are high, and the U/Th ratio (0.126) is very low. Two zones of high factor 2 scores are located in the southeastern part of the area. The western zone has volcanic rocks along the eastern margin of the Colorado Mineral Belt and coincides with a high-temperature uranium mineral occurrence (Map 4). The eastern zone, associated with the Bonanza King mining area, has Precambrian X migmatites and granites and Paleozoic sedimentary rocks, and an occurrence of a low-temperature uranium mineral is reported. Most of these high factor 2 scores are associated with anomalies identified from airborne survey data (Map 4). The kriging map of uranium in sediment samples (Map 17) indicates that values exceeding a level as low as 4 ppm may be significant for identifying areas with high background, such as the Colorado Mineral Belt, and areas of anomalous concentrations of uranium where the background is low, such as the San Juan and West Elk volcanic fields. Sawatch and Gunnison Crystalline Terrane (Area C) Analysis of the data for the entire quadrangle shows that Area C, the northeast part of the quadrangle, is generally the most favorable area for the occurrence of uranium. Uranium-producing properties in the area lie within the Colorado Mineral Belt. . The favorable character of Area C is suggested by the clustering of sediment samples in which uranium exceeds the quadrangle threshold of 20 ppm (Map 6), clustering of sediment samples in which the U/Th ratio is high (Map 9), and by the factor 2 score contours (Map 16). A few of the significant anomalous areas identified in this report were not listed by Nelson-Moore and others (1978), nor were they identified by the aerial gamma-ray survey carried out by geoMetries (1979) (Map 4). Mapping by kriging log-transformed data for uranium in sediment samples (Map 17) shows a higher background for the Colorado Mineral Belt than for the rest of the quadrangle, and kriging indicates at least 10 anomalies within area C. Most of the anomalous values correspond with high factor 9 scores on raw data (Map 15). Factor 9 on raw data for Area C is virtually a pure uranium factor with some loading of potassium (Fig. 47). Henceforth, references in the text to factor 9 will always mean this factor on raw data. All the other factors referred to are on log-transformed data.

21

The accuracy of locating mineralized areas can be increased by comparing anomalous areas with drainage basins in which there are anomalous concentrations of uranium in stream sediment samples. The main cluster of anomalous values of uranium at the Mt. Princeton batholith (Map 6) coincides with the major area of lead, copper, and zinc occurrences (Maps 5, 19, 20, and 21; Table V). Some correlation also exists between uranium anomalies and isolated anomalous values of base and precious metals. The correlation between uranium and base metals is seen by comparison of factor 3 scores (Map 26) and factor 9 scores (Map 15). Correlation of the geology with the high values of uranium shows that most of the uranium anomalies are associated with Precambrian X granitic rocks and middle Tertiary felsic plutonic rocks (Table V). A smaller number of anomalous samples occurs in areas partially underlain by Precambrian X felsic, hornblendic, and biotitic gneisses. Most of the high concentrations of lanthanides (Maps 11 and 12), thorium (Map 8), and hafnium (Map 13) in the quadrangle are located in Area C. High values of dysprosium and hafnium are mainly in Precambrian X granites of the Gore Range at the western margin of the Arkansas River graben; a few high values are in the graben fill itself. There are some high concentrations in the Sawatch Range, but except for thorium they are not in the same location as the main cluster of uranium values at the Mt. Princeton batholith. Few high values of thorium and hafnium are correlated with high values of uranium in water samples. A regional correlation exists between factor 2 (lanthanides and uranium, Map 16) and factor 9 (uranium and potassium, Map 15). The Marshall Pass and Cochetopa uranium districts and the Powderhorn thorium district are somewhat expressed by elevated factor 9 scores (Map 15) and much less by kriging (Map 17). The direct mapping of anomalous concentrations of uranium in water samples (Map 7), combined with kriging (Map 18), detects these districts much better. The Marshall Pass and Cochetopa districts are detectable by medium to high factor 2" and factor 9 scores that only partly overlap. Many samples with anomalous concentrations were collected downstream from major faults, such as along the eastern margin of the Arkansas River graben, or along the line trending northwest across Crested Butte and separating the high Precambrian Sawatch Range on the east from the low Mesozoic sedimentary rocks and the volcanic basin of the West Elk volcanic field on the west. This line is associated with Tertiary felsic rocks and with base and precious metals. The north-trending fault from Spring Creek to White River National Forest is clearly expressed by high concentrations of uranium in water (Map 7). One of the higher concentrations of uranium in water (197.6 ppb) was found in the stream draining the area of the Marshall Pass mines. The concentrations decrease downstream to 25.6 ppb. In this case, where contamination is assumed to exist, uranium in water was a better detector than uranium in stream sediments (Map 6).

22

The largest clusters of anomalous samples are associated with Cambrian Iron Hill carbonatite and Precambrian Y granites and alkalic and mafic rocks to the north. A high concentration of uranium in water could be a direct indication that some of that uranium came from leachable ore-forming minerals. !

The Sawatch Uplift, Mt. Princeton batholith, and Mosquito Uplift have a few anomalous samples with high concentrations of uranium in water samples (Maps 7 and 18) which correspond partly with high concentrations of uranium in sediment samples (Map 6 and 17). Since some of the uranium in Area C may be in leachable minerals, the low background of uranium in water (3.4 ppb) could be the result of the brief contact time where streamflow is rapid in the high and rough terrain (Maxwell, 1977). This response t,o topography could be a reason why uranium in sediment is a better detector of uranium in the higher parts of the area, while uranium in water is a better detector in the lower southern part, where most of the luning districts are located. Base Metals The central, northeastern, and southwestern parts of the quadrangle are part of the northeast-trending Colorado Mineral Belt (Map 5). The rocks making up the belt are primarily Precambrian granites and m~igmatites covered by Paleozoic sediments and intruded by Upper Cretaceous to Tertiary volcanic rocks. The young volcanic rocks form huge calderas and acid intrusive batholiths (Map 2). The mines and mineral occurrences indicated on Map 5 produce base metals (copper, lead, and zinc), precious metals, molybdenum, tungsten, and other metals.

!

As expected for this luning area, there are extremely high concentrations of lead, copper, and zinc in stream sediment samples (Figs. 2, 3, and 20). The averages and standard deviations for the different areas are also very high (Table III), and they are strongly positively skewed (Figs. 2, 3, and 20). The cumulative frequency curves for these thr~e elements indicate that the thresholds are in the low percentiles. In some cases, such as lead, two populations are indicated Table IV; Appendix). The basic statistics for lead, copper, and zinc values above the thresholds are summarized in Table VI, which shows 237 very high values for lead, 192 for copper, and 195 for zinc. The base metals are not correlated as well in samples for the whole quadrangle (Fig. 37) as they are in 90 samples in which uranium exceeds the quadrangle threshold of 20 ppm (Fig. 48). Most of the 90 samples are in Area C. The correlation and factor analyses show that copper, lead, and zinc form one distinct elemental assemblage. All are loaded on the same factor (Figs. 38, 41, 44, and 52). There is low correlation with uranium, manganese, and barium (Figs. 37, 39, 40, 42, 43, 46, 48, 50, 51, 53, 54, 56, 57). The relationships may indicate that barite and manganese minerals occur as gangue in a sulfidic vein-type base- and precious-metal environment, with possibly some associated uraninite. The factor 3 score map (Map 26) indicates the most favorable areas for the base metals assemblage. Most of the high factor scores of this map 23

coincide with the Colorado Mineral Belt. The highest scores represent samples from Oligocene lavas and breccias and Tertiary felsic intrusive rocks of Mt. Princeton, where they are extruded and intruded through Precambrian basement rocks (Table Vj Map 2). The stratigraphy and tectonics in the area of high lead, copper, and zinc (Maps 19-21), summarized in Table V, support the conclusions drawn from the factor 3 score map (Map 26). Because the clusters of stream sediment samples with high concentrations are mapped accurately according to drainage basins, isolated probable mineral occurrences can be located, even when they are small. The length of the dispersion train can be estimated for a few cases in which mines or prospects are known (Map 5). Some correlation with high concentrations of gold (Map 22), silver (Map 23), and tungsten (Map 24) was found. This accurate mapping makes it likely that indications of undiscovered mineralized areas can be found. Correlation of the factor 3 score map (Map 26) with the factor 9 (raw data) score map of Area C (Map 15) indicates that most high scores for uranium in Area C coincide with high scores for the base metals. The most impressive correlation is between the main cluster of anomalous uranium values at the southern slope of the Mt. Princeton caldera and the high factor 3 scores (mainly base metals). The factor 2 score map of the lanthanides, thorium, and hafnium (Map 16) shows that they are slightly correlated with the base metals. Some high scores seem to be related to two main tectonic trends: west-northwest and north. The high scores following the west-northwest trend at the southeastern corner of Area B are associated with the Ruby mining district. This trend is located on the tectonic boundary between the high Precambrian structure lying east-northeast and the sedimentary basin and Middle Tertiary intrusions lying west-southwest. A small high-score cluster, composed of only two samples, was identified close to the Iron Hill carbonatite. The samples of this cluster are probably located along the main fault of the west-northwest-trending Gunnison Uplift (Map 2). Even the large high-score cluster of the Bonanza caldera at the southeastern boundary of the quadrangle, which coincides with Oligocene andesitic lavas and breccias and Tertiary felsic intrusive rocks, seems to be controlled by faults trending northwest and north. The northward trend is at the northwestern corner of Area C, where high factor scores coincide with the north-trending fault zone extending from Spring Creek to the White River National Forest. There are some high-score areas in Area C that coincide with the Mancos, Mesaverde, Dakota, and Burro Canyon Formations at the Uncompahgre Uplift, especially where Jurassic formations crop out and there are north-trending faults. Therefore, it is likely that at least part of the sulfidic base-metal mineral assemblage is associated with young magmatic activity and is controlled by faults trending west-northwest and north (Table V).

24

Precious Metals and Tungsten Gold and silver mining in the quadrangle was mostly in the Uncompahgre, Lake City, Gold Brick, Ruby, Tincup, Chalk Creek, Tomichi, Monarch, and Bonanza King mining areas (Map 5; Table II). Precious metals are associated with base metals in most of the mines; in the Gold Brick they are associated with molybdenum, tungsten, beryllium, lithium, niobium, and tantalum. One molybdenum and tungsten mine on Green Mountain was not detected by sample C08718. Twenty-five samples with >0.2 ppm gold (Map 22), 41 with >6 ppm silver (Map 23), and 24 with >25 ppm tungsten (Map 24) are shown. So many samples have concentrations below the detection limits that results for these three metals were not used in the statistical analysis. High values of gold, silver, and tungsten are concentrated along the Colorado Mineral Belt. There are a few in Area A at the Uncompahgre Uplift, on Log Hill Mesa, south of Montrose. The trends of the three metals are similar to the trends of the base metals. High values of silver occur in a group at the Mosquito Uplift, associated with intensively faulted Precambrian X granite at the northwest-trending eastern margin of the Arkansas River graben. The importance of mapping high values according to drainage is illustrated by two isolated high values (as opposed to clusters) which identified a small mine between Stubbs Gulch and Long Gulch and prospects close to Cebolla Hot Springs. The respective samples were C09176, with· 0.63 ppm gold in the -100 mesh fraction of stream sediment, located about 1.5 km from the mine, and C08401, with 0.22 ppm gold, located about 3 km from the prospects. In both cases, a stream drainage connected the sample with its source. Regional Assemblages Five main assemblages are inferred from Fig. 39. They show the following differences for the three geologic or physiographic provinces: The limestone assemblage is the most important one in Area A. It contains some uranium (Fig. 41, log-transformed data), probably from the Mancos Shale and the Mesaverde Formation. Both of them contain limestone (Map 2). There are few magmatic rocks in the area, which explains why the felsic and mafic rock assemblage are not strongly defined in the factor analysis. The lanthanide assemblage includes some chromium. In Area B, the mafic-rock assemblage includes calcium and magnesium, with no lithium (Fig. 44). The lanthanide assemblage includes some uranium. Fractionation between the cerium and ytterbium groups is indicated, because the correlation between cerium and dysprosium is only 0.42 (Fig. 43, logtransformed data). The base-metal assemblage contains a little thorium and barium. The felsic assemblage contains lithium. The fifth assemblage is partly a repetition of the first, with low loadings of vanadium, titanium, and chromium; it might represent pyroxene minerals. :

The elemental assemblages of Area C are: the lanthanide assemblage; the mafic-rock assemblage, including scandium, iron, cobalt, and vanadium; the 25

felsic assemblage, with some titanium; the base-metal assemblage, with a little uranium; the limestone assemblage, with some titanium and v~nadium; and lithium with a small amount of scandium (six assemblages; Fig. 47, log-transformed data).

26

CONCLUSIONS (1) The Sawatch and Gunnison crystalline terrane is the area most favorable for uranium occurrences in the quadrangle, with uranium ore minerals the likely source of high uranium in sediment samples. (2) The southern Colorado Mineral Belt is favorable for the occurrence of uranium cinerals. Base and precious metals appear to be associated with uranium minerals such as pitchblende in vein-type occurrences in shear zones. (3) Carnotite-type uranium mineral occurrences are likely in the Western Plateau area, mainly at the nose of the Gunnison Uplift. (4) Base-metal minerals probably occur in an area of north-trending faults in the Uncompahgre Uplift, near Ridgway. (5) High concentrations of niobium in sediment samples indicate possible occurrences of uranium minerals along the western and northern margins of the West Elk crater, since niobium has been reported elsewhere as a pathfinder for some kinds of uranium minerals in volcanic rocks. (6) Clusters of anomalous values of uranium are correlated with occurrences of base and precious metals in some areas. (7) Base-metal minerals are most likely to occur as sulfides with gold, silver, and tungsten, but they may sometimes occur with pitchblende. The gangue minerals might include manganese minerals and barite. (8) Base-metal and uranium mineral occurrences probably are controlled by faults trending west-northwest and north along the northeast-trending Colorado Mineral Belt. (9) Uranium in stream water samples is useful in identifying areas favorable for uranium occurrences, except in areas where streamflow is too rapid to allow the contact with rocks necessary for" high concentrations of uranium to develop. (10) A single sample can often indicate the exact location of a mineral occurrence if the relationship of the sample to the drainage basin is carefully analyzed. (11) Some fractionation between the cerium and ytterbium groups of lanthanides may have occurred, especially in the San Juan and West Elk volcanic fields and the Western Plateau area. (12) A combination of kriging, drainage basin, and factor score mapping may be useful in locating mineralized areas. (13) Log transformation of geochemical data may be important where the distribution is highly skewed.

27

RECOMMENDATIONS Follow-up field studies should be conducted in areas identified by this analysis as favorable for the occurrence of uranium, base metals, and precious metals. The preferred areas are the southern Colorado Mineral Belt, the nose of the Gunnison Uplift, the western and northern margins of the West Elk crater, and the Uncompahgre Uplift near Ridgway. The statistical techniques upon which this report is based should be applied to other hydrogeochemical and stream sediment data to identify other areas in which mineral occurrences might be significant.

ACKNOWLEDGMENTS The authors gratefully acknowledge the help of the following individuals in preparation of this report: Debbie A. Gambrell and Nancy J. Eckhoff, who typed the report; John A. Paskiewicz, who drafted the figures and maps; Mary E. Luke, who helped during all the stages of the work; and Andrea Kron, who edited the report,for English usage.

9

28

REFERENCES Beyth, M., Mclnteer, C., Broxton, D., Bolivar, S. L., and Luke, M. E., 1980: Multivariate statistical analysis of stream sediments from the Craig NTMS quadrangle, Colorado; GJBX-145(80), u.S. DOE, Grand Junction, CO, 72 p. Bramlett, L., 1979: Geochemical characterization of stream sediment and soil in the Midnite uranium district, eastern Washington; Abstract from 92nd Annual Heeting, Geo!. Soc. Am., p. 393. Broxton, D. E., Morris, W. A., and Bolivar, S. L., 1979: Uranium Hydrogeochemical and stream sediment reconnaissance of the Montrose NTMS quadrangle, Colorado, including concentrations of forty-three additional elements; GJBX-125(79), U.S. DOE, Grand Junction, CO, 255 p. Burbank, W. S" and Luedke, R. G., 1968: Geology and ore deposits of the western San Juan Mountains, Colorado; in Ore Deposits of the United States 1933-1967, Craton/Sales, v. 1, AlME, New York, pp. 714-733. Burt, D. M., and Sheridan, M. F., 1980: A model for the formation of uranium/lithophile element deposits in fluorine-enriched volcanic rocks; Abstracts from annual meeting, southwest section AAPG, p. 18. Curtis, B. F., 1975: Cenozoic history of the Southern Rocky Mountains; GSA Memoir 144, Geol. Soc. America, Boulder, CO, 279 p. geoMetrics, 1979: Aerial gamma ray and magnetic survey Uncompahgre Uplift Project, Montrose quadrangle, Colorado, final report; Vol. I and II, GJBX-95(79), U.S. DOE, Grand Junction, CO, 57 p. Lepeltier, C., 1969: A simplified statistical treatment of geochemical data by graphical representation; Econ. Geol., v. 64, p. 538-550. Matzko, J. T., and Nagvi, M. I., 1978: A summary of niobium and rare earth localities from Hail and other areas in western Saudi Arabia, a preliminary study; U.S. Geol. Survey Saudi Arabian Project Report 221, 18 p. Maxwell, J. C., 1977: Uranium hydrogeochemical and stream sediment reconnaissance in the San Juan Mountains, southwestern Colorado; GJBX-22(77), U.S. DOE, Grand Junction, CO, 106 p. Nelson-Moore, J. L., Collins, D. B., and Hornbaker, A. L., 1978: Radioactive mineral occurrences of Colorado; Colorado Geo1. Survey Bull. 40, Denver, CO, 1054 p. Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K., and Bent, D. H., 1975: Statistical Package for the Social Sciences; second edition, McGraw-Hill, New York, N.Y., 675 p. Phair, G., and Gottfried, D., 1964: The Colorado Front Range, Colorado, USA, as a uranium and thorium province; in The Natural Radiation Environment, University of Chicago Press, ChicagO; IL, p. 7-30.

29

Planner, H. N., and Campbell, K., 1980: Moving average and krigeage statistical treatment of uranium hydrogeochemical and stream sediment reconnaissance data for the Albuquerque NTMS quadrangle, New Mexico (in preparation). Rankama, K., and Sahama, G., 1968: Geochemistry; The University of Chicago Press, 911 p. Truebe, H., 1974: Mineral occurrences in the Montrose quadrangle; Crested Butte, CO, 237 p. Tweto, 0., 1968: Geologic setting and interrelationships of the mineral deposits in the mountain provinces of Colorado and south-central Wyoming; in Ore Deposits of the United States 1933-1967, Craton/Sales, vol. 1, AlME, New York, N. Y., p. 551-588. Tweto, 0., Steven, T. A., Hail, W. J., and Moench, R. H., compilers, 1976: Preliminary geologic map of the Montrose 1° x 2° quadrangle, southwestern Colorado, ~~p MF-761 (1:250,000 scale), U.S. Geol. Survey, Denver, CO. USGS (U.S. Geological Survey), 1962, Montrose, Colorado, Map NJ13-4 (1:250,000 scale), Denver, CO. __~_, 1971, Reported occurrences of selected minerals in Colorado, 1:250,000-scale map, compiled for the Branch of Mineral Classification, Conservation District, Denver, CO. Van Eeckhout, E. M., 1979: An overview of strategic commodities and implications for multielement analyses for the NURE program; Los Alamos National Laboratory Internal Report, Los Alamos, NM, 20 p. Webb, J. S., Thornton, I., Howarth, R. J., and Lowenstein, P. L., 1978: The Wolfson Geochemical Atlas of England and Wales; Clarendon Press, Oxford, 72 p. Wedepohl, K. H., Correns, C. W., Shaw, D. M., Turekian, K. K., and Zemann, J., 1978: Handbook of Geochemistry; Springer-Verlag, Berlin, v. 11-1-11-5.

30

r .'....

1000

,,::

-

VALID CASES 1857

982

.r SOO. >u

z

au

-

607

600

:::)

~

I: I' I' I:'

D·9:5l

MEAN 6.359 MEDIAN 3.899 MODE 3.100 STD DEV 8.995 VARIANCE 80.907 KURTOSIS 52.o~4 SKEWNESS 6.047 MAXIMUM 136.800

uos

.

, I;

0.&:51 Ut5·

:::)

...

:::~; ~ 0.l55 1

aau

lit

...

au

> ;:::

lit

« :i

400

i

0.755 0.705 G.l55 0.6C5 1 U551 UCS,

>-

U Z au

~

:::)

I :,1 I

0.l05 0.255 0.205 0.155

:1

:1 :1

D.ICS

U

Area A - ___ (409 cases) Area 8 •••••••• (783 cases) Area C - - - (665 cases)

0.055

200~

33 >36ppm

92 45

1141

r

0 0

12

8

4

~

21

6~

19

16 20 24 URANIUM (ppm)

28

32

0.005

36

-t-:""T"".,..,.......,....-:-4........,.....,..,.,..,.-;----........,........,mr::--r.................,..."

10·'

10·

10' URANIUM (ppm)

;0'

;0'

Fig. 1. Histogram and cumulative frequency distribution of uranium 'concentrations in sediment samples

::::j

500 MEAN 43.310 MEDIAN 27.301 MODE 24.000 STD DEV 120.952 VARIANCE 14629.341 KURTOSIS 207.859 SKEWNESS 13.379 MAXIMUM 2456.000

VALID CASES 1857 400

>u

Z au

300

D.eS5

>u Z

au

:::)

aau

...

lit

:::)

aau

204 >48ppm

II!

123

100 33 0



~ 50000

1

0.655 ...

~

S II<

1 i

o.g~~

VALID CASES 1857

O.O~~

1846 Cases

,

CALCIUM (ppm)

CALCIUM (ppm)

Fig. 7. Histogram and cumulative frequency distribution of calcium concentrations in sediment samples

G.9

1000 VALID CASES 1857 800

>

...~ s

m

600

MEAN 11.425 MEDIAN 10.231 MODE 9.200 STD DEV 5.171 VARIANCE 26.737 KURTOSIS 20.380 SKEWNESS 3.271 MAXIMUM 64.600

> U Z

w ~

200

-

O.:~~

~

0.155

271

24

o I-< 5.0.

'267

12al, 52 I

44

r

~

>25.0 ppm

~

\

MC~~

> ;::

« 35

1

o.,!, -f O... ~5

w

II<

-417

O.BC~ ~ 0.755 0.7C~ , o.f! 5 0.60S "1

"... w

400-;', ~. ~

11

0.655,

-

~

~

55

o.g:~

0 .• ~5 ~ 0.35~

O.lC~ D.:Z~'

1

O.'C~

U

0.05~

1856 Cases

O.OO~

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 COBALT(ppm)

+.-:-,......,...,......,,,,,.-:-T"""T"J.......,,-:-T'""T"'TTTTr.'.r:-""""'''''''''''''''''''

10"

10'

10'

10'

COBALT (ppm)

Fig. 8. Histogram and cu mulative frequency distribution of cobalt concentrations in sediment samples

34

10'

!'

,

1000 VALID CASES 1857

MEAN 39.958 MEDIAN 35.807 MODE 36.000 STD DEV 26.386 VARIANCE 696.222 KURTOSIS 15.265 SKEWNESS 2.791

800

> u

...Z "......

600

~

;:)

.

MAXIMUM 281.00

rsi8

II<

-

400 1

292 1688 Cases

200

i94

oo

15

13

30

~

45

60

75

90

19

16

105

> 150

11

~

120 135 150

CHROMIUM (ppm)

CHROMIUM (ppm)

Fig. 9. Histogram and cu mulative frequency distribution of chromium concentrations in sediment samples

soo MEAN 27194.579 MEDIAN 22709.875 MODE 19280.000

400

VALID CASES 1857

STD DEV 17318.465 VARIANCE .2999E+09 KURTOSIS 32.799 SKEWNESS 3.967 MAXIMUM 275400.000

.

t

300

...II:5

200

...z

245

-

""-

253 >40000 246

ill

192 162

100

-

158 ~

1027~

-

o.o~,

1856 Cases

75

o

6

o

5r-f 01000 6000 9000

1~000 IS000 18000 ~/OOO~"Ooo~>oOo .10000 01.1000 .1CSoOo "0000 IRON (ppm)

IRON (ppm)

Fig. 10. Histogram and cu mulative frequency distribution of iron concentrations in sediment samples

35

100 VAllO CASES 1857

~

943

MEAN 12.128 MEDIAN 9.035 MODE 7.000 STD DEV 13.374 VARIANCE 178.853 KURTOSIS 98.144 SKEWNESS 7.863 MAXIMUM 261.600

800

~ 60o· III

:;)

e

II:

·

~

400

20o.

0

·

-160

·

-

~

60

I"l2!.,. 16 o

5

10

15

1855 Cases

37> 50 ppm

20

25

30

11 35

10 40

5i. 45

0.001,~O-.'--'-"""""""""'IO"".

50

HAFNIUM (ppm)

_ .....,..,....,...,·,0;:",......·...,...,·"T·......-'O:-:·,--..-.-,......,..·..-,,0. HAFNIUM (ppm)

Fig. 11. Histogram and cumulative frequency distribution of hafnium concentrations in sediment samples

-1

1000 MEAN 16667.233 MEDIAN 16600.375 MODE 14540.000 STD DEV 4311 .528

800

VARIANCE KURTOSIS SKEWNESS MAXIMUM

tZ

III

:;)

e

II:

0.901

VAllO CASES 1857

o.8!5

O~Cl~ 0.71$ 0.705

tZ

.1858E + 08 1.758 .072 37300.000

III :;)

lOt

> 0: < ~ ~

8

44

0

01000

uss D.las D.2S5 0.2el o.t:~

o.,~s

:;)

u

> 30000 ppm

200

0

J

III III

5

~

o.s~s

".... :::~:

400

30

O.6!~

UtS G.S!5

,,\

O.O!S

1828 Cases

0•••5

6000 """"000""00/4000"''>00001,

10'

POTASSIUM (ppm)

10'

10'

10'

"'10'

POTASSIUM (ppm)

Fig. 12. Histogram and cumulative frequency distribution of potassium concentrations in sediment samples

36

.. o.mi

1000~-------------------------------------,

MEAN 102.974 MEDIAN 81.810 MODE 74.000 STD DEV 129.863 VARIANCE 1664.407 KURTOSIS 846.249 SKEWNESS 24.912 MAXIMUM 4690.000

VALID CASES 1857

800

600

0.9J~ o.a:~ ~

0.8es

>U

...z

::l

"......... >

577

>-

II<

U

... "......

Z

::l

;:::

400

c(

418

5

II<

:e::l

287

11

1 0.7o, j O."'~~

1 ~::;~ ~ 0.'~5 O.5C~

1

0 .• 5$

""t

D.• C5

0.355

j

1 0.255 O.le~

0.205 0.155

D.les

U

105 >200ppm

200 185

O.O~5

1856 Cases

'"

100

CERIUM (ppm) 0

CERIUM (ppm)

Fig. 13. Histogram and cumulative frequency distribution of cerium concentrations in sediment samples

o.mj

1000 VALID CASES 1857

MEAN 16019.613 MEDIAN 14270.000 MODE 13490.000 STD DEV 9232.258 VARIANCE .8523E + 08 KURTOSIS 88.641 SKEWNESS 5.909 MAXIMUM 193300.000

800 ,..

~

600

...Z "...... ::l

r--

II<

~ ;:::

r-400

c(

-

5

:e::l

286

200

-

--,,..!!.. 73

o

o

102

~39

0.~e5

0.655 O.6~5

0.'55

"1

j j o 'C5 0.50~

Q.c!5

D.!!'

O.3es 0.2S~

0.2e~

0.155 D.lC~

U

22 >40000 ppm

199 ~

~:l 0.7~5

>U

452

::l

Il:

-

530

...

Z

S

0.905

O.O5~

1792 Cases

~-

I r--l 13 ~O 8000 '..'>000'6000"'0000"'oVOo/8Ooo .1- u zw

600-

MEAN 883.347 MEDIAN 812.250 MODE 496.000 STD DEV 551 .626 VARIANCE 304290.830 KURTOSIS 21.969 SKEWNESS 3.176 MAXIMUM 6709.000.

-

::J

aw

...ex

I--

400- 424

-

I-429

-

200-

4 >5000 ppm 4

o

0

2

3\

o.oos

500 1000 15002000250030003500400045005000

+-.........,......,.,..onr--r ............._rE-..-....,.............r::-...,.....,....,...,.,.,..." 10' 10'

10·

MANGANESE (ppm)

MANGANESE (ppm)

Fig. 16. Histogram and cumulative frequency distribution of manganese concentrations in sediment samples

38

o.mj

1000 .....- - - - - - - - - - - - - - - - - - , MEAN 14.621 VALID CASES 1857 I-MEDIAN 10.231 884 MODE 8.100 800. STD DEV 27.036 I-VARIANCE 730.930 747 KURTOSIS 950.743 SKEWNESS 26.869 600 MAXIMUM 999.000

0.905

-

...z

O.ICS

...Z 0 .......... J

-

ti

S II!

~'j 0.7~~

> U

II<

>

>= <

400_

::i

:eJ u

0.7CS O.iSS 0.105

o.,~s

U"l

0.'55 D•• CS

O.l!S O..3CS 0.:55 O.ZOS O.ISS

o.,es O.oss

200-

1856 Cases

h

50

\I

I h

14

20

13

4

> loo\ppm

5

5

O~_L~~~~~~~~~~~~~=d

o

10

20

30

40

50

60

70

80

90

100

THORIUM (ppm)

THORIUM (ppm)

Fig. 17. Histogram and cumulative frequency distribution of thorium concentrations in sediment samples

0.'55

1000~------------------,

800

ti

600 590

Z

....

S II! 400

0.905

MEAN 4954.564 MEDIAN 4378.000 MODE 3929.000 STD DEV 2290.769 VARIANCE 5247624.685 KURTOSIS 6.083 SKEWNESS \.914 MAXIMUM 23340.000

VALID CASES 1857

0.155

> U

....JZ

...~.... ...< II<

~

.... J

432

:eJ

347

U

33

200 175

88

>

12000 ppm

''''00 "'~Oo .7600 ~800

0.'05 0.055

1838 Cases

\ _ _ _4.;,;3_ 19 \

0~=L~~L-~~~~L-~~:L~

o

0.105 0.155 0.705 0.U5 0.Ie5 0.555 0.505 0.• 55 0..05 0.l55 0.305 0.255 0.205 O.ISS

"000 >.c>oo 8~00 9"00

0.005

+-.. . . . TTTTn...,..,..-r ................rIr...,....,..,....,,..,.,...:--r....,.........,.,...., 10' 10' 10' . 10'

10'

'0800 'C>OOO

TITANIUM (ppm)

TITANIUM (ppm)

Fig. 18. Histogram and cumulative frequency distribution of titanium concentrations in sediment samples

39

500

0.n5]

VALID CASES 1857

r-422

400

S48

.....-

t

316

300

.... j

MEAN 102.116 MEDIAN 85.113 MODE 59.000 STD DEV 65.679 VARIANCE 4313.695 KURTOSIS 16.573 SKEWNESS 3.136 MAXIMUM 754.000

0.85S 0.105 O.7~S

> U

...Z "......'" :)

au

zau

:)

" . au

If

~

200

>

\-

f-142

1001-

~

.....~

0

20

40

0.505 0.'55 0.405

~

~

O.l"

~:~~~ ]

«

0.205

=> :E :)

0.155 O.1~5

U 0.055

1850 Cases

101

80

o

200 ppm

o.&!51

g:~;~ ~

> ~

119

0.705

60

80

100

120

140

~

160 180

200 VANADIUM (ppm)

VANADIUM (ppm)

Fig. 19. Histogram and cumulative frequency distribution of vanadium concentrations in sediment samples

...... o.m~

1000 MEAN 162.384 MEDIAN 91.885 MODE 88.000 STD DEV 734.301 VARIANCE 539197.478 KURTOSIS 725.927 SKEWNESS 24.005 MAXIMUM 24760.000

VALID CASES 1305.

800

> 600 u

...Z "...'"... 400

0.905

o.mj 0.805 0.7~5

> U Z

au :)

".........'"

:)

>

~

« => :E :) 275

200

0.705 0.655 O.6~5

05" 0.5:5

0.'" 0."05 0.l~5

0.lt5 0.:" 0.205 0.155

0.105

U

265

0.055

Area A - - (292 cases) Area B •••• ••• •••• (579 cases) Area C - - - (468 cases)

0 0

0

20

40

80

100

120

ZINC (ppm)

ZINC (ppm)

• 552 samples below detection limit

Fig. 20. Histogram and cumulative frequency distribution of zinc concentrations in sediment samples

40

~

0.9~'

2000 ~

MEAN 5.26S MEDIAN 4.ISO STD DEV 4.304

1'425

> u 1200-

... a... Z

> U

0.705

KURTOSIS 295.479

:::I

a.6e5 0.55'

'"

... ...a Z

MAXIMUM IIS.OOO

:::I

II.

O.7~~

VARIANCE IS.527 SKEWNESS 13.227

...'" II.

> ;::::

VALID CASES IS57

SOO

1

o.m~ D.80S

.

MODE 4.000

1600·

1

0. 9C5

O.6~5

oMe'l .• ~s ~

:~~1

~

O.lO' 0.2" 0.20'

~

0.155

U

0.105

:::I :::I

~

0.055

400

IS50 Cases 2> 35 ppm

~ 26

5

4

\

0'~0~~5---1~0--~15===2~0~2-5---3~0---35--~

0.00'

DYSPROSIUM (ppm)

,+O-·•.....-........"TTT....'O....-,..., • ••

·~O.





i i • i

;0'

,0'

DYSPROSIUM (ppm)

Fig. 21. Histogram and cumulative frequency distribution of dysprosium concentrations in sediment samples

41

141 : .---.... ---.----.~---.- ..... - • .; ... --.---; ... -... - ... --.......--. ----.---.... ---- ----.---- .----.----. ----. ---- .---~.

Correlolion (R) R Squared Inlercep' (A) Slope (a) S.d Error of A Sid Error of a Plolled Values



•• 127 •• 1 I I I

113 •

1 I I I

0.48 0.23 1.49 0.34 0.33 0.02

9 9 ; .

.e:a

I

t------------------_____________________________ . . _____--------------..--..-----.....-----.....------..-.I . ,

,

1

I

85; I I

71

1

. I

57;

. :

I I

...._-_.._-------..---_.._---_......_...... __.._...._--_.._---------------- ------------------_.._.._---------.



I



I

. .. .....--

43'

. ....., ,.. . , •

I



29

..

15

••

,- - ,I....

.- • , .............. .&

,

••

1

I •

I I I

, ••

••••

l' ••

","\1'. ,.. • a. • •• In.z'f'H' ••••• 119,.0.o",·" .. I

n.. . • •,, ••• • 'n'Q.... '''. , ·2········20·······;8·- ····56···· ···7·4···· ···92·······i 'ici" ····i;ii······i:.-6·· ····i~.;·····i82 THORIUM (ppm)

Scattergram showing correlation between uranium and thorium

Fig. 22.

.---_._---.---- ... _--.- ......... _...-.--_......._-... -...... ---.---- ... _.. -.-_.... --_...---...-_..-.---- .......-.----.-.._- ..

141

:

127 113 99

eGo

.e: ~

:l

as

« ~

0.35 .

R Squared Inlercepl (A) Slope (a)

0.12 2.09 0.04

Sid Error af A Plolled Values

0.39 I 1217·: I

1---------·--_. _---------_. _-_ . ._----------------------______ ......____. . . ___ . _____. . __. _. . . . . , I

I 1

I

.



1 1

71

Z

:l

.

Correlalion (R)

57

1 1

.

1



,

1

1

-.-... --.---....- ........ --......- ..- .....- .....-.-.-.··_··················1II • • I

..... . .

43

., ... •• . ....."Z",... ,....... .,.... ... ,.... .... .. .... .. ... "'0'·'"'''''' " ... I

29

-:-

••

, w• ..

15

"

. .. I

1 I

• ,.,...,,.••••• '··410 • '~1".'

2



,~...

j·····-iS9······i9i ...··435····· --573' .... ·7·ii"· ···849·····;87··..;·i25·····i2~3·····i~o 1 CERIUM (ppm)

Fig. 23.

Scattergram showing correlation between uranium and cerium

• For scattergram plot, analyses containing values below detection limit were ignored. Because 1217 values were used instead of the whole matrix of 18"', there are minor ~anges in the statistical parameters.

42

----.-_ ........ __ ....- ............. _-.----.--_ ................ _- ... _.... ----.-_..... ---- ............ .

---- _-- -_

.... .... ......... _...................... CorreloUon (R) 0.71 :

;

R Squored

0.51 :

:

164

Intercept (A)

1.98 ;•

I

Slope (8)

0.12 :

146

Std Error of A

182

.

·

0.41 : 1217 ..

Plolled Volues

·,

128I

' •__......._____ .....______ ......................... _........ ___ .........______ ..... _.. _____ .._. . -----------------_ ......._-_......------1I

I I

E

It

I ,

110 92 74 • I

1-----------.. -_· .. ·_--1 ,.._____ .. _.. ______________________ . . ._____. ______________ ----------------_.." I I

I

56

• ': • •

:



38



I I

, II

'"

I""'"

20

~~1""

,



I

I I

,

II

I

••

I

\111 .... ' •• '

I t

2

I

•••

I t , , . . II •

"...

........ " '!I •• ' . ' . .

~ .. 'I •• " . ,

.no",..

I

, : :~~::: ____ ...___ .............. _._ .................. ____ ... _.. _.......... ____ •___ ... __......!..... _..... __ .____ .......... ____ 21

159

297

435

573

711

849

987

1125

1 ____ ._ ........ .

1263

1401

CERIUM (ppm)

122

Scattergram showing correlation between thorium and cerium

24.

Fig.

..--..._--.----.--- .... _-.-._- ......_-·.----.---.---.----.----.---- ----.--_...:........ ----.----.---- '-"--'..

..,

·,

110

o o

98

86 •I



74

o ,,,

I 1

' ,

------------------.-------------------_ ... _----------------------------------------,I • , •

E Q. ~ ~ ::I

...<

·.

I I I I

.

I I

50 I

38

..

I O.

, .,,

62

Z

:I:

I

I I



t------,---------·..-------------·---------------------.-------------------------------. • , • : Correlation (R) 0.67 !

... ,..

26

••• : : :

..., ,..... • 11"'''''' • - "1 ,.

••

• •

.. " .... ,·,.n. " ....., ~.,.

14

".110~ ..

""0 •• ". "

••

: R Squared : Intercept (A) I

t

: : : :

... .,

·

, •

,"."0.,.. ,,,.,. ,• .,.,.",.,-,



0.54 : 0.32 : 0.02 ; 1217 .. :

, ... ,. ......----.----.----.----.---.... __ ... -_ .... --_ ... --- ... _...._.-._-_ ... _--- ..... -......... --_ ...... _-- ... __ ..... ---.-- .... . 74 92 110 128 146 164 I I

I .,,,,... "' • •

2

Slope (8) Std Error of A Std Error of 8 Plolled Values

0.45 : 4.19 :

2

20

38

56

,

182

THORIUM (ppm)

Fig. 25.

Scattergram showing correlation between hafnium and thorium

.. For' scattergram plot, analyses containing values below detection Umit were ignored. Because 1217 values were used instead of the whole matrix of lSS1, there are minor changes in the statistical parameters.

43

2460

.... -_ ... -- ...... ----.- ....... ----.--_ .......-- ... -.........-- ..... -- ...... -- ...... _- ..... _- .......- .......... --_ .... --- ... -_....... _.............. . ! : Correlotion (R)l 0.56 ; t t

2214

:

: R Squored

:

: Inlercept (A)

I

I

• : 1968

: Slope (8)

0.17

I I

:

Std Error of A

2.35 ;

:

Plotted Volues

1857" :

I

1722

0.32 : 32.50 ;

I



I

1

I

I



I

1 I I I I I

I

I

I I

• I I I I I I I I

I I I I

I I I ,

I I

I

I

1-..... ---------------........... _ .................. _______ ..... _____ ......... _ .... _____ ... _____ ........ __ .. __ ... ____ ......... __ ... ______ ......... _1

I "

a

1476

...'"

1230 •

,

CL

~

t

8

t

984

I' • •

I

I

,........----.. -- .. -- .. _.... _.............. - ..- .....---- .. - .....- .. -------_....- ..............-._---- ... -_.. _.... - .........-_..--..--- ........ - ..-.....__ ... ,

738

I

I I I I

I

492 246

I

I'

,.

~.

I.·.·'. 1 •. I.~'

"",.,

o

I I I I I



I

I I I

...

1150

Fig. 26.

I

2300

3450

4600

5750 6900 LEAD (ppm)

8050

9200

11500

Scattergram showing correlation between copper and lead

. , .... __ ... _._ . . . . . . . . . ____ • __ .. _, ____ I ____ ..... __ ... __ .. t .. _ ..... _ .. _ .. ____ .......... __ ...... __ . . . . __ .............. _

11485 ; :orrelotion (R)

........ _ 1 .. ___ ' ... ___ 1 .

0.61 :

I



,

: R Squared

0.37 •

10337 • Intercept (A )

90.80 0.99

Slope (8) 9189

10350

Std Error of A

11.21 :

·

0.04 :

Std Error of 8 8041 • Plotted Volues

1217 '"

I



1-----------------_.. _......... _---·-·---_ ... __ .. _.. _----_ ..------_..............--- -............................--_ ..........-................................

6893

E

· I I



I I

, I I I

CL

I

~ 5745

, ,,

I

c

.......«

4597

3449

I

• I

, I I • I ... ____ ... ____ .............. _ ... _. __ ... _____ ..... _ .. ___ • __ .... _.......... ____ ........- - - ......---_· ... _----_ .. __ ....-- ...... _--.......--1

,

, .

· • •

.,

2301

.,, I

1153

, I

"•

"'7_' •••• •• 5 .1".. '0" .... ''''''',,,, ••••

~



..

~

.·, •

22---·--37S--·---73.i--·--io90--·--i44i.--·--iii02--·--2-1'58--'--2-5i4-'--2870-'--32'26--'--;-582 ZINC (ppm)

Fig. 27.

Scattergram showing correlation between lead and zinc

• For scattergram plot, analyses containing values below detection limit were ignored, except for copper and lead where detection limit was used as absolute value. Because 1217values were used instead of the whole matrix of 1857, there are minor changes in the statistical parameters.

44

• a _ ... __ • ____ a ____ • ____ • ____ • ____ • ____ • _ .. __ • ___ ........ __ ... ___ • ___ ... ____ • ____ • _ ........ _ ... __ ........... _ .... ____ • __ ..... .

2010 ; Correlation (R)

0.67 •

1

: R Squared 1810 ; Intercept (A)

: 1

0.45 3.94

: Slope (8)

0.23 :

1610; Std Error of A 2.16: I SId Error of 8 0.01 : " I Plaited Values 1217. 1410;:

• .: 1 1

;

----------..••.--.•_•.•...•..•.. _...••....._.............. --_..··..·_·······_·_········-···11 • 1

1210 1010

.

810

1 1



1------------_. ._-----...-_ .. _.. _---_ ...... _...............··-------·---------- ----------------------------1

f

l

610'

'

I

1

1

1

1 1

410 ; 1

..

1

1

210 • I

,





I

.i •••

1 1

.".

'1"

•• •• •

.......... ,,"



•••••

10 .............. ," • , •

I





, •

22·-···37s···--734·····io9i>-····i.46····j·sc;2···-"2;sf-···25';4·····2870····32·26·····3582 ZINC (ppm)

Fig. 28.

Scattergram showing correlation between copper and zinc

..--.__....--.----.---.----.----.---.--.----.----.----.---.----.----.----.-_...-.--- .....- ...._-.....

128109 •

1 1

I



t 1

115796 •

I I 1

I I I I

103483 ; I 1

I

91170 ; I-_______ '!" _________ • • _________________________________ -

i

-----------------------

.. . ..

I I

1 • 1

78857

I' I

66544.

I I 1 1

I'

• 1

• •

t • t

54231 ,•



" ....... II •

•••

,._------_. __.. __...... _-_...-..._-----------------------------------,

. ,

41918!

:. I





• • • •••

I

• • ':. :::':.:::" ~ • c.. ,·: :.,. ":;:~ ::••• ".





: Correlation (R) : R Squared

.", •• ,.,.........

I

, t •••• ,,, .. , ...,,, .•• ,,.. , n , '" , . ","' ""..... ........ "an,. I , , , ... ,.. 111, . ,

I I J I

29605 •• , ••••• "'11.,. •• "...

~

: :,.!::::::::::!!: :'

•; .:

17292 ; :::~~~~!:~;:~:::::.:::':

, .,.'1•••" ..... "

: :.::;:".,.. 4979 .,. 79

•••

,

:

~ Stet Error of 8

,

I

:

: PloHed Values

t

I

0.84 0.71

6115.74 197.81 443.18 3.61

1217·:

..---.----.----.---.---.---...---........---.-..-.-..__ .----.----.-_...... ---... ----.----.. 137 195 253 311 369 427 485 543 601

.... --.--.--21

1

Intercept (A) Slope (8) Std Error of A

,

I



VANADIUM (ppm)

Fig. 29.

Scattergram showing correlation between iron and vanadium

• For scattergram plot, analyses containing values below detection limit were ignored, except for copper . and lead wbere detection limit was used as absolute value. Because 12.l1values were used instead of tbe whole matrix of 18S7, there are minor changes in tbe statistical parameters.

45

.. ----... ---...--...-........ -................ ---; .............. --.............--.. ·---.. ·-.... ·i--.. ·......... ·. . . . . . ·..... -· ......... ·.... --· .. -.... ·:

128109

Correlotion (R)

0.77.

115796

0.59 • 578.89:1

Slope (B)

:

1

1

5.22:

STO Error of A

103483

1 1



R Squored Intercept (A)

: •

686.39;

:

1 1 1

91170 •f STO Error of B

0.12.

: Plotted Volues

1217·:

:..

f



l

·

1"-" ... _ .... ___ ........ ___ .... ___ ..... __ ....... ___ .. _ ... _____ ........ _........... --_ ......... - -_ ........ --- _.... _ .. ---.. ------- -_ ........ - ........ _- ... -_ .... - I

.



78857

If

E Q

t • •

.:.

:

t

II

1" 1

Q



66544

• I' 1

1

54231 ,

II

II

~...

:

I 1 1

• t ".

I

;

I • • I."" • • • • I • I 1 - -........- - -..- -....- .... ---· .. ·---.. ··--· .. ",-···----· .... - -...... ----..... ---- .......... - ..... - - - -.......... --.. --..... -----.,

,

. . . . . . . ,.

"

•••••

"I •• e t .

41918 •

If" •





It

••• , .

, •••

" II



, • • • • ,,' . . . . . . . . . . I I









• " • • , .,1,,,, .. ,, ••••• ,,.. II II • • •••• " ".II!.."'40"''\'' " I I '

29605

•..• , ... ,., ....... , •..••••• ,t.

II

"

••



I

II'

I I

........ , .. ""."., ...... ' " . . ,~." .............. " . , • ,

., .. 'o., .. ". . ·~·,." ... • ".,..

I

•. I·'· . . ". . "ct., .. ".", •••• t 11.,0"''''''''''''''''' ...

17292

... '.\'0.,.,., ..... ·" t.

4979 .• I

.t

I

I I • I I I I

••



If I

II

I'



I

• ..

I

• """''''''''' ..,......,

...

I I

,



073-----2809"-' --';545-----62-si-----eoi7-----97-S3--'-j-,-489---j32is---j-';96i- ---i6697' --i8433 TITANIUM (ppml

Scattergram showing correlation between iron and titanium

Fig. 30.

128109

..- .............................................................-................................. -_......... -

.. -................ - .............. - ............................... . Correlotion (R)

0.74 0.55

R Squored 115796

Intercept (A) STO Error of A

103483 91170

78857

E

1 1

!

.. ::

Z

o e:

.,

I 1

•••

I I

"".

t

•• • •• , I I " ••••••• I I I 1......... _ ... _......... _·· ..... ,·, ... ••••• .. -· .. •••• .........• .... _ ... _-· .....................- ...... _ ......................- .................. __ .......... _ .............. - .........................-1

,

, .... , ,,,,.

••

.... • • • •• ...." ....• ,t."... , ••• ,...

~,

II

••

" ' , ... , . " ,

••

., ..... " . , ..... ,. • • " ...... ,.......... .. • • ,.,., ... ." .. .,......

29605

......,... ..,"' ... ,..

• I

I

I



• • , • •

I I I I

t,

"

.

".,."UI""""'.' ••• .... ,,,.... . ,

,,'00.,'1""'''' . . •• ,,'0'"0""."'"

,



I

I

I I

II

,~.,.,o

4979

I

I 1

• 1 •

1 ... _ _ _ _ ...................... __ . 1

1

1

••

1

!

I

1

.....

41918 •

17292

1217·

I

..

54231

59.93 :

Plotted Volues

:

• 1

66544

753.21

STO Error of B I t t -.. - _ ... _ _ ... _ ................................... _ ........ _ _ ... _ _ ......... ______ ..................... __ .... _ I , I

0.. 0..

241.31 2291.75

Slope (B)

1



I

,I ""''1'''''''' ••• , .. ,,,-, ... , ! .:"'!'.'

II

:

....... _ ....... _ ............................ "_,,,_ .... _ ....... _ ... __ ... _ ....... __ ... 1 .. _ .. _ ....... __ ......... _ ........... 1 ___ .... _ .............. _ ........... __ ... _1_ .. __ .... ___ ' .

3

9

15

21

27

33

39

45

51

57

63

COBALT (ppm)

Fig. 31.

Scattergram showing correlation between iron and cobalt

• For scattergram plot. analyses containing values below detection limit were ignored. Because 1217 values were used instead of the whole matrix of 1857. there are minor changes in the statistical parameters_

46

128109 ....- .. - ............................................ -............... --..... --........ - ..• ---- ..... --.--..... - .. --.---- ... ---. ----.-.--.----•• , • 1 1 , 1 Correlation (R) 0.69 : 1 1 1 1 • 1 R Squared 0.48 :

115796!

: Intercept (A) 1

I I

103483

:

1

I

1

!I

:1

I

I

I

I

Slope (8)

I

- 1013.98· I

2801.65 ; 883.87 ! 83.30 : 1 1217. 1

Std Error of A Std Error of 8

! : Plotted Values 1 1---.. -----_ .... __ .. __ .............. _----_........._....--.....-··_ ....--_ . -..--...---.. .1-----.. -_______ .. _..... ___. . _.. _. . _______ _

91170

I



I

78857 '

E

Q.

~ Z

66544

0 !!!

I

I I •



I I I

• •

I •

41918

I

••••• ,

t



1-.. ----..... _ - _ .... __ .. _ ...... _ ........ - - _ ................. - - • _ ... - __ •• ___ • __ .. _ ...... __ .......... _ .... _ - - ... -- .. _- - - .. - - ......... -- - --- .. - -

I

t

I

.,

••• ) .

,. , •• , ,...

1

r

• )

••• , .,' •• '.,'.... •

29605 •t

" ' .. " " , . , , , .

••••• l' 1"





• " , , ...... , ... """ ••• ,,,,,,' ... ,,.

I ••

"""0.,,,•• ,,,,\,,,,,,,,· , .. ,... '1' ",,1'1 ,., ' •• ,... ,.,. ••

,! • 1/....

t

I •• ,., •• ,." I' •

••••

I



••

t.····· ... I

I I I

••

• ,,.,,,,,, ••• , .. ,, .... ,., . . . . . . . . . . . . 1 •• ,."., ............. ,.", .. ",,""" ...

!.. : :\:~~!!:~:::::::::=;::::!~~;.:;/.' .. J(o'.

17292

I

';0""'"

,

,. """'.""""'" "l



1 I

II

••

1 ••••••

••••••• , •• ""11

• •

4979

I

It

54231



•••



I • I I I I I

I

Z'"

'I 1 I I

I

1

til'

,

... ----.---_._.. _... ---- ..... _-.- .. _-.----,... _--.- ..- ....... _-.---- ..... _-.---- ....--- ... ---.-_...- ..... _-.----.--_ ... ---- .. "

10

6

2

Fig. 32.

22 26 18 SCANDIUM (ppm)

14

30

34

42

38

Scattergram showing correlation between iron and scandium

53 . , --_.... _ ........ -..... ---- •-. -.... -....

t .... _ . . . . . _ ........ - ..... - ..... - • - .. - - . - ................ - _ .. t .. - - - . . . - - - . . . . - ...... - - - ............. - ... ..

: Correlation (R) I I R Squared I

48

I I

I I

: Plotted Values

!

~

~

8

33

0.26 1217"

I

I I I I 1-.......- -...- -.. -----..... - .... --- .......... - .......... - .... - .. - ... - ......... --.. - ................- - - - -.... - -...- -..- ..... - ... - .....- ................ - .......... I • I t I l " I I

I

I

I

I I

I

I I

28!



1

:

••

I•

23

0.01

Slope (6)

I

E

0.28 6.62

Intercept (A)

: Std Error of A

43 38

0.53



.. " 't

!

IJ

,... , .:. :

:

, • I • • I I, .. _ .. _ _ _ _ _ ...... ____ . . . _ . . . . . . . 1 -.. , , , - , ,", t .. , ,. I ,_ ... _ _ _ ... _ .... ___ ......... __ .. __ .... _ _ _ ... ___ .. ____ .. _ .. _ ... _ ...... ___ .... __ •

I



18. t

••••• " .

I I



I •

8 • I I

,

I"

, •••• ,.",' ...... a' .... '

__ (

I

I

,

"""

.......... , ",.,,',.,. ••

)'"

• •• ,.'

.,. " •• , .... ., •• ",..

t

a

, ••••

' ••••• "

I

13

" •••••• I

• I

,.,

..,.

,.

,

J 1 I



I I I I I

••• ,

t •• , • . " . , . " , · . , . , , , , , ••••• ,

• ,""t., ..., .... ".. ,,~., •• •• ,

""&1."'''''''''''''' ,. """",,""10"'''''''10''.''''''' " ''''''''11'''10'''''' t

I

".,"I"I"I"I"·U,'" ",,,0'1"1"'" •••• ••• "Q •• ' •

1 I



I

t ••• 3.. • 1'''''' • •

I1

. ' _ .... _ ........ _ t __ .. _ ......... _ . . . . . . _ t • __ . . . __ . . . . . ____ ...... __ • ____ • __ .............. __ .. _ . ____ . . . _ . . . . . __ . . . . . . __ .... ___ . . . . . __ • t " ___ ' .

71

365

659

953

1247

1541

1835

2129

2423

2717

301 I

MANGANESE (ppm)

Fig. 33.

Scattergram showing correlation between cobalt and manganese

"For scatterg.am plot. analyses containing values below detection limit were ignored. Because 1217 values were used instead of the whole matrix of 1857. there are minor changes in the statistical parameters.

47

70 .' •••••• -.....~. 1._. .------••. _.1 ... ---_..• _._.1._._' ____ ' ......1..... _. :-~:;;:~:-t~~-~-~ ~-;

,

----1.---

56

,: Intercept (A)

9.47 ;

: Slape (8)

0.05:

,

,

,

: Std Error of A

• •

0.21 ;

:

1857 .: ;

:

I

: Plotted Values

49 ;

,

0.06 :

: R Squared

63

~~~~';

,----.. _...----...--------- ...... _---_............ _------------_......------------.............. _-_ ........-----_.... __....... __ .............-: E 42· , ,, ,,, ,,, ,, .... , ,,I ,1, ~ 35·• • 8 , , , :

:

I

I

l '



I

:

:

I"

f

Q. Q.

28; I"

•• •• •







I

r---.......-.. . ,-..... --....--.--.. --....----.-------..... -------....... ------. . . -• ....--..---.. ----....... ----.... ---1 .. ,., I ' • r • I 21

• • • • "' ..... •• • '" ., ••• ". • i!' • J . " ' " "' '"" " " " " .... ,... •• • ••••

I 1

I • I •

" ".".1" ,'I" ., , •• _, . , ' •••• • ct • • ., .. '"c:.,',. ........... , !.. ,., '1" • II 411 , ... 'I1'1., ... "I".· .. •• ,I.' _ , _ . , ", .,.~.,"I1"1.,·, ... ··,,·'.''' .. 1., .• J. "' .. ~.''''''I'''"'1"", •• "" •••• , I ')' '~.,l''I'''I.,'I' .... " .. ''''':. •• , •••• 1 " •• ,,, •• ,'1.,,, .. ,, ...... , •• , •• , , , I 0:0.4·.·''''0 ........ • 1

14 7

r

I I ' I ' t ,

1

"~"Jl

I

,

1 I I1

~..

I

,,, ,,, ..----.----.----.---- .._-- ..............-..._-.... -.._...- ............----.---.-.._.........-... _............-......_...-.._.......... .

,,f"· ",. ,. ,.. • 0.. o

30

f

60

90

I

120

150

180

210

240

270

300

CHROMIUM (ppm)

Fig. 34.

Scattergram showing correlation between cobalt and chromium

..._..- ...._-....-.....-._..._..-.--.--_...._- ...__....._.......-.-....._-.---.-- ...._...--.-....-..

4690 ; Correlation (R)

0.86 :

,

I

: :

: Slope (8) Error of A

25.88 :

:

2.45 ;,

:I

: Std Error of 8

0.36 : 1857· :

: :

4221 ; Intercept (A) 3752

3283

&.

:

,

0.74 : 33.35 :

: R Squared

!, Std !

Plolted Values

••

I I I r , - - _ ·_ _· · _ - _ ... - - - - - - - _.. _ - -... - - - - _ . - - - - - - - - _ ....._ ..- - - -..-1 I , I I , I I 1

28U'

:

~

:

:,

,~

,, ,,, , , , , , -_,, .._---------------------_......._-_.,,,

2345

I

1876 1407

,

,

I

,

I

,

,, ,,, ,, I

938 • I

.469·I ,.



!

, I,

"~ .• .. ., .,... ,,~,...

I •• ]o .. q,·""""", I tqOOOOqqtq .. · , ,

o •.....'0'1000.1 •• __ .... -_ ......-.......- ......... -.... o 12 24

I

I ,

_-.- _....-_................._.....--.--- ... --...._-- ........-.-..........- ............-............._-.. ...

36

r

,

48

60

72

84

96

108

120

DYSPROSIUM (ppm)

Fig. 35.

Scattergram showing correlation between cerium and dysprosium

• For scattergram plot, analyses containing values below detection limit were ignored. Because 1217 values were used instead of the whole matrix of 18J7, there are minor changes in the statistical parameters.

48

,.

CU PB LI AL BA CA CO CR FE HF

CE MGMN SC TH

TI

V ZN DY

.60 - .80 >.80

Fig. 36.

Multi element correlation, 1857 sediment samples, raw data

CU PB LI AL BA CA CO CR FE HF

CE MGMN SC TH TI

V ZN DY

VI

o

+ +

.60 - .80

>.80

Fig. 37.

Multi element correlation, 1857 sediment samples, log-transformed data

II'

ID

~'"

PA2 Varimax, Raw tiara .AC'.... IIO

.-.

2

,

0.' 0.' ~.

Fe

Mn~~~

u

I;

Cu Zn

Th,Dy

V, TI CD. Sc

HI

4

3

c.

'

....

Mi

AI K

ci~)

@

G~ @

LI

Be

Mn

Me

.c.

·K TI

HI

.

C,

.

PA' Varimax '" Factor=9. Raw Data C., Til Dy

fa

Y.

CU,Z..

a.' n

.80

Fig. 40.

Multi element correlation, 409 sediment samples, Area A, log-transformed data

PA2 Varimax, Raw Data FACTOR NO. 1 2

.·.c.

L ....

Fe

O.B Sc, TI V 0.8 Mn,AI Ba,Co

.

~6~y

.

~3~y-

0.4

4

3

6

Hf Th

Li Ca,U • Mg

Mn

Co

5

Dy,Ce

Pb,Zn, CU

V Cr

K

0~y @~~

Mg



Co

.

@ u,Cr

-Hf

-Ti, Ba

Ti

AI

-

G~~'

Be,Cr, Sc Mg

·Ca ·Mn

PA2 Varimax, Log-Transformed Data

0.8 Ca, Mg Li V 0.8 U

0.4

~9!~

Sc, Cr AI

Co Mn

• Th,Ce

Fe@ 17.5%

n

Sc,Ce,Zn

Fe@ 12.6%

Ti,Cu, V Dv

AI, Be Sc K,V

Th Cr,Mg

Fig. 41.

Dy

@

- Pb Cu

@

U Cr

Zn

K,AI

Sc,Mn

9

Of total information, 23.3% is loaded in factor 1 using raw data

Factor Analysis, 409 sediment samples, Area A

'I'

q.

U CU PB LI AL BA CA CO

cn

FE HF

'. K

CE MG MN SC TH TI

t

V ZN DY

.60- .80

+

>.80

Fig. 42.

Multi element correlation, 783 sediment samples, Area B, raw data

CU PB LI

Fig. 43.

FE HF. K

CE MG MN SC TH TI

V ZN

Multi element correlation, 783 sediment samples, Area B, log-transformed data

"

.

",.

I.

PA2 Varimax, Raw Data 1 2

L .... V Fe Co 0.8 Ti

Fac.

Cp Th

Hf

u

0.4 Mg Mn Cr.Ca Zn

6

Mg

Cu Pb

G5~0 G~0

0.8

5

Zn

- Dy

Sc

4

3

FACTOR NO.

-K Cr Ti

Ba

AI

~3.00

:~I¥%) -K-

Mn

GV G·90

-Mn

K

-u

Ti

- K oCr Ba, Li

PA2 Varimax, Log-Transformed Data Sc 0.8

~;e ~

27.9%

Th.Ca

Hf~

u

Cu Pb

17.7%

0.6 Zn

Mn 0.4

-K

G·;V

Dy

Cr -U. Pb -Th K

-Ca Th, Ba Co

Fig. 44.

-Ca

G·~

K AI, Li Ba

Gv.

Q~~

Of total information 27_9% is loaded in factor 1

using log transformed data.

V

Ti

-Ce

-Co, Fe Cr

-Mn

Factor analysis, 783 sediment samples, Area B

CU PB LI

CE MGMN SC TH Tl

V ZN DY

.. :t.; .&0 - .80 ~ -' .. -

.

. ..::...... :. > 80 ~ 0:.•:.,;

Fig. 45.

...



Multi element correlation, 665 sediment samples, Area C, raw data

I.

Fig. 46.

Multi element correlation, 665 sediment samples, Area C, log-transformed data

PA2 Varimax, Raw Data 1 2 Fae.

LCNld.

Sc - Co

~~2~

0.6

5

6

CU

Ce, Th, Dy

0.8

4

3

FACTOR NO.

Cr

@~

Ce

Fe, V

- Pb

G2.0~

Cu

0~~

Q~~

K AI

Mg

~~~

Hf Ti Fe V Mn

0.4 U Ti

Ti, Hf Mn

·K

-

Ba Ti

oCr

PA 1 Varimax, N Factor = 9, Raw Data Ce Th,Dy 0.8

.

~2~2y

0.6

v, Fe Ti, Hf

50 ppm, log-transformed data

r'"

PA2 Varimax, Whole Quadrangle 1 2

FACTOR NO. F.c.

LeNd.

0.8

AI, K, TI Mg

0.4

4

-Zn, Pb Ce -Cu Hf

Ca, Ba 0.6

3

Th

V,Mn

Sc

50 ppm, log-transformed data

CU PB LI

FE HF

CE MGMN SC TH TI

V ZN DY

~ .60 - .80

+

>.80

Fig. 53.

Multi element correlation, 237 sediment samples in which lead >40 ppm, log-transformed data

,

,.

,

CU PB LI

CE MGMN SC TH

TI

V ZN DY

.60 - .80

+

>.80

Fig. 54.

Multi element correlation, 123 sediment samples, Area C, in which lead >40 ppm, log-transformed data

PA2 Varimax, Whole Quadrangle 1 2

F ..c.

Load.

K,AI

Ce, Th

Ti 0.8 Ba Mg

Co,Sc

Dy

5

Fe

Zn Cu,Pb

U,Hf

V

-

5.2%

~6~2~ V~~

0.6 Ca,Mn 0.4

4

3

FACTOR NO.

~~~ G~~

-

Mn Co Fe

Dy

Sc

~9

Mg,Ca

-

Of total information 27.6% is loaded in factor 1

Cr Li

-Ca, Li, Dy Ti,Mn -Ti Cr

Dy

-Cu

PA2 Varimax, Area C K,AI

Ca,Th

Ti,Mg Ca,Mn 0.8 Ba, V 0.6

0.4

- Hf

~3!V

U

CU,Zn

~3~

Dy, Hf

Dy

-Cu Sc

Fig. 55.

Pb

G~~

Fe,Sc CO

G·~o/)

Cr Co -Dy V Mn -Ca U -Sc, Ca, Cr, Ti Hf, Dy, Ce

-

Factor analysis, 237 and 123 sediment samples, whole quadrangle and Area C, in which lead >40 ppm, log-transformed data

.

..

"

CU PB LI

FE HF

CE MGMN SC TH TI

V ZN DY

.60 - .80 >.80

Fig. 56.

Multi element correlation, 195 sediment samples in which zinc >180 ppm, log-transformed data

I

CU PB LI AL BA CA CO CR FE H F

CE MGMN SC TH

TI

V ZN DY

.60 - .80

Fig. 57.

Multi element correlation, 85 sediment samples, Area C, in which zinc >180 ppm, log-transformed data

TABLE I GENERALIZED DESCRIPTIONS OF MAJOR URANIUM AND THORIUM DISTRICTS (Locations of specific occurrences are shown in Map 4)

~

County

District or Area

Description

Delta

Gunnison River area

The five occurrences in the area are radioactive spring deposits that are found in the Dakota Sandstone. One is associated with a fault. No uranium minerals are visible; abnormal radium contents have been reported.

San Miguel Ouray Hinsdale

Southwest Montrose quadrangle

Only IS tons of ore averaging 0.20% U30S are reported from these three counties (Nelson-Moore and others, 1975). Most uranium occurrences are in veins in Tertiary volcanic rocks; one radioactive spring de:,C'sit is known. Uranium is associated with rhyolite-latite intrusive rocks and breccia zones. The uranium minerals are mostly uranophane and pitchblende. In San Miguel County, tabular orebodies are found in the Entrada Sandstone. Average ore grade is 0.05% U30S; the uranium is closely associated with vanadium. One such occurrence is reported in the extreme southwest corner of the quadrangle.

Gunnison Chaffee Park

Northeast Montrose quadrangle

About 200 tons of ore, averaging 0.12 to 0.22% U30S, were taken from deposits in the area (Nelson-Moore and others, 1975). Most uranium occurrences are vein-type in pegmatites in Precambrian granitic rocks; some are associated with veins, dikes, and fault breccias of Tertiary intrusive rocks; a few are found along fault contacts between Paleozoic quartzite and Precambrian granite. Deposits are usually small. Uranium is associated with faults, fractures, alteration zones, carbonaceous trash (especially in fault zones), and base-metal minerals. Autunite, columbite, pitchblende, brannerite, and monazite are principal uranium minerals. These types of occurrence are found throughout the quadrangle.

Gunnison

Powderhorn thorium district

Most of the thorium occurrences are radioactive anomalies in veins in Precambrian granite, schist, and gneiss. Deposits consist of thorite and minor amounts of uranium minerals, quartz, barite, hematite, and sulfides.

Saguache

Cochetopa district

The production total to 1971 for the district is about 4S6,OOO tons of ore containing 0.11 to 0.20% U30S (Nelson-Moore and others, 1975). Uranium generally occurs in fault breccia or shear zones between the Morrison Formation (or sometimes the Dakota Sandstone) and Precambrian rocks, or in veins cutting Precambrian rocks. Uranium may also be associated with malachite, azurite, or other base-metal minerals. The Morrison Formation is mainly sandstone and mudstone, whereas the Precambrian rocks are generally granite or schist. The principal uranium-bearing minerals include pitchblende, uranophane, autunite, torbernite, and zippeite.

Saguache

Periphery of Cochetopa district

Southeast and around the periphery of the.Cochetopa district, several uranium occurrences are reported in the Miocene Potosi Volcanic Series, or in Cretaceous rocks that are overlain by these volcanic rocks.

Saguache Gunnison

Marshall Pass district

More than 105,000 tons of ore, ranging from 0.25 to 1.17% U30S, have been produced from the district. All occurrences in the area are related to the Chester fault or the Indian Creek anticline. The principal host rocks include the Ordovician Harding Quartzite and the Pennsylvanian Belden Shale, which are in fault contact with Precambrian rocks. The Harding ~Iartzite is a porous, silty sandstone, whereas the Precambrian rocks include highly fractured granites, schists, and pegmatites. Uranium is associated with iron-stained, fossiliferous, and ca~bonaceous zones. Sulfides may be present. The uranium minerals are pitchblende, uranophane, uraninite, and minor amounts of gummite, autunite, and zippeite. Several occurrences of similar type are found southeast of the district.

l:

71

TABLE II METAL-MINING DISTRICTS HAVING GREATER THAN ONE MILLION DOLLARS CUMULATIVE PRODUCTION (From Burbank and Luedke. 1968) (Mining Districts are shown on Map 5) Mining District

Princi2al CommoditI

De20sit Setting

Uncompahgre (Ouray)

Silver. gold. lead. copper. zinc

Fissure veins and bedded replacement deposits in the Dolores and Morrison Formations. Leadville Limestone. Dakota Quartzite. and Molas Formation; associated with quartz monzonite.

Lake City

Silver. lead. gold. copper. zinc

NE- and NW-trending fissure veins in andesite. rhyolite. and monzonite porphyry intrusive rocks.

Ruby (Irwin. Keystone. Forest Queen. and Mt. Emmons)

Molybdenum

Stockwork deposits associated with intermediate to felsic porphyry intrusive rocks.

Gold Brick-Quarry Creek (Ohio City. Gold Hill. and Cumberland Pass)

Silver. gold. lead

Veins trending N5°W in Precambrian granite and schist; replacement deposits in Fremont Dolomite. Leadville Limestone, and limestone beds in the Belden Shale.

Molybdenum. tungsten

E- and NE-trending quartz veins in Precambrian quartz monzonite and Cambrian quartzite.

Lepidolite. beryl. feldspar. columbitetantalite

NE- and N-trending quartz veins in Precambrian schists. quartzite. metadiorite. and gneiss.

Tincup

Silver. gold. lead

Bedded replacement deposits in Leadville Limestone associated with quartz diorite and quartz monzonite. N-trending quartz veins along faults. and placer deposits.

Chalk Creek (Alpine. Ramley. St. Elmo)

Gold. silver. lead. copper. zinc

N- to NE-trending quartz veins in Tertiary quartz monzonite.

Tomichi (White Pine)

Lead. zinc. silver. copper. gold

Replacement and contact deposits, fissure veins in Manitou Dolomite and Leadville Limestone, associated with quartz monzonite and granite porphyry.

Monarch (not shown on Map 5)

Silver. gold. lead. zinc. copper

Replacement deposits in limestone and dolomite of the Manitou Formation, Leadville Limestone, and Fremont Formation; NE-trending veins in Tertiary quartz monzonite.

Brown's Canyon (not shown on Map 5)

Fluorite

NW-trending fissure veins along faults in Precambrian granite and gneiss and Tertiary rhyolite porphyry.

Bonanza King (Kerber Creek)

Silver. lead. zinc. copper. gold

NW- and N-trending quartz veins in Tertiary andesite, latite, rhyolite, diorite, monzonite, and granite porphyry.

72

.

TABLE III BASIC STATISTICS (IN PPM) FOR 21 ELEMENTS IN SEDIMENTS Sawatch-Gunnison

Whole guadran&le

!

~

Computer Code No.

Whole Area (1857 Samples) Whole Area Below Threshold Standard Standard b Element Avera&e Deviation Avera&e Deviation Sam~les

665 Avera&e

Sam~les

Sta.1dard Deviation

Cr~stall1ne

Terrane

Below Threshold Standard b Avera&e Deviation Sam~les

C228

U

6.4

9.0

4.8

3.2

1767

11.0

4.5

Cu

43.3

121.0

26.7

9.0

1659

48.7

13.2 131. 3

6.8

C232

28.7

10.1

577 558

C235

Pb

64.7

407.1

14.8

10.2

1685

99.5

608.7

18.1

12.3

C239

Li

32.0

22.5

28.9

13.7

1758

35.8

19.2

14.2

C240

Al

63468.8

12869.9

62332.5

12209.9

1759

61896.1

14553.9

32.3 60761. 3

588 618

13862.8

634

C242

Ba

673.4

272.8

635.0

174.6

1754

633.8

256.8

600.5

182.0

633

C243

Ca

25577 .1

23756.6

23163.0

23340.9

C246

Co

11.4

5.2

10.5

3.2

1758

11.2

3.5

10.9

3.0

649

C247

Cr

40.0

26.4

37.7

19.9

1823

49.4

34.2

44.1

22.3

635

C251

Fe

27194.6

17318.5

24830.0

10929.3

1788

28938.4

18253.7

25855.2

10366.6

647

C252

Hf

12.1

13.4

10.1

5.0

1778

11.7

5.7

600

C253

K

16667.2

4311. 5

115.6

56.1

631

12151.9 14954.8

5922.8

610

853.5

337.1

630 603

16.7

20.3

17430.6

4884.5 197.7

C244

Ce

103.0

129.9

92.4

43.0

1814

137.4

C256

Mg

16019.6

9232.3

14696.6

5770.9

1761

17321.1

C257

Mn

883.3

551.6

808.9

373.9

1777

947.3

569.5

C261

Sc

10.1

4.0

9.4

3.1

1759

11.4

4.6

10.3

3.3

C266

Th

14.6

27.0

12.0

6.7

1799

22.3

43.4

15.6

9.3

608

C267

11

4954.6

2290.8

4634.7

1679.4

1779

5172.8

2418.6

4805.8

1751.0

632

C268

V

102.1

65.7

89.2

36.9

1737

93.1

57.6

86.4

35.2

646

C270

Zn

162.4

234.3

81.0

44.8

1658

194.7

1060.5

79.7

45.5

578

C289

Dy

5.3

4.3

4.6

1.5

1751

7.0

5.9

5.5

1.9

569

73

TABLE III (Cont'd) Western Plateau Area

San Juan and West Elk Volcanic Fields Computer Code No.

Element

Below Threshold 783 Saml!les Standard Standard b Average Deviat:l.on Average Deviation Saml!les

409 Saml!les Standard Average Deviation

~

Below Threshold Standard b Averase Deviation Saml!les r

C228

U

3.8

C232

Cu

C235

Pb

C239

0.9

3.7

0.9

409

40.5

130.3

26.9

8.1

372

42.1

203.6

14.7

9.3

360

774

'38.7

19.8

34.0

14.4

366

9681.2

718

56891.5

10603.6

56744.4

10417.8

407

152.8

716

578.9

168.7

573.8

161.2

405

36117.9

35952.9

2.0

3.8

1.7

781

3.7

40.2

105.8

25.1

8.1

729

46.8

235.7

12.2

7.9

737

Li

25.3

24.5

23.7

10.8

C240

Al

68240.2

10347.5

67887.4

C242

Sa

756.2

304.9

700.1

C243

Ca

22121. 5

12894.1

C246

Co

12.0

5.7

10.8

3.2

720

10.7

6.1

9.7

3.1

398

C247

Cr

30.0

18.0

29.6

16.7

780

43.7

17. 7

43.2

15.5

408

C251

Fe

28959.7

17901.5

25804.3

11290.1

741

20980.1

12579.5

19749.2

9502.0

400

C252

Hf

10.0

5.7

9.6

4.2

772

8.8

5.4

8.5

4.3

406

C253

K

16875.4

4070.8

15027.6

3200.6

C244

Ce

90.3

50.7

86.7

26.1

776

71.2

70.4

67.4

22.7

407

C256

Mg

15066.5

7060.9

14375.8

5875.7

758

6874.8

14914.7

5480.2

393

C257

MIl

982.4

525.3

918.0

362.8

746

15728.1 589.7

464.1

546.9

324.1

401

C261

Sc

10.0

3.7

749

7.9

2.6

7.9

2.5

407

Th

10.6

7.1

9.5 10.4

2.9

C266

3.8

782

9.8

3.1

9.8

3.1

409

C267

Ti

5322.8

2384.9

4905.3

1638.5

739

3894.8

1409.4

3879.3

1376.1

408

C268

V

HO.l

76.0

90.0

37.1

705

101.3

53.8

92.3

38.8

386

C270

Zn

146.4

365.8

84.7

44.2

717

140.5

602.8

76.0

44.5

363

C249

Dy

4.4

1.7

4.3

1.2

777

4.2

3.9

4.0

1.0

405

Values below the detection limit were calculated as half the absolute value of detection limit. U, Cu, Pb, Li, Al, Ba, Co, Cr, Fe, Hf, and Ce are calculated below the threshold values that are summarized in Table IV.

74

III

TABLE IV THRESHOLD VALUES ESTIMATED FROM LOG PROBABILITY PLOTS FOR 20 ELEMENTS

Element

No. of Values Below Detection Limit

U

...... VI

Cu

32

Pb

227

Threshold (in ppm)

Cumulative % At Which Threshold Chosen

20

93

Not lognormal. Threshold of 20 ppm at 93%.

Very low mean of 3.5 ppm. Minor threshold at 11 ppm.

Lognormal; very low mean of 3.5 ppm.

50

91

Two populations, with a lower threshold of 60 ppm; 50 ppm at 86%.

Threshold at 91%.

88, 88

Threshold of 60 ppm at 88%; two popula t ions.

Two populations, with the lower threshold of 50 ppm at 94%. Threshold of 40 ppm at 91%; two populations, with a boundary at 60 ppm at 93%.

40, 60

'I.

Li

15

65

96

Al

3

80,000

96

Ba

47

1,000

96

20

96

168

120

98

Fe

65,000

96

Hf

30

96

Cc

300

'1.98

Co Cr

30,000

96

Mn

1,800

96

Sc

18

96

Th

50

'1.97

18

10,000

96

Mg

Ti

64

V

6

200

96

Zn

503

180

87

Dy

6

11

'1.97

Sawatch and Gunnison Terrane

San Juan and West Elk Volcanic Fields

Western Plateau

Threshold of 40 ppm at 86%; two populations.

Total values low, lower threshold of 16 ppm at 91.%

Low values.

Two populations, with a boundary at 180 ppm at 91%.

Two populations, with a boundary at 280 ppm at 93%.

Two populations, with a boundary at 180 ppm at 85%.

*The method used for this estimation is according to Lepeltier (1969). For the log probability plots, values below detection limit, marked by a minus sign, were ignored. Therefore, absolute values of mean and threshold could be a little too high, especially in those elements that have many values below detection limit.

/

TABLE V CORRELATION BETWEEN CLUSTERS OF ABOVE-THRESHOLD VALUES FOR ELEMENTS AND THE GEOLOGY OF SEDIMENT SAMPLES Geologic Province

Strong Assoc.

Moderate Assoc.

Minor Assoc.

Xg, Tmi

Xfh, Xb

XYg, MCr, MOr, TKi, Tpl, Td

Correlations With Other Elements

URANIUM: SawatchGunnison terrane

Pb, Zn, Cu, and minor Ag, Au, and W in the Mt. Princeton batholith

Comments: High concentrations of uranium are principally associated with Precambrian X granites (Xg) and mid-Tertiary felsic plutons (Tmi). A lesser number of anomalous samples is associated with Precambrian X biotite and hornblende gneisses (Xb and Xfh). Many anomalous samples were collected downstream from major faults. The uranium threshold is 20 ppm.

BASE METALS: Hestern Plateau area

Km, Kdb

Jrnwe and N-trending faults

Kmv and E-trending faults

Au, Ag, W

Comments: Most of the anomalous base-metal values in the area occur in the Mancos (Km) and Dakota and Burro Canyon (Kdb) Formations. Many of these samples were collected downstream from N-trending faults; some are spatially related to E-trending faults. San JuanElk volcanic fields

Tpl

Taf, Tmi

~vest

TPdc, KJde,

Ag

Kmv, Km,

TKi

Comments: In the San Juan-West Elk volcanic fields, anomalous base-metal values are most strongly associated with areas of mid-Tertiary volcanic rocks (Tpl) and less strongly with mid-Tertiary felsic intrusions (Tmi) and ash-flow tuffs (Taf). Most of the anomalous samples occur within or marginal to the Lake City, Bonanza, and Uncompahgre calderas.

76

"

TABLE V, Continued

~

Geologic Province

Strong Assoc.

Correlations With Other Elements

Moderate Assoc.

Minor Assoc.

Xb, MCr, MOr, Tpl, N-trending faults

Yam, Cam, TKi, NE- and E-trending faults

BASE METALS, continued: SawatchGunnison terrane

Xg,Xfh,Tmi, NW-trending faults

U, Ag, Au, H

Comments: Anomalous base-metal values are most strongly associated with Precambrian X granites (Xg) and hornblende gneisses (Xfh) and with mid-Tertiary felsic plutonic rocks (Tmi) at the Mt. Princeton batholith. Many of the anomalous samples occur downstream from NW-trending faults; some are spatially related to N-trending faults. The thresholds are Cu 50, Pb 40, and Zn 180 ppm. generally occur in the same samples.

Anomalous values

PRECIOUS METALS: Western Plateau area

Kdb

Km, TKtc

Comments: Gold-bearing sediments in the Western Plateau area were sampled in streams draining the Dakota and Burro Canyon (Kdb) Formations. One silver-bearing sediment sample was collected from a stream cutting through the Mancos Shale (Km) and the Telluride Conglomerate and Cimarron Ridge Formation (TKtc). San JuanWest Elk volcanic fields

Tpl

Taf

Cu

Comments: In the San Juan and West Elk volcanic fields, most gold- and silver-bearing sediments are located within the Colorado Mineral Belt trend. Silver-bearing sediments occur also in the Bonanza caldera in the Bonanza King mining district. The largest group of gold-bearing sediments occurs along the northwest margin of the Uncompahgre caldera in the Uncompahgre mining district.

77

TABLE V, Continued

Geologic Province

Strong Assoc.

Moderate Assoc.

Minor Assoc.

Correlations With Other Elements

PRECIOUS METALS, continued: SawatchGunnison terrane

Xfh, Tmi, NW- and NEtrending faults

Pb, Zn, Cu, U

Xg

Comments: Gold in the Sawatch-Gunnison terrane is strongly associated with Precambrian metamorphic rocks (Xfh) in the Gold Brick-Quarry Creek mining district and with mid-Tertiary plutonic rocks (Tmi) of the Mt. Princeton batholith in the Chalk Creek mining district. Silver-bearing sediments are related to the Tomichi mining district in the Sawatch Range. Other gold- and silver-bearing sediments not related to known mining camps are heavily concentrated near NW-trending faults on the western margin of the Mosquito Uplift. The thresholds are Au 0.2 and Ag 6 ppm.

Geologic units from Tweto and others (1976): Xfh = Precambrian X felsic and hornblende gneiss; Xb = biotitic gneiss; Xg =~1700 m.y. granitic rocks; XYg = Precambrian X and Precambrian Y granitic rocks, undivided; Yam =~1400 m.y. alkalic and mafic rocks; Cam ~ Cambrian alkalic and mafic intrusive rocks; MCr = Mississippian, Devonian, Ordovician, and Cambrian rocks; MOr = Mississippian, Devonian, and Ordovician rocks; TPdc = Dolores and Cutler Formations; Jmwe = Morrison, Wanakah, and Entrada Formations; Km = Mancos Formation; Kmv = Mesaverde Formation; Kdb = Dakota and Burro Canyon Formations; TKi = felsic Laramide intrusive rocks; TKtc = Telluride Conglomerate and Cimarron Ridge Formation; Tpl = Oligocene andesitic lavas and breccias; Tmi = middle Tertiary intrusive rocks; Taf = Oligocene ash-flow tuff; Td = late Tertiary Dry Union Formation.

78

TABLE VI BASIC STATISTICS (IN PPM) FOR 21 ELEMENTS IN SEDIMENTS FROM THE MONTROSE QUADRANGLE, COLORADO WHERE URANIUM, LEAD, COPPER, AND ZINC ARE ABOVE THRESHOLD ~

U >20 122m (90 Element

Cu >50 122m (192 saml21es) Pb >40 122m (237 saml21es) Standard Standard Average Deviation Deviation Average

Zn >180 EEm (195 samEles) Standard Average Deviation

U

37.8

20.7

9.8

11.1

9.4

9.7

8.5

7.8

Cu

53.7

82.7

344.1

148.1

318.3

169.8

347.1 1182.8

Pb

96.5

253.4

186.5 454.5

1193.0

414.4

1078.2

466.5

Li

38.1

18.5

34.4

18.8

37.0

17.6

33.2

17.2

Al

62760.0

14771.6

61031.8

15738.5

62031.3

14705.0

61598.4

14677.0 542.3 15984.8

Ba

570.2

238.5

785.7

608.3

735.4

469.0

753.6

Ca

17674.2

6850.8

22425.1

15248.0

22914.4

21166.7.

22343.1

Co

11.1

3.2

15.3

7.2

12.5

5.5

16.4

9.8

Cr

42.7

33.0

49.3

40.4

36.2

18.9

39.2

22.9

Fe

35002.8

32327.1

37321. 3

20074.5

31299.8

16661.1

39419.3

25120.2

Hf

27.3

36.7

10.9

6.7

13.5

U.8

12.3

8.4 5434.9

18907.2

5431.1

16783.2

5578.5

18099.1

5427.2

16671.3

Ce

259.5

492.4

116.5

82.6

115.9

66.0

126.6

120.0

Mg

14458.5

6947.4

18254.7

9060.2

16016.8

6884.3

16763.7

6925.7

Mn

1193.1

642.1

1352.0

981.8

U49.2

928.8

1381. 9

974.4

Sc Th

11.0

3.8

12.1

4.3

10.2

3.3

11.3

4.0

55.0

106.9

16.3

11.8

19.2

13.7

17.0

11.7

Ti

5690.8

3317.9

5558.8

3001.3

4837.0

2061.1

5532.9

2998.8

V

107.0

95.8

131.0

91. 9

108.8

69.0

135.4

108.2

Zn

233.0

522.1

794.6

2179.5

688.5

1974.0

853.6

2145.8

Dy

10.5

12.4

5.2

2.4

5.6

3.2

5.9

5.9

K

:

Average

saml21es~

Standard Deviation

79

TABLE VII ELEMENTAL ABUNDANCES IN ACIDIC AND BASIC ROCKSa,b Element

Acidic Rocks

Basic Rocks

U eu Li Ba

1 - 10 15 - 20 20 - 50 70 - 700c 730 - 880

Co

1 - 2

Cr

16 - 22

Dy Eu Fe Hf K Ca

6.1 1.1 2.5%c '101

IMPH 1/l9H le9H I ~'H5 IRQ" I AQ'H 1 a '1'.11 I "qllC I P'lb1 ttI'!H IrQ'b JII'!77

U.8~"?17

1~'I78

U.llt711Q4

lpQ79 169118 IRQ'll 1'1000



Latitude

111.1,0501, 1 lP

.95~Hl

38.9UO"5 )8.'18!1~n

18.e UIC'.I 18.8U"36 )Il.7Hll)§ ]11.7821,'1'5

,. .75bHb 311.'101437 38.f7UU 18.efPH~ 3IJ.8~5MI"

18.ell""Q 3P.t;01IlO7

Longitude 107.415813 10". 2311 0 21 10ll.UU44 1(16.161\011 10,..11'117 'Of..OUCl4., 10".09UOli 10&.094315 10".2UnZ 11''.>.11171169 1('''. '«'91'96 107.2181711 I.,II.20S2l7 10".2217~2

11)". neon 10".USHI IO,..U3U9 lOt .IUOlta 10".'12241 ICl6.H05l'b 10". V"1CI I"". "22475 1('6."190"" IOb.409118 10b."Ml PZ 106.680597 'Ot:.1l1ll7" 111.,. )9'18!1S 1')6.1,0'1891 10h.40lP1O IOb.'19178 )"'-'. ""7744 Il'b.I,0'l157 106. ",.., 155 I'H.Hl477 IOb.411q05 1(\1•• 272119 10f..1H'.IU lOb. un", 10f. ?61.031 10l-.UtS"" l(\b.llHtl IM•• 1O'lllt~ 1011. :H2?I,Q JO&.3·UQClZ lO",'~SZo(.

106.1Z1C1H 106.1II4)18 10".31H~"

U (ppm) 1 •• °0 n.40

n.n n.n

13.110 30.040

10.109

32.'2 H.17

U.U

U.1I1 12.111 21.n

lO.tt. ~1.2b

H.9" H.58 '0.,)9 ,.0.51 H. '8 ZO.3e

U.4O

38.65 26.10 12.10 3b .9'1

18."" ZO.10

33.1,5 H.32 Zl.I,9 H.i'I 40.79 n.1I4 23. )9

30.01, 'it, .61 48.1"

zl.za H.tt 38.111 tII.71

Sample Number

Latitude

Longitude

ltaOOl

!8.818""

106.41401"

nOOl

1ft .snuo

1'0040 19009 19010 19011 19012 190n UC18 19019 ICl010 19012 19023 190Z" 19021 190U 19030 19014 19190 1'1199 1'1200 1'1206 1 '12M 1'1216

U"U450 U.U71U U.U5"'/) 31.670"''' la.taU.,Ofl l8.7e01U

l'Il'H 191,01 lQl,03 19416 1'14023 19"U IQ"H \91,]'1 lC144\ 111"401 \941,8 19,,58 lo"n 19510

1 0 511 lCJ515 19'1lb

U.UOUo

31.11041' U.l088"!' 18.t41A21 38.t09n" JI).6CO.4,. U.55UU

U.U6ul

SB.Ul1C!! !8 .~UA60 U .ta44167 II.HUbl II .UI!l 25 38.8If7U' 38.9t3 C1 U 3 •• 4~n5" le.!!9.,,7 18.0561113

:U. t.7"""" !'.'UJ71 31'.'152095 38.93811." 311 • 1;21 IIClO 38.81,771',) 3e.f7'1fol!, 1 •• tal:S~H !8 • '!UtaH 38.U'ilO'i llI.7'101'il 3e .721251, :le.720""9 38.77Z011 3lI.15(J0"1

10".Uta9111 10b.nU'fI 106.'5'1,65 106.nU7f1 lOb. 176171 lOla. 'f.,9 tfl 101a.119142 10b.nnOl I06.'6t766 I06."'2!',1l

ln1•• 253141 IOb.117502 IO".nullO IOll.10U9" 10".""106 '''6.40lftfl '''". 49CI U 1"".05 0 7U 101l.130~5Z

'0".'

11 C·Col

l"fo.IU7~.

106.01171(05 '0,».1683 0 8 10ll.2IUU 10".5n"u 106.5UlIU 11'6."77"" 10f..f'''''''''' IOb.t''"972 1011.592902 1l't•• "U'5

1"". nBlco

101l.H4186 10l.l.5 0 3C.U 11'1I.~tH1.q

IO".nOl59 106.f024"

'''6."rn2l'

IC".tllI'i"'! 10".190397

U (ppm) 24.51 n.01 '9.U

,..n n.H

".11

Z4.bI ~b.11

,4.9Z

,,, .ro 1l.4' 45.30 25.19 25.118 H.!8 13.07 n.tal Z6. Clf, 11.10 12.51 ~6.~0

12." 27.72 n.n

Z4."0 t4.09 30.n ]4.64

20.911 1b.15 '9.13 20.60 32. "8 1,(0.21

13.1 b tal.51 2".5 ! 'l4.~0

IU.IIO 23.10 4P.Zb

~5.2C

5t .0'1 H.l~ l~.ll

bl.OO "o.no

U.H

••

.. APPENDIX Sample Number 18001 18062 18070

00

Longitude

Cu (ppm)

".OlonA 18.H6Qf,4 n.1tto9...,7

107.1""49

71'

180~0

".n8""I/~

1"012 lIIoa9 18101 1'1101 111104 l!il04 1!tll6 18119 1'J1H 1II1H UIS8 1e 154 Ulb1

,11. H l G Itto

ldlU

w

Latitude

11'16lII17l 181H 1811" I!1UO

18197 le199 18201 11'102 1810) 1 ulG" 1 ')20b 191:11 Ie Z10

111.119"44 18.211,,"'9 ]11."60000 H.1oZ5!)OQ

l!.nn"\ 38.20eI)511 U.1717711

n.ooon·

U.0061,!Q

18,OSl~ll

H.O"UH 38.0lZ'!olll' U,IUZH 18.1071'2 )9.099,."" 18. !)88()~" ]8 ... .19,,.7 3ft. HPl"

U.1994H

1!)7.94Hll 10'. 99 lIS '14 1')'.841111 In'r.77HlZ 11)1.6905H 107. HHH 107.61194 .... 1"".""6)11" 1:I7.to7b4 .... 107.676l'JQ 10 7 .1191,11)7 11)7.601111 107. HUb? 107.514167 10".000000 10 7 .OZl189 10".1115000 lOl.15HZZ 10'.14:'181l )C''7.H77H 11)7.520000 107.551889

)8."8""'~

10~.OO7'iOO

38. ~8 6"11 7 11.199441,

1 '17,OO~55b \n7.01'S55" 1117,110H'.> 107.11,105 .. 107.22'056 ''''.2201\31 107.111056 1"7.129444 11)",2'.>0000 10l.HOOOO

H. 052 'lOll

)8.lopn 111,1I591b7 lA.Ol~'''~

18111

)8.021111 18.019 7 H 18.000°" l8.01lIlQ"4 )/I.OH1"7 111 .1)51'"

~

)lI.)H77?

1HZlb 11125b 1 litH 1 bl511 HZbS 1II26b HZ7Z 18Z1l2 lE1Z'll IH9" te 102

16.15941, .. )11."0"'''' 3a.BIl"Q

1621

11)7.40\\"~

H.171~"Q

U.llS"H 3I1,128H~

H.OU!)~,.

181\l~

38 ..... "1.7 11

Hl18 18319 18Hl

38.)38"" 38.Z81~qQ

H1zt.

18.298,,84

III ))0 1tilH 1") 11 18IH H1H

18.H~II'l 18.0010~"

lII.1ZlQC,,,

18.0191'1

II)? HZ7H

3B'\~77H

\1)".291)831 'I)". Z'll,U9

18.1!.3")

Sample Number

194

1PH7 18163 18365 18367 181U Ulllto 1819/1 18199 11"01 18"" 18'019 18'020 11'021 18422 18'eZ'o

~!I

18HZ

1"Y.AU7~'

1 ')7. US'S56 II'1 Y.79S000 10 Y,77555" 107.725000 107.7U7H 1')7.8HII67 11)7.917501) 11'17.97')000 '''''.111111119 11)".9lll]H 1"".6')4167 11'17."11\61\ 11)7.nlo7ll 107 .UI)'H 1 1,,7.1910U 1,)7.1I1!7U!

(continued)

U

17

n

'\5 \17 17~

fl4 40

11"

94 61 6'

H? 51

111 ~'7

110 H '54

87 111 53

7S ''11

,'I" . ."

117 ,~

~

~'j

ZH 11' b5

H

"0 '11 '51 11 !IS

11 II 40 115 ~OZ

117 76 5tt 1"1,

114 ~A"

Qb 1'.>5 17\ Ill]

taua

Latitude

Longitude

JII.IU4U Ja.09J"I' 38 .OUQH 1Il.07UH 18.0U111 18.092'00 U.2H7U 18.2"811\

J07. UUOO tl.l7.n1667 11)7. 2966U 11)7.''''''119 107.0t,Q"U t07.0UI\1 107.0J7;!U t07.0U811 1'1 7 .0801)00 1" '7. "01)550\ 107 .... OJOU 11)7.402222 11)'.4U'!56 107 .... 16\11 107."91611 107.96HS!o 107.QU556 ',)7.90t.6b7 107. 86U4t, '07.8Ul!II9 107.52'14 ... 107.5HO ... 10 .. ol7UU

)fI.27un

18 .OU51)I) 18.021111 111.0191117 18.013056 58.011ll1

!B .0210~6 38.35ZZH

18"104 lH .. S 18 "" 9 18 .. 40 U5B 18595 185911

38.288l1li9 18.Z51'611 18.27611'9 18.)19,."t, 18.955670 1I'.9lb7U 18.9')e"H 3tI.9a,,01ol 18.95716'1

18I1H

lI'.S61·~"

18blo8 181169 lU70 18671 181.76 18617

U.Z2UH 1II.H09h4 18.S""""" le.579'141) 38 .515 .. .., 18.5077"', 38.7134"4 3e.7151\,," 38.1H4", 38.707I\no 38.71U41 38,'>8411" 38.576930 3'1. H94,) 1 18 .bUII 11 18.6t,211"., 38.557"7(\

18 "" 1

18~911

18697 15b98 18699 1870.1 18105 18711 18HZ 15119 111720 188B 10810 18811 1~8Ia!l

188a 1 1889) 18896 181199 19920 189)9 189"0 189U 1891,3 189410

19.5H49~

U.

~9

79 100 118 81

'B

101

"1

n

U6

n

U 90 74

90 ~O

71> l>1

S9

\1)6.20a716 U6.01HU 101).09516'1 106. U)11Z 11)6. HUH 101>.209096 11)". HAM" lM.2U220 10".205227 IM.lZ1762 10~. 2 .. 971'1 10ll.7Z'l011 10".10)4" 101).1'5131 10".1711)\ 11)1). "04101 11)1.. 10711 H 106.470060 t')1>.69411,'l 10".610"301

111

38.8117""

1M. a4AH!) '!l6.H8Hl

19.9~lln,

19t, 19 ..

Ion

1')".61"0I,~

18 .4~44'" 311.')55"'6' 3U .48P'I" 38.9'1HZ!)

n'!

10~.01l42Z

3tl.5b01'1Q l!l.1ol9'H6 38,1,97111" 38.1068 c ·O 18.t,7bH9 18 .8691'"

Cu (ppm)

l~b.

un",

11)~.B06U

II .. ~ll

,>7

bl 6 .. II"

51

nil 61,

114 61 112 b6 ZSI ('44

115

III Q2

~9

"II

H

iH 5\ H

11)~.089167

6b

IOfl. Q 4HH \0 ......... 9104 1 0 ... "6ll01 1')11 ..... UH

i"~"

1~","'90H

'" .... 4(140)7

~II

6' ~" 2H 6'

APPENDIX Sample Number IIIH!I

189H 18952 11\9~6

189U 18~1I0

1119111 11'9115 18911 7 189118 18970 18971 19971 18979 . 11\990

UHl 11I9U 19011 19:112 1901) 19014 19015 1901' 19018 19019 19'H(I 19011 19026 1 'lOll 19(>28 19015 19016 19011 1 '10 l!I 19092 190'14 19095 19097 1'l1t.5 19171 19HZ

00 oP-

19l1il

19Z16 19l1S 19lZ9 1'1210 19216 I nJ7 19H) 1921>2 191b" 19Z!l5 19]')6 \935'1 19)74 1'1375 III

Latitude

Longitude

U.9885Q 19.95'5·'"

\ ... ~.

U.I.. ~n~"

]8. lUll'll 18.70271)9

10b.1H8U 1''I'I.HIH2 1"". llH61:1 1"'''.2UOH IO".H1I4" 11)6. H0869 1"".40'16641 1"".IoQ"99'1

3~,780"·"

1"'~.~81US

U.77674· 38.1121'/).'1

10'" 4'91610 \"' ... 497899 101>. 25S21~ 1"1:1."'51)5"" IO!l,4UZ21 I"'" "299U 101:1.376177 1"".3111909 10".Jl9Hl In ... \50907 lQ~. 349M' 1"6.111119 1'l".17ll07 106. 26'!H~ lH.271HII 106.11150! 1" .... 29.,841 1"".30Hlll 10 .... U9106 IH.('64111 '''''.41'' "0'" 1')"."3090;, 1"".11195"'7 IM-.019Z2' 11'1 .... 019811 1"1".0500'19 lnl:l.l00'll-'.

lII.8B7H lB.76H05 U.7924 q • u.nO~H

lB,

n9110~

18.'168~~·

111 .110]'" l 38.791"'74 \(I. J80~"1

39.117005" 1e.675709 U.70072'5 311. 7011"'~ U.698~1" 18.71~S9"

18.6"0'0:9 38.6804H )8.708-"'· 18 .6ol97H 18.~491'11o H.5H'~'1

18.59611' '" .5621 n )·.5)9"\11 )8. :i39"~1

H .~)O'-'''' 111.1'11,1101 380118771 )1t.12t.Hl ) •• 1 HHQ le .11041'1" 15.3500"1 31'.373'111 38. '" 90P'" JII, HUH

18.25"16" 38.269"7' lP .278Q~9 Ja.l06 .......

)8.11 t.Q~" 1'1.290'7 8 lB. )H.n)

111. 38

\b9~'"

.15)~\·

1".H9!1' ld.19\lH lP.H41 ... 7 )8.~OP~"

~l)90S

10".~098H

'''". 7~1"'t

1(1·•• 1I~0601 1"1".1161619

Cu (ppm) !U '5" 62 U 59 \14 ~6

7S

311 '1)1" 1:1" '11 \2Z 5 11

"61'f>" 71 H8 97 Hill

10'S" H

Q" U H

(continued) Sample Number 19316

19371 19318 19]79 19)91 19)92 19)99 19401 19U1 19'056 19497 19498 19499 19500 19501 19502 19509 195Z0

nsu

19700 19761 19768 19770 19781

19841

Latitude

Longitude

)a.6110n

10".595"21 1,)'>.604117

J8.583~H 1/1.~6"091

U.56"""'! llI.5U1S9

111.He""

1')". S9H'IU 1 "". Ul911\

11'16.5"'16" l0b.UUH

3P.6271'19

1 ')4. SBll71

U.b561~1

11)". Hi9""

U .91041\6 311.767"9'1 11'.908'15 11 311.9069'1" U.9U'l9'! 38.95749" 1II.97UU 18.957206 18.869l'17 38 .89~01" 38.5Z67'" U .0'105'11 3II.",a6~4

38."16~qZ

38.3812 8 3 38.'61 ... .,' 311.329167

1"~.6Io8H"

lM.6!Ul! ",".0282U 10".onOH 1,,".U\5111 I1l7.0aU06 .,,7.0651>0'1 ''''.0616!6 1"".01"66" 10"'.001027 I07.t.5lS41 1"".0)5503 10 .... 911'911 1"".QUIl1l8 106.8B1J195 11\6.9126810 106.596867

Cu (ppm) 67 "4 .. 2 51 "7 10· 68 52 7" 61 81 1'10

""

61 Zl9

71 1,91 66

...'"

6Z 6"

"IIn 51

lB 77 1>50 ?,S2

9."

'1)'

l'S

511 9~

72 61 H

"., ~,

'II,

l0~.IB9Jl

61

1"'I.24?Hl 11)". \Z771~ '''''.H08ll 1'1 .... 110"199 10".11,01,722 I"' .... HZ:H 11'1 .... 040·" 10".0291111 IIl".04H4' IOto.01118P.1 10~. 2°1615

'5" 790 144 1109

t:l".2SHS4 106.6Z'lZ1" 11'1".600517

67

01~

5'i

'.

'. APPENDIX Sample Number

00 V1

1'1059 1'101>2 1"°"] 1I'0H IIIOb'1 I"C1C 1" 07'1 I !O"O 1tI0~ .. IPO"CI 11'041 180 Q8 11'101 llllC2 11110) 11'101, 111109 111117 I" 113 IIIllb I" I H 1 "I' 9 '''IH I'll '7 1 "1SP

Longitude

H. ~1.!9?21 38.H64H

101.HOll& 107.Hun 101.1112211 101.8238P4 10'1.501389 1111.P 55!1~6 107.&;1t.1l1 107.'195000 '"7.71S!'5" 107. '12 5000 10 ... '194722 101. '1tH"" 101. '1t-2778 UI7 .1""556 10".8"tH7 107. 91'1~CO 107.915(.100 107.71YSr.0

91 1H

10'1.f~q44~

210 90 271

3t.~1711"

38.4",.""9 3&.4'10"]) 38 ... HI61 311.n5556 !e.3l8llIlCi

'II.341°H

)').319",,4 38.318111 311.234""" ]8.1et-,A4 H.l81l1e 3e.460000 3B. H~OOC' 38.27nn U.llhhb7

lP .1I1l'1(,0 3r .10111151]11 • CIIONIO 38.1777'" 111 .(l0011 I' 1II.00t'R4 3e.OBt-ll

1~1!i4

36.048~H

1'1

1" .071444 )8 .r '!l'lrl\ lP .CC.Z1l2 If.l12??? 111. I C7'12 ]1'.11:)"'43 ]fI.}C"722 31' .CP9""" l8.06eo:." 31' • 4C9)t- 1

H.e

IIIlhl I ~ I b5 11'1"6 I"He 1"169 15170 I" I 7Z 1 ~ 17) I "1?8 181fte )" II' 1 1")8) I ~ I Q7 HI'H If I '19 I til CO I IllO I I H(I1 111 203 1"20~ H?I'~

III Ut I POZ01

18l0 A 1"110 I HII lK1"11 Jlll'l]

Pb

Latitude

lL'.14~'1~

31'.IZI""" !6,JlIlll H.OH500 3".13311\ ]1'.102112 )8.CI'~~56

!8 .C~91 1-7 H.OH2711 38.021111 lP..OI9'1?l !6. C2011a l'! .(001.131 3t'.Cbt,4H lP.06H7'1 )e.C5Ht7 l8.0511B 31'. "".,,,U ]11. "8 t6l-7

101.t-nee9 H17. «058331 1"17. O'f \ 1\

H

215

"'" U" "2 llt- .. 1'19 54 41

H]

'1'

fit.

101' 103 pc

e3

1/'17 .6~9167

III 1

1!\7.HUll 107.(114122 1'17. HOlll ~ 101.1'077711

50~

11\7.7"1)0~b

107.1'15118 ,fl7.r"7n? 1('7.901](;Q 11)1. c1lHH 1'I7.Q56!BQ 10".'19"3)) 1117.998111'9 107."91111 101. lUll? 101.71-8 H] 107.772111 I07.t90!i511 107.73381'0

,('7.Hnn

107.70277" 107.t-1I4"''' J01.HUll'! 107.67b D 1,4 107.hlt3"Q 1(l7.t,t.58H 1(17."9411>1 II) 7 • toO 1111 107.HM67 101.nIH? 107.51410 10'.C075CO IOJ.005Ht,

116 69 IB 11" IB 4C.cj lit, 171 lH IH

III

III

95 "I' b~

J8!1

:C

..

~

~I

3'0 161 JRI

114 17l' 3Q5t 108 55 (Iii flC It, 5f.

971

(~pm)

(continued) Sample Number 1824" 18295 11')02 18]05 11l3l2 18326

lPno

1'1335 18n6 1"311 l8nll 18119 181108 lIIlS I

Latitude ll' • 1119" H lB.U6U1 3(1.C130'!t18.H5'18 38.18311"9 38.298/1l1C1 3e .245113' U'.003056 38.02111J 38.019'122 38.ClOoo;6 1lI.00Ci721 38.206\IIQ 38.1H'118

183~3

38.163111

1835 7 U]63 18lt5 111 36 7 111416 18H8 l!\419 J "1,10 19"21 IHU 1 flt,29 18HI 18'032 l'jI,3t1!I418 HHI 184 ....

311.15191040 !a.CU6" 311.011444 U.07712' Jti.050000 38.C:2?'S00 38.021111 38.r191117 3t'. 13056 38 .(111111 38.38'\056 311 .3791"7 38.1511U 38.Hl044 38.2'88'1114 38.H8t>11 3e.271.'ICIQ 311.!l9H4 3P .'OS51170 30.9075"" 38 .. 9t14 11A )l'. '0 ]6U) 3ft .901116 31'. lit lZ~O H.bl7t,47 lP. ~9t·"'"

HI 44 5

11'''1'9 185H 1856" IHOO lP6C I· 11'603 1811) 111624 I'1MS I Bto2 6 lIJto31 18t-H 18635 18b18 I11t]9 10t~0

1 AM 1 18b45 181>"8 lf1hl-9 tab70 1"6H • ""7'1

°

H.~/J21/)"

38.571117'1 )IJ.H911!il lP.H5M9 38.51>1 HS

Longitude

Pb

101.0H"6 101.0('8189 101.JIO!5t 11I7.H30U 101. JJ 3C5t 101.U9" ..... 10'1.260000 101.410000 1000.JnUl10".3621'1" 10'1.357500 11)'1.361111 10 ... 311 .... 1040 107.190&3'1 1I)7.24t-lIP4 lOl.Ul5tO 101.2QI6117 10".196"hl 1117. :-4111' eo 107.40"'21 10'1."00556 107."01056 10".1e01112 10".USS56 10l.UUll 10".456111 II)7.9H331 101.965556 10".Q1Illi 1(l7.4"5'S56 1(\7.QOtH7 107.&610404" 1(17.(11.11"(19 101.528HP 1(1'1.1 HIl7

"JfI

10l.1390~~

1"".1 ftlIPI!7 106.1767et1 10".21,140 0 106.111ge0 I C'''.(llltq? lOt- .(19)44 1 IIIb.09H1'0 10".001119" IN•• (,101!75 106.015141

18. tHO']

10~.0P'5821

3t'.t30t-?6 )8.t671'10 38. t7HOI lP'.UtoQH 38.22""'1 ]8.!40'l""

1(l6.07('(lH l(1to.M1C!0 106.0l5J50 1111>.095990 10ll.OO53t-Q IOb.H3732 lC'''.HH51 IOb.I'I3t>tl 10t-.ll PUfo

38.5"""",

38.~3PQ?6

:i".HOU3

n9 4'151 "0 59" U'

687 141 117 2",. 62 b5

ICI 967 !H'5 956 106 4 1C40 1091 H

5! 1387 "'I' 12ft JO!

n

bI!

lie H

IH HI, 13Z 71 2"3

H t1 4Z 43 !I~

",

H to)

H t,}

III'

llC 5C 5" 41 l.4 t-Z

5t-1 It'

231 137 4fI

(~~m)

(oontinued)

APPENDIX Sample Number 1 BII') 1 H6'1Z l8t-/l3

38.Ht,9Q~

10t..f.36049 10".3998~5

b

38.422"" 31! • 475Q"., 3/1.4050"J

1 p"n

311.9:>3P7~

111('81

38.1l11745 !ft.3l51100 38.e53'1oo

Hill,

1I''10b tp91Q H9lt

3/1.~991"3 38 .~7t-'no

38.529401 38.5111)06 3ft.HIIII0

10".40b9)0 IOb.40975'1 106. 77!(\'" 106.e98ZZ0 '0".093'" 1

Il'b.951b74

38.1't.'i3l'2

106.99H~R

11'911

38.~l1S15

H919 18943 P9H

107 .lI256 35 106.444'144 1 (\'> • c.f, '1 0 15 10l-.4}!90!'

18Q87 1'1009

H.t;51101l 38.985255 18.'i88'141 311. 9 ~5/l1\1 ll'.1! Hon 3e.Hl;>"? 1P. '1 ~I)I\ 00 31l.7t,PQ .. ) 31'. }OiP09 3P.llt7411 311.112110S l~ .1'71b?l H .et:854S 38.o;"!!t·5! 3P .983/l Qn If .'Ill71) le.t-HIQ)

1~010

18."55"~0

1'1 ('II lqOI' 1QOIl 11'101 ~ 1 '101 ~ J 9011: 1 '1017 1QOU I QelQ 1 (lOlO

l8.t'100H 3B.t'15'1'0D 311.7007l'

lA'll,} 1~9~1

1 PQSP I~Qb~

IAQt.7 11!9t 8

lROll HQH I"'HI H'I7'il

I e9" I

1I''lez

'

:sa. ~6f.l Q6 38.tOZ7P'I 3LI.bCJ51CJO 38. HI\ HI) 3/1 .71bt-61 3&.71!'H9 J8.715nu 1II.1149Q 38.717191 1!.70"641

3P.1031"~

31'.691'1'1" 3e. }OHI'II 38.7145 Qt38. teOl ~Q

l8.tflO.1102554

38.30b,,"7 38.316956 3,.U9"n 36.! 5151'" 38.H2479 3ft .604156 38.t unl1 38.51'3"7' 38.5tt(lQ1 311.5H405 38.511JI,6 lI'.t.011n

'06.01,7547 10h.O"I'81 10".1\:\51 t-o 106.600~17

106.5951111 10".,.04137 l06.~Ql019

10".1123'130 lC6.H15~A

10t:.53081'9

3& .tZQ4t-0

11'1~.54520"

18.t110~6

10".52,,,18 106.5H6Z7 106,'636"" 111".357704 106.341490

38.571201 38.ttZHl 38.44217~

38.4)8129 18.91041'6 38.951"9 38.952095 38."5I'QQ'I 31'.9l'llU

Pb (ppm) !)to

7CJ 111 45 U1 TII7 387 9C H 41 816 898 1831 1141' 1 U lot'

ue U

ep

65C lU7 1164 14te 591 U4 510

bO 5"

6H "47 71 '2111

""

118 lH 1"-

bl, 1,1

81' t,l

lOb.II4HZ"

B

10"."30l'~O

0[1

10b.6(-6"JII 10b.llllflO

136b

It,l

lOb .h19 Df'l

H

36.920QO~

10ll.foO~Q41

3)1'8

194b'l IQnO

30."05,,11 38 .1'l~~QI 311.819)3ft 38.1'11'.11 18.7 ~06Zb

lib 1111

19471

3I'.78~""7

19473 1'14710 1 '1,,'9 19496

18.790157

1(\6.716468 106. THQ1~ 10fl.715t-59 lO".71HI,O Irll.7H499 lOb. 71'17119 lOb ."701 ~9 106.""QOJ4 10fo."H71Q 10' .07.51'81

1f4 47 1'10

t"

!oq lQ27 H4

19~be lQ~68

!I 1')'

141

!.3 101

.

~8."U"H

311.'30::"zt, lO.'H01H

45

~

70

244 277 H t,1

t5

q,

.

.

(

••

,..

....

APPENDIX Sample l~ulIIl>er

1114117 lI04ge 11I411Q USOO 111501 19502 III~C8

19'5('Q IQ51C 19S12 111Mb 111713 1°817 11I1!10 1911bl

00 -...J

Latitude

Longitude

311.1;01111';'

107.nUll" 107.f'SS052

:U.C;CM~O

U .t;!)PIIl ](I.lln40b

It'.Ci7(\2to'' H.II!1720b U.n8'", !tl.8tQH7 38.1'1;1,0'" 38 .t;2fOSl 18.86b10'

38.CQII121 ie. 4 5tHI 11l.4B17? !8.1UIl5

10".0~Hn

107.0(11,801> 107.0tSbt''' 1f'7.0blH6

Pb (ppm) 2c;~

11110 81 110 Iol~

75

107.t'~!517

HI

11I7.01HU 101.0030n 107.I.'P8C'otl 10".025I1QII 1"1). r,QUt.4 lC'" • bl =to !1 10". "171111 106.17t,79Q

15H 165 47

11 I,!

so

87 212

'i

(continued) Sample Number II!CC3 18005

lOon

IIICU 111025 18027 111028 180?9 18012 18033 IAOH 18039 111040 18CH lU043 180!0 I8C99 111 101 1 Ull 1"157 11< 15 8 18159 Hlt3 111201 1111/)4 \1I10b It'112 1'1115 11l11b 18220

HUI 15H2 1 lIll3 lel,.3 18ZH

l11Z61 l11Zt.1 U2bl 111'1:5 182M: te2bl H2M B?lO 1!I211 18272

1"2'11 18285 lH91 \ tI118

II1,n lOl3C 1111H 18351 18353 183H 111355

Co (ppm)

Latitude

Longitude

38 .0l027, 38.C402711 3e.37!18n 311.)"7778 ".2980'S6 38. 2975"/) 38.l91llfl 38 .Ufb II U.2b2500 38.U861l U.21QI,I,,, 38.153611 38.1811:67 31' .310000 38.HII1H 38.450 .... " 3II.2HI'U !a.2IM"9 !8. 22t1-~1 311.006'8" 31.1.053"'1 3".01,8113 3(1. C)2!'01) 38.C591 n lfI.01972! 38. COOM H 31!.31l3111t1l 38.341011' 3e. 359"''' !8. H:271'1 38.3 'Ull"

107.1581119 100.l1UU 107.""5831 107.I,85ZJII 107.4116189 107.U5000 107."6UZZ 101.4 HU9 10l.HUll 1117.465000 IP7.4b2771' 101.4108313 I07.U7112 UI7,421500 101.t,01112

25.3 21.0

38."l44,."

]1I.H500l 31:.,.9'0(10 311.137112 111.CIIOl'II/) 18.105000 l8.l30RH 3e.115U~

38.12e3H 38.IHHl 3t' .)Ii eo 56 3t1.136,.,,'1 3l' • IS'" 44 3e .199"44 3ft .2t2S00 38.35Ull 38.HI9"4 38.33831) 38.l5",':! 11l.l45fO", 38. C07774 3" .1571711 38.lb3~:H

H'ol6Hn 111.1611'H

2107

H.'

54.7 21.2 31.1 21.5 29.4 21.2 Zl.9

32.2 H.O 15.8 20.t,

J07.~"..~1l

30.t,

11)7.1H,.11 101.7U7l8 11)7.117'00 107.tt>1f.1l 107.81,.,22 1O".820U1 107.193056 101."89444 107.( ltlll9 101.69""'7 'Ol.C1Htl 1/)7.01l0(\tO 10l.tlnfOll 101.0'11111

n.2 10.5 10.1 25.1 21.0 11.0 24 .1

107.(l50~5t-

Z? .1 11 .t

1!)7.0,.'HH '07.0404112 1111.t'10!l!l6 101.16pIIllII 107.4111111 Inl.t,H167 107.,.1\1111 107.517778

n.9

20.6

4b.O 11 .4 U. !

23 ., ?I.l 20.4 12.0 11.7 22.3 31>.1

H.5 H.9

107.~2CCCO

~Q.8

107.520000 \01.504722 1117.S5blllQ 107. ~n500 101.5531'119 107.51038l19 107.U88119 1(\1.516661 101.H8ns,. ,(17. H694" 10 7 .7"°000 101.4t-U81l 107.l9ClI)) 101. 29fol811 10".3110722 101.34Ul?

25.9

2101 28.1. 31.5

5t.4 24.,.

22 .6 21.! 26.1 24.9 2" .1 ?3.1 21.1 13.7 21>.1 29.t-

.

APPENDIX Sample Number 111~AZ

18)81 183 8 4 tRlPe II! ]00 1 P!91 1 'I3'1Z 1113Qt 1'11'19 1'''01 HI"11 1H?2

1 !It,l' H4110 lP'IZ9 185H JIIt.H I Plio) 1"71>1 l A 7bll I" 711 181'01 11'1113 1 P8ZS 111920 1 1'.,1- fI 1 'lOQ: 1 .. 0 0 t 1 CI t.S t'l""! '11317 19!H 1 0~37 lQ54C 19!15e 1 Q 570

00 00

",.

'

.

3II.07l'1l 38. C78I\~" 38. 0llZ5 01) !8.1l511tl lB.155·"" 38. 11!1-'" 3A.1Hl7" ]II.Z .... UZ 38.1"e311 lB.2716'" 18. C!IIe 712 38.011111 It\ .el!bll 3l'. Q'6 121

107.041110"" '07.0'16(.7 107.0Z833) 107.03'5833 107 .1'4PO~" 101. C~1I05t 107.0HH7 10". ClHU 107.(\65l!H 1(17.01'(000 107.445278 107.HUJ1 1(17.,,11111"4 107.!I)I,045 107.4(11?OZ 107."9H40 106.01 0 91,7 10".701967 101.131015 1(17.2105314 10".11 0 238

21.7 21.8 1l.1I 21.8 31.3

1/)7.1'63046

20.1

31' .!00t,17 ~tf77'

if.'

18 .UB 710

!1I.HOll\

]" .t268"0 1(1. t 115-,. lP .l:J" 9 19S'I0

)e. HeOt'" 111.l:geH7

19t.)1

) •• 6p c lSO lI!. t spao I 38. It H' 71

I'H.S2

.

Longitude

1'l~fll

I'H~l

Co (ppm)

Latitude

18.t970,,'

10J.OP!lllt' IOto.tQ~l H' 10',.1I1I46Sft 11),..(,114991\ 1 f'to.I'Sf'1'911 IOb.0877t-1I 106.761" 11 l(1h.O"OI'31 Il)h."'8hH 107.272500 '07.?a4/ll~

107. 36lt,'l0 10".017 Q (,#, 11'7.3271' 3" 107.6JH73 11\7.7) 417" 107.b"ll1'7 107.680173 107.121-541 1')'r.S811ot.l 10".91HP4

23.ft 20.1 20.') 1I.9 15.4 2".9 2" .1 21. P 23.9 2C.7

U·.4 20.1 '9.7 ZO.8 20.3 21.1

2t-.O II .6 ~S.9

2".2 22.0 20.6 :Of. .11 2 U.S "~.1 11.11 21." 41./1 ZO.9

".1,

:n.z ;at .1 t 4 .,. ~S.5

20.1, 21 .7 22.5

(continued) Sample Number 18617 18199 19116 18003 19216 18939

Iszn 18ZZZ 18953

Latitude

Longitude

J8. ~07'H"

1 M. 7.47220

38.H8'" 18.313:''''' 38.030'711 U.U8"'! 38.786\\5 18 • 4 2S1)~" 3II.4HU4 1(I.80no"

IGl.OUI'l'

l'lllS

1II.1'tU~'

189S! tU81,

18.dHO~7

18HO 19368 18955 18!139 181001 18S91 1821& U8S9 18ZZl UII92 19783 18ft9t. 18898 18tH 18Z16 lU90

lUll

If.092''''0 U.16Z",fI 1lI.'907H U .51211\0 18.4811H' 18.Z71"U lA.115 1111 ]I! .14l'H 18 • ,96'H·g U.1IIZ77 A )I.HIII""

111.161871 18.~68S"0

38.489444 18.612"'" 11'. H9444 ]8.916 1 "38.1'1]-"°

19169

18.Ul'lA~

18U2S

38.557,'n

1O".901"~

1'''. UU,~ to". 26t1l91 1"".380171 tlll.OU7U 10".04111oH tRlt.3621137 1"".01)0000 11)'1. nul\Z 1",.n28111 107.051111 In'''.AUlO? 10".4H8S7 1 "".4 178SQ t1\7.060000 101. /lU05" 107.016944 106. 4616'J 1

Cr (ppm) 1'1 H1 In I'!~

11'11 HI) 111 Ul 111 IV

131

118 14l! It.Z

141 lU

IU 1411

lei IH

tOJ.O~I)~""

Hal

1 439U9 1 "". II JZ,.,14 10".lS06U 10".UU78 1"".0191141 In''.OZI1811 1~'" 5l'o045 t')". 01~t>67 10".9,,(,(180 10".1)941 " "

In 1-" 2n4 2011

!'I".

HO

111 211 2'\0 110/1

2"1

''''

APPENDIX Sample Number 18181 18187 18190 18500 U'bC 18591 Iuol l11be6 18607 111611 186lb 18c.l1 lUll 16t.H lP~Z9

11'.0180"6 38.121,\111

1111.0'wHU 1"7.036661 101.OUOU 10".51""'2 1')1.910b9, 10b.Olnn 10".116760 10".188095 10".l'oH67 10l).lUOll 1" .... 010091 10".01058101)

1S.1"'~~1; 18.902~·1l

18.9)lH9 38.8t,1 Q 99 :sa .901 ' ' ' ' J8.81b\Q? 38. '1O 55/)II 18.l'l H"I) 1P.1BO~1

18.1610'" 18. 60Zl'>~ 18.~96~"1

'''''.111\'85 10". 0'!6t,7!

4'1.0

n.o

10.5 ~t,.l

51.0 19.b B.O 17.6 ",0.1 51.Z '1.~

109.1 1),.7 5!1.9 101.9 6'1.6 '''.3 '7.0 ,,9., II 7 • /) 15.9 80.0 121.0

18M3

111M 10

)8.~SI1~"

Pb~b

18 .bbO~71

IP~~1

V.6~191"

1"~.OQHB

'I~.~

I ~"1l UU5 186"6 111 .. & "

18.~5qH3

10".21,1,01) 1"".05 .. 119 100,.0415611

10.1, 1".0 121.0

1"".0~!lO79 1~".0!i91"~

6'1.~

ldbU 18637 1'l~41

18bH \0

Longitude

18."'I'Q\1 18 • eol 2'0 110 :16.'''9 8 '11 38.590»QO lb."H""1 18. b 79'''9 111.b .. 8"'"

l!bi2

00

l.atitude

IIf (ppm)

l!1bcH! l~b'JO

1""n lilt-II "

ld111 111116 III~lb

18MH 111!!40 1'1'IH I/lQZO 1~'HII

I ~9'10 lIIQ8b 111994 19J15 19083 190'11 1'1092 19lH t91b5 1 'lib 7 191'10 1'11'15 191'11. 19197

18.C.'I91'1,\ 18.b9"OO U.1l611l 111. l1'oS'1 H.7bl 1l 11 111.16I,Q'i H .t-I,ZC."" 1" .520'1bO

1"".OZ8fU IIl".019'H7 10".00819" to .... 0 .. "119 10".OlH'S1) 10".0!bH9 1I\I'.Ol""'lt. ,O".OH' '15 106.09110"

'4.6

1"".01'191' 10".099002

120.6

In''.lJ'JH~

~".l

10 .... 1,21.41'1

'f,,, .1

\".1

ld.b(jOI)7~

lOb.

"(.~'1n

l~.Q

15. !J99HI 111.,,"1?l" )0.1,91'01) 111 ... 7~'IIO

\""."19007 10 .... 37187'0 10 "'I IIQ

'ill.' 1,0. •

)8.,:!bq~~~

I""'. 9"1,1>'1'1 101>. HOlil') In''.16lt1H 10b.l,,90H 11)".4111)9 10". HqO~l 10". 85!1!76 11)6.011214 11)6.0]9225 1 ,)'.. 68\ H'I 111 ... 7t.1411

38.9'1:'117' 18 .'Ulbl"· H.'H01°0 3d. 8164 '" ]/j.,.98H" :U.9H"'~" 18."'I~!P

18.116'101 H.QI81'" ]A.

HMO}

3e.15c.""" J8 .'IHU1 HI.II c.O"()l 1".8 Z2'''1) 38.'119~"'1'

'0".

7

In''.''O'"~!l

11.5

3"."

.. t.!I

31. \ "'.3 19.3

35.]!'.~

50. I "" • !I

4Q.~

:H." ]0."

In''.7Sl0H

'\'i.l

1~".OS971?

30.'1

'",-.OPH9

'1.7

t!)".0~799b

166.' "9.1

1" .... OlAII3'}

(continued) Sample Number 19198 19199 lUOO 19201 19Z0Z 19lG1 1921)" 19205 1920b 19208 19209 19210 19211 19U1 19179 19197 191008 191020 191022 l'J~ze

191029 19HO 1910)9 19"/00 19""1

Latitude

Lonsitude

38.8020')' U.79un 18.91181!S U.900Q17 18.9b7 u , 18.951,11)'1

10".151595 , :)11. 140115 to".,,..9!!

18.U"UI

106.UUU

H.86U9! U.891IV 38 .901~H 18.901"'16

18.8881'"

18.11816'17 18.0"" .. , 31'.566"05 18.5117771 18.7641"1 U.96"'V 18.951"79 J'I.9/091),) 18.9i1H60 l8.8980Jl 18.8U"7'1 Je .8Hol0 \11.851915

'Oll.0900n

106.UO~S2 t.,~.2116H

10".1164010

1I)".un,'I

,1)1o.0Hno lDII.Ob7165 106.1UU, 1"6.090027 1011. (. 12 (\93 1"".62U]O

Hf ~ppm)

"'.'

5'1.9 11,1.3

"'.5 .'.~

".1 61.0

11."

UI).t 111.1 261.6 '1.6

'I".'

" .0 "5.l

\"".51HH

41.~

10".6'119U I06.6'iOHIt 106. no 85') lM.60UH 10lo.fa197".610e5'l 11".61)1941 ''''I.6191U 11)".62S9H

41077' 5 )8.879':15Z :U.7S0{l''. H. HIl'l"" H.S911?tt7 'UoII9HQ

l!l1..551HS 10b.51"10l) 106,790397 l'Il.7HUII 101.66ZlI1? 1"". "Ulll'

]A.

18~'H

186 0 7 18699 18701 10 1 05 187:10 11170" 16713 1 SII15 1""40 189S9 19015 19016 19019 190Z0 190H 19022 19024 190)0 19190 19196 19199 19200 19202 19201

'''I)

lo~.OH·15

38.a971H 18 • 9 1'1.9111'1''0 1'1.9'.1)0'1" 18.761,1'" 18.951'170 H.91,91)'.l u.9nl .... 0

1II61Z lU13 18611 18,.1,6 18647 18685 186'12

101 .. 11 1'>1 3·1 1'"

,1)".11'19'5' 11)".ZI1"'" I ':IHQ"I 1:l'>ol40H,) 1"".1111H \11".1 VI, 11) 11I6.1H75'1 1"".10" .... 9

)11.924711

186H

HO 10114

]8.819Z~'I

]8.11(011''''

18601 111106 18607 18608 18609 18611 lR61J lUll 186U

521

1~.79"~"1

'I""

Sample Number

Ce (ppm)

31'S

.

"..9", 1'1 31'> \14 '1-9

"04 5~"

H~

'109 197 61'1 "B I,II!

H"

'165 11 9 1, ~o"

'"

"

(ppm)

Latitude

Longitude

18.901H" )I.BU9Z 38.805'5(\1' ,..1103'11,0 18.81l"nl) 18.8151"0 111.75714" 18.602'''· 18.62101JII.596 .. '" )8.6124""

1"".ll67110 loth 111'1'45 1"".un67

'II.'

In~.unu

101.' "9.1 99.7 !!1I.1 6'1./0 ll.0 "".1, 191.9

ltl.~~9"'1\

18. ,90Z'l0 31'.660t,11 311.687 0 7" 18.69910'5 lP.76H''I 18."6f4··

lP.7150"· JI'.707"00

U

.10q'i~?

l'.6h',· 38.6';llH 18.b,,~n5~

11!.')20""''' 38.4'0111" 38.4'171,"1) )fI.78Hln J8 .6911'11" U.707"'I1I 38.680Hl 38.708~"'I

18. 1l .. 0 "I " 38.64:\11' , 1".t:lO'l9,

la.'Ol1'"

38.9"",I .. l 38.!l22111'1 U.791ol"1

lM.2i'69H 106.16 11 011

'''''. UHO/)

1 nfl.17U8. In''.H0811 1'1".0116 .. 72 In''.01991,1 1(111.00"191, IQ6.04UI1 1'1".09130'1 10".0941H 1"1».0" 111 101).000002 1"7. 11 !.I 77" 1 06. 2U7U 10". Z!I'031 1!1f1. HU10 1'>",175111 1"".'''1019 11)".21UH 4~"."" 1'1"'.3U"H 111 ..... 091197 10", ZltH '19 '0".3"9"41

'''''.

1~".290"51

10".2U766 11)".27%55"

,n

I"/). UUH

11)1t. llo 1 11)6,2h6"0 '''''. "OIU9 11)",OS97H 1 ..... ,O')7Q9!) 11)6.H095!

'I".~ II '.0

'n.'

10?7 6~.2

..... 0 '1'1.1 11 O.l ''''',I

"".,

"~.5

""." 114.0 .1 9h.' hO.I' '1"1.'1 "6.6 51.9 ,'- .1) 50. 0

!"

~1.0

,9." !2.'i 6 7 ,1) fll.l

10".IOS4lo9 1 0"4 H!» lH.0,,716"

"Il.{\ 1111.9 'It.. OJ 11 '1,1 Cl99.0 81.1 (10.7 61.3 ll.1o l,n., 1"" 01 hA., 116. !

11)".1l~SZ'5

~~.~

39.9811H~

III". H Ulol

)8.91»7"51

11)".14087'5 '0". U5 Q U

18.9~~11)1

Th

10".11\2)2

lqzo~

lS.9HHI

19205 19206 19207 19208 19209 19210 1'11,07 1'11,06 IH17 19422

18.a68~9~

10".1l~HO

)I).8971"? 38.92HI4 3e. 90 1" '" H. 901 0 ~~ )8.8118102 38. 76~OOO 311.11)"'·' 18 .t,~"~29 18.951'170

1M. U1lS"

191,28

311.'120QI)I)

II,..

1I)b."7119 0 6 1 "". 681940 6 1/)". )1.149') 11)".630850 lOt-. (-0191,1

~'I."

05.1 "').4

n.6 ,,~.~

.

"f

APPENDIX Sample t~umber

I'H19 NUll

I'Hol9 IUU

Latitude

Longitude

JII.QOI:-"O 38.119811" n . S" 711!\ 18.non",

10".6IQ1t,) '''II.U'IQ51 tO~."'Ulo,§

'''ft. 790397

Th (ppm) 92.'1

"".1)

II". ,

1106.1

(continued) Sample Number 18003 18005 111011 18025 18021 18039 180H 1Il0'" 18050 181H UZla9 18262 18ZU 111266 IInl lUll In" 18182 111181

111810 \0 t-

11190 18196 11199 1810,)1 nU2 111529 185'06 18597 1116a7 U616 18101., 186H 186"" 186"6 11l~59

lun 11l~/'5

l11U7 18I:U 18687 II tole 18&190 18M" 111767 18802 188lto 18909 un6 18992 18998 18999 19001 1,).,91 190'H

Latitude

Longitude

31.010211'

107.ln489

U.O"OH"

18.n'l'ln 11.291,)'1" l'J.297'i00 18.1'51"11 18.11001'10 18.21081"" 18.1,50'1'16 18.2171H 18.195~""

II • 10 SI)O"

11.115'" U.U81\1 11.15"'410 18.1991,4\ 18.163"'11 18.073111 38 .On054 31.092')1)0 111.155""" u.Zlaun J.8.2UU1 18.2111167 18.011111 U.500lo n U.5511'" 'iII.8UII09 18."0'1"..... 38. 753"~' 111. It.1'1'' , 3'1.C.'9'1\~

,o~.uun l.,~."o'Un

10". \B6189 10'1. ""'000 11)7.\481n 10".\27'500 I"". \072U 11'17.'\"611 ,"7. 16U"9 10". Hun 10".U"I67

"".517"'''

1')7.523001) 1"'1. U"~OO 10".5'511189

Ti (ppm) UUO I'CoIoO IUOO 10"20 10UO 111"'0 111090 101'') I n UI) 11"00 111'10 H911) n,."o 11220 I/)no 11760

10~.11aZ2U

1I04~

lO1.0\9"''' 1"'.0"1661 107.02nn 111".0480U ''''.0172Zl

1"1010 11)"00 1'0160 "·"0 166/l0 II '56(1 lHll) 11\70 1 "~,, 1'1770 1161" 12'no 101.1"" 1011'0 '7°0;'1

111~.06S8n

1"'.OllOOOI) ln1.HlIlIl IO'.Ia07lOl 107. ,,9fllaO '''''.075'\81 1"". ZIa" 767 I ')~. 0 )0.091 1~".OU·IoI)

''''''.01U49

l8.6Hl'l"

U~.01PI9'i

11

3!1.6~OHI

10".09130'

U?4'l HOAO 10!!?,)

3I.'it,OIIU 1II.nnl' I!I • .,OJ"'" 18.50.,,,,, 18.6451'111 ".716112

U.7l,,"U 1".Hl'l'" 18.66:tlo"" 18. t.2b""1) 38.549950 3II.6ZS 4Q l 11I.3U.,°1 U.'lIoJ"Io 14.7!1191. 18.87l1J~o 38.8111~lQ

1~7.089"21

107.0U9&1'1 1'17.00110" 1 2'07120 1!),).OHU" 1"I>.0""07Q '''''.0591'''' 1"".0,,4n It". 10 7 .1)301" 107. 0~2t,rJ 7 1,)7.08'1''ll lU.OZUZO '"4. \51442 101).419989

"b.

n..,"

'''~.18t,U8

J8 .11011107

10". UI8~" ,,,".10110852 lOA.01l2H

)11.17601)1

l'U'.019~''i

JI.B782'14

Q~O

I" "" 104'11) HOlO

10"'0 "411,,

10510 l!'HO IM'l'" 101010

1''''0

111,00

1041'10 10llO 100 70 101"0 10210 110 160

uno

APPENDIX Sample Humber 19Q'l5

38.Ub!"1

190~b

)II.H"?')'I

19lb5 191'16 19197 191Q8 19200 1'1;?Ol 19206 1'1208 19211 192H 19H8

)11.1]040., 38.IIZl'60 38.819'''·

1'1~~l

19H9 191019 19H1 19H9 19531 HHO 19H1

\C N

Latitude

19~C.h

18.8021)"~

1B.ge81 ,,, 18.9;1(,'117 18.8HH? le.901"!4 18.8'J1!>57 38.2960 7 ) lP. :.75?76

l'l.'15H79 18. tiO 3~"0 38.8~7""'i

38.1I519H 16.816'19 lS.50nn H.S6H" 18.bH7:l9 18.~"'P"~

1951:l

H.~c.l'}"~

l')t.H

lA.738'''1

Lonsitude 10 .... 0'100'1'1 l,)h.OH"69 IH.76IUI 10Eo.OH996 '''''.0111815 1 0,.. (900)) ''''''.21U''1 1 "".153 595 1",>,l'UH 10".OR"350 1"".090027 \0f...072060 ,.,".97540" 1"".610"50 1/1".6197101 I'''. 'HI 34' 11)". 5""b6~

'O".5I1ll9 1'.)7. 27lS00 1"7.1"'16'11) 107.1,,1e3b '''''.3l7'' 'U .H5~7" 38.21l3'l"Q lI!. 2'1'1'1 '19 38.H5""

1~".67b1611

'''''.'''''5IIH \:)7.6'11ol67

38.007'7"~

\"'''.\4105b 107.1BO'i6 11)7.2291,H 11)1.Z"0001) 10"."6"11119

16 .01'1"'2

1 "". 3bl17~

3 11 !

""0 ",0 ?1l

7"1 3"· 1\1 ll'l~~

1'7 O'l~

115 :!09 II/Ii 2'17 131. 1"" 7?'> '1'56 77~

5'Z 11)~l

10"11 1 0"1) 1911 ,,40 ?

'",

..

..

APPENDIX Sample Number ll1nl lun lIn5 un1

lnu IU6~

18107 111 1,0 1 18HZ

18"18

UH4 18HO 1111022 laU] UHZ

\0 UJ

Latitude

Longitude

]1'.1577"·

107.Z9011]1 1"".ZII6UII In. Hun

U.16UH U.16]'"'' U.I~lq""

In''.zu~o,

10.:191"11 18.0719410 )B.onn'. ]11.211""'7' U.0547Z' .

107.n1661 10".2966U 1!11.H1I889

18.0Z2~00

1(1.021111 38 .01"'" U.011t11 U.023"l1 U.]UH~

181,]11

18.Z8I1f1I111

18Hl 1""" 18445 18U5 18499 18518 IIIH6 1'.1591 l!I548 1 tItIO 5 IlIbH

111.U8'11l 18.Z76H4 38 .11910,... U.Z7I1,,.7 18.1I!>!!""1) 11l.5l0'"11 lB.'l!!97U 18.1I"lqQ9 J!I.85U1.R ]1.190"·"

lat.)')

'".561';''' Je.l1t,lU lll.70Il Q", 111.5"0 11 "4 lH.!.'o4V.'

I" bltll If b~ 1 1"',"9 1 ~ "'0 1867] lIbl't IU79 186111 lIIb'U tal-9b lIIb~a

18700 111 111 111HZ 18714 18743

1117116

18795 IUOI 181107 18813 18f'l0 lUll US8l

18906 I""ZO

lr..596"~1

\1I.~7Q·'"

18.SH U 6 111.52"/0'" lII.76Hl"ll 18.716""7 18.11]114 4 11l.1l"Q'1 )B.nn 4 1 18.PM'" U.5~"I,"I

]8.5181"'; n.770ll" ]B.511C11119 18.5110'''. 18.58776' )11.59111" ]11. lIZ ,,,,,, 111. Sl.411:!'1

'~".080000

107.4un8 l')7.4005H 101.41l10U 1"".40H22 1')7. HUll 11".49111410 I"'.1165!1'U 107.945556 I"".90~661

107.86"" "" 107.8488811 10".04661 I 107. H8Ha, to'. ]QlH7 1117.497"0 106.075181 1116.10'0405 ,M.I71211 \'0".01"472 1 "". OURIoI In".09n6 Q In"."1507& 10".Z"llH 10".lc,)Z51 Inb.10'109" 10b.191M:1 '''''.1111476 IOfJ.09!681 10".111 9 104, '''''. ?05Z11 'II". ,,/0971' \" ... 1019 .... 10 ... 371Bl 11) ... "OnOI 106. '" Qoa'; III". ?91Il'" 107.1950\1 107.099979 11)7.0610H 10'.01UH 107.0'152111 1"".6411101

H.5f)01~1I

10".61~0"Q

]1I.flllH"

\"6.119Rlll) In!>.Ollltll 11).,.1191065'1

lB.1HI)'ln U.!lt.91"1

Zn (ppm) 15 .... "4' 10 ,. 11'" ' 4to1 '1"6 lnl"

1"7 '06

,U

9'" 1411 ZH 11111 '9~

161 115

nil ,,.!!

HI Z'i68 1911 1"4 197 '21· 1114

lU

H" lll,.6

,.."

!1#1 lie.')

l711 41Z lI7 1115 1\0 HIoR 109 ]

."

UIIO

1111'S 1'19

l4? 1·' 219 'Z17 ?Q\ lQ" 11\11

Z51 1926 11)2 Ul5

'

(continued) Sample Number 189U 189\1 189U 18952 18958 18961

lnu

18966 18967 18968 18971 19009 19010 190U 19012 1901] 1901'e 19015 190U 19017 190U 19020 190U 19026 19027 19028 19035 19016 19031 190)1 19092 UU5 19Z01 19HI 19U9 19130 19'16 I9zn I9ZC,O 19Z43

1926" 19Z115 19Zb6 193118 lUn 19n6 19177 19388 lU9S 19199 19406 14"16 19'" 9

19HO

Latitude U.91l10U 18.9115·'" 11.988541

Longitude l"'.404U'" 10'" 4049075 lO6.~I19'"

U.J1U"!

10'" U~8'U 101).102791

U.J101l~"

I"". U 11 "I)

U."~"7

U.'U9 8 0n 3II.1611l1· 18. 7 '089 "i1

u.,onoQ

111. '76""" u.un" U.U,,.''J

u.noo"

18.615"1'4 ]8 .100"''S J8. JOun ](1.69881" 18.J074U U.7",'"6 ]8.680'-'" )8.701'''''' ]I1.609n~

IM.n0869 101).",116] 106.U66H 11".494411' 10'1.48416" 106.1591'" ,M.UU7' 1"". n6]77 10".]6]909 '''''.1]117.., 106. UOIIOJ 10".110904' 10".nOUI 106.111719 \1I".nn07 '''fI.17U5IJ ,o~.ll

no!

Zn (ppm)

,,,-

1110

105 !U

'H Z12

""

Zl'

"-I

lU]

'6"

ZII] 122 ]41

'''9'' 4·" 1140C. Z4 7"'''

21"

1111 '69

',,:e

404

115~

18 • 5491 "" U.551oH5 18.516311 JII. UZl" 18.51971 0

\"".7971!40 1"".]0184] 106.139106

U.519?'I\

IO".UO~II'

...."""

)8.5~OO"~

Ie". 189577

19'\

1I1,\7"Onl H .llO'''' 38.900Q17 U.Z5H67 U.Z6977'! 38.278,,"0 111.10U"7 ]II.11~05!-

U.Z5911·" u.uon18.16'1571 18. 15l'l1 II 1II.HZ4,q )11.4110'1,., ]8 .604Hh

51.6121111 1I.5U .. "

)(I.so'n'

18.611'"" 11I."Ul c lI ]!I.bl"4", 311.4",17' lB.9",7' 18.9"'7"·

'10l).U6706 ' '.4064111

'''''.O'''!1 " '•• 761431

10". 15H 9 5 In~.U7nl!

1 11 ".UOell 1 "".14"1 4 9

'''''.HUn ..,t,.IU551.

IO".05~647 1!\".~C.OI!\l

10l).OH'U '''''.Ol'll!e'

10".01"'"

III ... ~4U07 10 ... "0').11 \" .... 9'112\ 10'-."04B7 10 ... 57'l429 1,,4.H41l'. tOb. 51'11 71 111"'. ",S4·" U".15770t, \!)".68~1'11,

1"".6'04",

'!(I""

26'11

1413'S ,,~

'C'l

11111

'7"

41H 4110 ZIolll

101" ]"910 UII

'''1

10"~

11." !lIl 7."

213

HI 1'1'1

HZ ~"2

211

'Ill \''1 III]

nil

APPENDIX Sample Number 1'H21 19H2 l'hll 19 .. H 194Z5

lHza

194,60 19HO 19H9 19t,c;1 190,98 l'h99 10500 10~01

10502 19503 10')09 19520 lQ~!Z

~

Longitude

H.'HOItl)"

11) .. .t>~HH 11)'>.610(150

3'1

18.95U70 18.9HI)'l~

1I1 ... H"'I'

114

18396

18.9~9Ha

11)".7111-0 1(1).6799111 11)".1>01'11,1 \n .... lZSOH 1 766"9 0 10".eH1l0 l07.015lU 10".O!J50H 10".0'1')113 1'17.08U06 1"".Ot-HO .. \"".Oblb26 1 :»7.11151,11 1!11.0l6t61 10".0(,10?1 101.011 11 9!>l '''"'.l''lb O O

'''''

18'21

'8.939111 18 .9?O'lOIl 11\.l'H~QI

31'.lSOl,~"

lB.919 a l' 18.90eo" 1lI.9060 q O 111.911'19' 311.95740., lll.01'll'" )8 .Q5n,., 18.R'Il~Q'

3lI.8b9'"'' 38.1194'\1., 18.9Z80o;7 H.')! .... ' ·

lH~8

18. 76~"01 31' .69SClH ]8.716~"\

19HZ 19585

18.7BI)"'1

19'j~9

38.I.'lIPC,",

1~~'l0

)8.119'1)47 311.866Z0' J8.1l9H4 11l ... H"1'\

1'l~16

1971b lQ8! ] 1'1510 148~1I

198:.1 191171

Sample Number

Latitude

19HO 19~!ll

1.0

Zn (ppm)

(continued)

h.H~\H

U.H"\?l lfI.7Zt.IH 18.blll'.."7

'l".

no

Z11 a3 A

2H 100 420 6'1l l!06 10'

ioU

"'"" :e09 2l~

, .. 77 S!I' 1 81 Z4\

1"".9]70~"

1.~9

l07.b17511 1'l7.l081H \n7.11 .... '" ,,,7."!iZ187 lIP. b~OI"'l ' ...... 0 .. '19'11\ 10 ... 1,1211\ \ !" ... 521 )'11, 1"".5771'1 1010.159017 \'3'1. 77t,79Q 1" ... 1151. .... 0.,

1°7 1,19 1 ?'6~

In,,,0''9c.C.~

1'l.09l~OO 18.l~",n

10l.0l'l',' 1"'.0171H l07.1U778 10".1710741 11)".0151111 1'''.1''!l780 1I11'.UDOll 10".1'18095 JI1".2U767 \/)".16"011 '''6.0')02 , . 11)".O\1el'5 1" ... 03"0 0 1 tM•• O"')II,,O J(l6.196111 11'''.2)79'56

lOU" 18591 18601 18602 18606 lU07 18611 tabU 19015 18"1" l"bl7 IU19 14620 l8!121 111629 18h400 le6H leb~Z

18hH 18bH

11'.7nn~l!

lIt.7UO"" 18.H90'J1.I )!I. 61 Z?'" U.t.OHII· U.618 4U 3~.667A10

lS.hH"'" 1".!i19 7 1l4 38.6U'il'1 l8.6SH'!"

1~/)4!>

lR.b~04'\

60Z 2"'7 lP

leUZ

111.681"1 8 38.56614"

186e~

18.b9~19"

18687 1868f 18690 1869" 18711 18836

,1'.7\6'" 3l'.7HBl )P.lbl"")

1'11)

16.6~24'5"

\n~.17HII'I

IM.IIZIIZIU

11)".057010 111 ... 0''5 1 "ii) 1') ... OUH4 1"1".OH62" 1')".0311195 t "". O'U 108 11)".OOt,H') 1",>.116-'19 ''' .... 04156'1 , ""'.°"-01 0 ....... 0 .. 91" .. 1"".071'071 1 17. 2 1ft 7711 1.,".4HCo7S ," ..... 086' ..

18 II ,,/) 111!l59

H. 5Z01l~" 39.411l'H 311.1,159"40 36.1,05"41 311.1961'-04

181163

11'.660"0~

10~.11H59

18l\fII,

38.6'\57:)\ 38.H41"" 311.7HC o '! 3l'.7Z9I Qc 38.813101 18. 6l(,O~1 H • 8t, 1"' )t, lU.1)5H71

to""11'5977 1 ,,,. 6e9" ... 1"".1,,0941 "".272119 10".lH'I!\l 1" .... HlioH 10lo.31oZ1H

101166 18H,e 16l1b9 1891,11

1895Z 189~6

18917 18478 18987 189118 19000 19001 19010 1'101'0 l'lOQl 1901lZ

"..,

)8.102 n'lo 38.9081P 18 .a1ol 0 90 18.901116 18.8"6.,0/1 18 .836\92 18. B~r>"')l1 18.BU160 U. 7'IS04~ 3ft. HI>'>'H

JtI!lH

191

1:' .1 11. ' I ~."

18.0711H

3'>4

201

Dy (ppm)

lUH

~M

H~

Longitude

1839Z

18d41

..-.

Latitude

19.1 11.6 11.0 }t,. ,.

12' ... l'i.6 1 2." . 1 S.' " .1

1l.1

11.1)

"."

1 39.e'I'>on 39.H'3Q'7

11)".0597L'2 1'1f-.012:n9 1 'II•• 3SHH 10~. 78!!35 11)".13095! 1"".ZIU~\ 10~.lS3595

10ll.Hons \1I".1~591~

I n .... 11HH l"".13!1HO '''''.1Z'7S~

\11''.10'I0I0'1 In ... 01110 HI) 11)6.06716'5 10'>.090027

D~ (ppm) 15.1 H.II

1°.:-

16.0

1 3. 7 117.5 17.1

11." U.S

17."

13.3

'"

./)

11.1 16.'

ll.'

\'1.7

1.,'>."~~{lll

11. ~ 17.7

1'I.71)"U? H.H21" It.1oS8''0 3!.9!141Io"

1"".67P.99!1 '''''.''8194'' In ... 35710#0 '1)>\. H 110 0') 11)".6o;I)IoH

.o;t'l"O

'1\~.""!l1\'S0

lR.9191P ]P.0101nn 3P..01)3'I"0 38.'I9H?H ]'I.'It,11?'I 38.8791,'11. 18.'1101"'1

\1)".6100Rl 1'l".60HH 1'l&.61'H"1 1:l1,.6Z";II·U 1"". 5' n"''i 1'111.51'100

lOB!>

]~. n(lI)C:'

1"1'>.70(\)07

11) ~~ ~

HI.711e'''?1 H. H·,~q 38.698'Co7

'~".0\70""

10H~

1.0 VI

3l1.9Hl,,7 ·38.8~0"'''7

Longitude

19"17 I'HZO 19"H 19H5 Ih~e

1 0 ,,?? 10"30 10"10 \OI,H

1045 A lOBS II)~"

II

1 ~5110 198b')

3~.76"n90

3~

H.!lHI)47

'".6H"I"

\n",~~"S21

1'.,... 71" .7~ 1'1 7 .6"2"'" ,')7. t>'!(1 17 1 1,,1..15':0111

~Q."

l#o.'!

12."

11.2 1'•• II 11. ~ 1'.1

1'1. \ 1 'I. ~ 1 0 .1 1].~

11 ... 1".' 12. to 7'1.1,

"'." II. ,

17.Q

(continued)

Map 1. Topographic map of the Montrose NTMS quadrangle, Colorado.

After T _ . et

at

1976

Map 2. Geological map of the Montrose NTMS quadrangle, Colorado.

,

-

.'

.

.

,

..

.. " .

,.

"

... .' :

.'

.. ....

.'

..

..

,.

'.

.

c

..

0

..

., . ... .

..

"

.0

.

.-

'.

'

"

00

....

00

00

o. '.

•• 0

00

.'

o

..

o~

--:

...

0

.

. ..

... .

00

,.

J

1

00

:

.

'0

0,

"

:

,

,

.

o •• • 0

~.-

... . '.

..

t.

..

. ... .. .' '0

':

I ...

'.



0

'

.

A Western Plateau Area B San Juan- West Elk Volcanic Fields C Sawatch-Gunnison Crystaline Terrane

Map 3. Location of samples and physiographic-geologic provinces of the Montrose quadrangle, Colorado,

0

..

..

:

.. '::~ ..

-l

.1

ptRK

. l ~ _.

_





j.

HOST ROOtS FOR OCCURRENCES • •

e • 11

AFTER NELSON·MOORE ET A l , 17 1978

SANDSTONE ARKOSE CONGLOMERATE SltlSTQHE LAKE SEOII.AENTS CQt..L SHA.lE LII.AESTQt

')

I:

r' ./ ,}

1/1; _/-

;' /; ') ",/ ((

,,\,>,

,

:to ,..--

/ I"

f

I r ) "'_I ,, ,,

/

,

\

,, -

/

,

r

~,

(

, - ) ,( / (

)

/ ,v

-

r -J

,

4.0 ppm

16.0ppm

......... 8.0 ppm

- - - - - 20 .0 ppm

- - - - - - - 12.0 ppm

- - - -

30 .0 ppm

Si,g nificant anomalous areas

Kriging by Katherine Campbell, lASl Average of logs among nearest 8 points

Map 17. Uranium (ppm) in sediments, using kriging (based on log interpolation) in the Montrose quadrangle, Colorado.

\ "

, /

)

i

(

(

'v

r

,

. ,"0

('

,

,r

,

,

/

/

(

,

.' ,r '

r

,

.. ,

,

I '0

...

'

-

___ ~ ~

, \ \

r

"

"

\ ..

r

'. (

• ,\.. I..

0 .5 ppb



'.>

~ '"

I S'

~s

1.0 ppb

1.5 ppb 2.0 ppb '",: f·

3.0 ppb .... 4.0 ppb \

'

6 .0 ppb B.O ppb

Kriging by Katherine Compbell , lASl Av.rage of log. among neor•• t 8 points

.--~'\~~-~

·2fk~iil Significant anomalous areas 10.0 ppb

- 15.0 ppb

Map 18. Uranium (ppb) in waters, using kriging (based on log interpolation) in the Montrose quadrangle, Colorado.

\

\'

l ·-c·, ,

~ ~ ,

I

"0 )

~o ..

'. (I

I

(

(

, '-.

"

1366 14 7

56.~ 55 \J;66@>184

550

~143 ~56

(J

7. 338 7 118

.118 (sp)

0515i~4.101 .,,~1 4~581 41Q 'f\ 09·· "~2 ~ ~ "'l.J(j~44 ~ 6 ~144 .~9 28~'" till 3053

~

24 .;

588 .. 1927: •

111 116 • 11656'\ 735\: - ••/ 153-4i 521

r-

·64 .155

44

62

50 44

(:285 448 363 £l 344~fi (sp)318,..J 527U VI) C;15 202

J I

Lihat lebih banyak...

Comentários

Copyright © 2017 DADOSPDF Inc.