Silicon Oxycarbide Glasses

Share Embed


Descrição do Produto

Journal of Sol-Gel Science and Technology 14, 7–25 (1999) c 1999 Kluwer Academic Publishers. Manufactured in The Netherlands. °

Silicon Oxycarbide Glasses CARLO G. PANTANO, ANANT K. SINGH∗ AND HANXI ZHANG∗∗ Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA Received August 4, 1998; Accepted October 22, 1998

Abstract. The first attempts to introduce carbon into glass date back to 1951. But up until recently, the use of carbon or carbide raw materials, and the oxidation, volatilization and decomposition that accompany high temperature melting, have limited the synthesis of true silicon oxycarbide glasses. Here, the term silicon-oxycarbide refers specifically to a carbon-containing silicate glass wherein oxygen and carbon atoms share bonds with silicon in the amorphous, network structure. Thus, there is a distinction between black glass, which contains only a secondphase dispersion of elemental carbon, and oxycarbide glasses which usually contain both network carbon and elemental carbon. In addition to exploring the unique properties and applications of these glasses, per se, they are also of interest for developing models of the residual amorphous phases in polymer-derived silicon-carbide and silicon-nitride ceramics. The application of sol/gel techniques to glass synthesis has significantly advanced the development and characterization of silicon oxycarbide glasses. In this approach, alkyl-substituted silicon alkoxides, which are molecular precursors containing oxygen and carbon functionalities on the silicon, can be hydrolyzed and condensed without decomposition or loss of the carbon functional group. A low-temperature (1400◦ C) glasses also show amorphous and graphitic carbon species in the glasses, the Raman spectra of 800–1000◦ C glasses are featureless. Since the visual appearance of the glasses, and the 13 C NMR spectra, verify the presence of elemental carbon in the glasses, the absence of a Raman spectra reveals that the size of

the elemental carbon species is below a critical size. According to both Lespade et al. [57] and Knight and White [58], there exists a coherence length (L a ) that must be exceeded to create a Raman signal. In the case of amorphous and crystalline carbons, this coherence length is estimated to be ∼2.5 nm. Thus, one can conclude that the free carbon species in the 800– 1000◦ C glasses are dispersed in the glass at a scale 1200◦ C) of these glasses is limited, but it is quite likely that with further development of composition and processing, their controlled heattreatment could yield useful glass-ceramics containing silicon-carbide and graphite. The current level of activity and interest in these materials suggest that these advancements can be expected. Now, the primary challenge is to establish properties for these new and unique glasses, so that their practical applications can proceed. Acknowledgments The authors gratefully acknowledge the National Science Foundation (DMR-9118797) for their financial support. Thanks are also extended to Alan Benesi, Else Breval, James Hamilton, Paolo Colombo and Mike Hammond. References 1. C.J. Brinker and G.W. Scherer, Sol-Gel Science (Academic Press, San Diego, 1990). 2. H. Schmidt, Organic modification of the glass structure, J. NonCryst. Solids 112, 419–423 (1989). 3. R. Ellis, Method of making electrically conducting glass and articles made therefrom, U.S. Pat. 2,556,616, June 1951.

24

Pantano, Singh and Zhang

4. C.F. Smith and W.B. Crandall, Method of making carbon containing glasses, U.S. Patent No. 3,378,431, 1968. 5. R. Elmer and H. Meissner, Increase of annealing point of 96% SiO2 glass on incorporation of carbon, J. Am. Ceram. Soc. 59(5), 206–209 (1976). 6. J. Homeny, G. Nelson, and S. Risbud, Oxycarbide glasses in the Mg-Al-Si-O-C system, J. Am. Ceram. Soc. 71(5), 386–390 (1988). 7. D. Coon, Effect of silicon carbide additions on the crystallization behavior of a magnesia-lithium-alumina-silica system, J. Am. Ceram. Soc. 72(7), 1270–1273 (1989). 8. R. Pampuch, W.S. Ptak, S. Jonas, and J. Stoch, The nature of Si-O-C phase(s) formed during oxidation of SiC, in Proceedings of the 9th International Symposium on Reactivity of Solids, Cracow, Poland, Sept. 1980, Vol. 2 (Elsevier, New York, 1980), pp. 674–677. 9. V.A. Lavrenko, S. Jonas, and R. Pampuch, Petrographic and X-ray identification of phases formed by oxidation of silicon carbide, Ceram. Int. 2, 75–76 (1981). 10. A.L. Yurkov and B.I. Polyak, Contact phenomenon and interactions in the system SiC-SiO2 -Rx O y in condensed matter, J. Mater. Sci. 31(10), 2729–2733 (1996). 11. J. Lipowitz, H.A. Freeman, R.T. Chen, and E.R. Prack, Composition and structure of ceramic fibers prepared from polymer precursors, Adv. Ceram. Mater. 2(2), 121–128 (1987). 12. J. Lipowitz, Polymer derived ceramic fibers, Ceram. Bull. 70(12), 1888–1894 (1991). 13. L. Porte and A. Satre, Evidence for silicon oxycarbide phase in Nicalon silicon carbide fiber, J. Mat. Sci. 24(27), (1989). 14. D.A. White, S.M. Oleff, R.D. Boyer, P.A. Budinger, and J.R. Fox, Preparation of silicon carbide from organosilicon gels: I, synthesis and characterization of precursor gels, Adv. Ceram. Mater. 2(1), 45–52 (1987). 15. D.A. White, S.M. Oleff, R.D. Boyer, P.A. Budinger, and J.R. Fox, Preparation of silicon carbide from organosilicon gels: II, gel pyrolysis and SiC characterization, Adv. Ceram. Mater. 2(1), 53–59 (1987). 16. G. Wei, C. Kennedy, and L. Harris, Synthesis of sinterable SiC powders by carbothermic reduction reaction of gel-derived precursor and pyrolysis of polycarbosilane, Ceramic Bulletin 63(8), 1054–1061 (1984). 17. Krishan L. Luthra, Thermochemical analysis of the stability of continuous “SiC” Fibers, J. Am. Ceram. Soc. 69(10), C-231– C-233 (1986). 18. M. Nagamori, J.A. Boivin, and A. Claveau, Thermodynamic stability of silicon oxycarbide (Nicalon), J. Mater. Sci. 30, 5449–5456 (1995). 19. P. Rocabois, C. Chatillon, and C. Bernard, Mass spectrometry experimental investigation and thermodynamic calculation of the Si-C-O system and Six C y Oz fibre stability, in Proc. 6th European Conf. on Composite Materials, edited by R. Naslain et al. (Woodhead Publishing, 1993), pp. 93–100. 20. P. Rocabois, C. Chatillon, and C. Bernard, Multiple Knudsen cell mass spectrometric investigation of the evaporation of silicon oxycarbide glass, Surface and Coating Techn. 61(86), (1993). 21. F.K. Chi, Carbon-containing monolithic glasses via the sol-gel process, Ceram. Eng. Sci. Proc. 4, 704–717 (1983). 22. F. Babonneau, K. Thorne, and J.D. Mackenzie, Dimethyldiethoxysilane/tetraethoxysilane copolymers: Precursors for the

Si-C-O System, Chem. Mater. 1, 554–558 (1989). 23. H. Zhang and C.G. Pantano, Synthesis and characterization of silicon oxycarbide glasses, J. Am. Ceram. Soc. 73(4), 958–963 (1990). 24. K. Kamiya, T. Yoko, T. Sano, and K. Tanaka, Distribution of carbon particles in carbon/SiO2 glass composites made from CH3 Si(OC2 H5 )3 by the sol-gel method, J. Non-Cryst. 119, 14–20 (1990). 25. K. Kamiya, T. Yoko, K. Tanaka, and M. Takeuchi, Thermal evolution of gels derived from CH3 Si(OC2 H5 )3 by the sol-gel method, J. Non-Cryst. Solids 121, 182–187 (1990). 26. G.M. Renlund, S. Prochazka, and R.H. Doremus, Silicon oxycarbide glasses: Part I. preparation and chemistry, part II. structure and properties, J. Mater. Res. 6(12), 2716–2734 (1991). 27. F.I. Hurwitz, P.J. Heimann, J.Z. Gyekenyesi, J. Masnovi, and X.Y. Bu, Polymeric routes to silicon carbide and silicon oxycarbide CMC, Ceram. Eng. Sci. Proc. 12(7/8), 1292–1303 (1991). 28. A.K. Singh and C.G. Pantano, The role of Si-H functionality in oxycarbide glasses synthesis, Mat. Res. Soc. Symp. Proc. 271, 795–800 (1992). 29. F. Babonneau, G.D. Soraru, G. D’Andrea, S. Dire, and L. Bois, Silicon oxycarbide glasses from sol-gel precursors, Mat. Res. Soc. Symp. Proc. 271, 789–794 (1992). 30. H. Zhang and C.G. Pantano, High temperature stability of oxycarbide glasses, Mat. Res. Soc. Symp. Proc. 271, 783–788 (1992). 31. H. Zhang and C.G. Pantano, Sol/gel processing of oxycarbide glasses and glass matrix composites, Ultrastructure Processing of Advanced Materials (Wiley, New York, 1992), pp. 223–233. 32. V. Belot, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Organosilicon gels containing silicon-silicon bonds, precursors to novel silicon oxycarbide compositions, J. Non-Cryst. 144, 287–297 (1992). 33. V. Belot, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Thermal reactions occurring during pyrolysis of cross-linked polysilazane gels, precursors to silicon oxycarbide glasses, J. Non-Cryst. 147/148, 52–55 (1992). 34. F. Babonneau, L. Bois, and J. Livage, Silicon oxycarbide via sol-gel route: Characterization of the pyrolysis process, J. NonCryst. 147/148, 280–284 (1992). 35. M. Hammond, E. Breval, and C.G. Pantano, Microstructure and viscosity of hot-pressed silicon oxycarbide glasses, Ceram. Eng. Sci. Proc. 14(9/10), 947 (1993). 36. P. Colombo, T.E. Paulson, and C.G. Pantano, Conversion of silicone resin to silicon (oxy)carbide, Ceram. Acta. 3, 13–21 (1993). 37. L. Bois, J. Maquet, F. Babonneau, H. Mutin, and D. Bahloul, Structural characterization of sol-gel derived oxycarbide glasses. 1. Study of the pyrolysis process, Chem. Mater. 6, 796–802 (1994). 38. E. Breval, M. Hammond, and C.G. Pantano, Nanostructural characterization of silicon oxycarbide glasses and glassceramics, J. Amer. Ceram. Soc. 77(11), 3012–3018 (1994). 39. V. Belot, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Silicon oxycarbide glasses with low O/Si ratio from organosilicon precursors, J. Non-Cryst. Solids 176, 33–44 (1994). 40. C. Liu, H. Zhang, S. Komarneni, and C.G. Pantano, Porous silicon oxycarbide glasses from organically modified silica gels of high surface area, J. Sol-Gel Science and Techn. 1, 141 (1994).

Silicon Oxycarbide Glasses

41. L. Bois, J. Maquet, F. Babonneau, and D. Bahloul, Structural characterization of the sol-gel derived oxycarbide glasses. 2. Study of the thermal stability of the silicon oxycarbide phase, Chem. Mater. 7, 975–981 (1995). 42. G.D. Soraru, G. D’Andrea, R. Campostrini, F. Babonneau, and G. Marriotto, Structural characterization and high temperature behavior of silicon oxycarbide glasses prepared from solgel precursors containing Si-H bonds, J. Am. Ceram. Soc. 78, 379–387 (1995). 43. R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, 29 Si Nuclear magnetic resonance study of the structure of silicon oxycarbide glasses derived from organosilicon precursors, J. Mater. Sci. 30, 2313–2318 (1995). 44. J.P. Hamilton, Sol-gel processing and characterization of borondoped silicon oxycarbide glasses, Thesis in Ceramic Science, The Pennsylvania State University, 1995. 45. Anant K. Singh and C.G. Pantano, Porous silicon oxycarbide glasses, J. Amer. Ceram. Soc. 79(10), 2696–2704 (1996). 46. C. Liu, H.Z. Chen, S. Komarneni, and C.G. Pantano, High surface area SiC/silicon oxycarbide glasses prepared from phenyltrimethoxysilane-tetramethoxysilane gels, J. Porous Materials 2, 245–252 (1996). 47. A.M. Wootton, M. Rappensberger, M.H. Lewis, S. Kitchin, A.P. Howes, and R. Dupree, Structural properties of multi-component silicon oxycarbide glasses derived from metal alkoxide precursors, J. Non-Cryst. Solids 204, 217–227 (1996). 48. R. Campostrini, G. D’Andrea, G. Carturan, R. Ceccato, and G.D. Soraru, Pyrolysis study of methyl-substituted Si-H containing gels as precursors for oxycarbide glasses, by combined thermogravimetry, gas chromatographic and mass spectrometric analysis, J. Mater. Chem. 6(4), 585–594 (1996). 49. G.D. Soraru, G. D’Andrea, and A. Glisenti, XPS characterization of gel-derived silicon oxycarbide glasses, Materials Letters 27(1–5), (1996). 50. G.D. Soraru, E. Dallapiccola, and G. D’Andrea, Mechanical characterization of sol-gel-derived silicon oxycarbide glasses, J. Amer. Ceram. Soc. 79(8), 2074–2080 (1996). 51. G.D. Soraru, R. Campostrini, S. Maurina, and F. Babonneau, Gel precursor to silicon oxycarbide glasses with ultrahigh ceramic yield, J. Amer. Ceram. Soc. 80(4), 999–1004 (1997). 52. Anant K. Singh and C.G. Pantano, Surface chemistry and structure of silicon oxycarbide gels and glasses, J. Sol-Gel Sci. Tech. 8, 371–376 (1997). 53. T. Rouxel, G. Massouras, and G. Soraru, High temperature behavior of a gel-derived SiOC glass: Elasticity and viscosity, J. Sol-Gel Sci. Tech. 14, (1998). 54. E. Lippmaa, M. Magi, A. Samoson, G. Engelhart, and A.R. Grimmer, Structural studies of silicates by solid-state high resolution 29 Si NMR, J. Am. Chem. Soc. 102, 4889–4893 (1980). 55. K. Moedritzer, Redistribution reactions of organometallic compounds of silicon, germanium, tin and lead, Organometallic Chemistry Review 1, 179–278 (1966). 56. V. Belot, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux,

57.

58. 59. 60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

25

Thermal redistribution reactions in crosslinked polysiloxanes, J. Polymer Sci. Chem. 30, 613–623 (1992). P. Lespade, A. Marchand, M. Couzi, and F. Cruege, Characterization of carbonaceous materials by Raman microspectroscopy, Carbon 23(4/5), 375–385 (1984). D. Knight and W. White, Characterization of diamond films by Raman spectroscopy, J. Mater. Res. 4(2), 385–393 (1989). J. Biernacki and G. Wotzak, Stoichiometry of the C + SiO2 reactions, J. Amer. Ceram. Soc. 72(1), 122–129 (1989). F.I. Hurwitz, J.Z. Gyekenyesi, P.J. Conroy, and A.L. Rivera, Nicalon/siliconoxycarbide ceramic composites, Ceram. Eng. Sci. Proc. 11(7/8), 931–946 (1990). T. Erny, M. Seibold, O. Jarchow, and P. Greil, Microstructure development of oxycarbide composites during active-fillercontrolled polymer pyrolysis, J. Amer. Ceram. Soc. 76(1), 207– 213 (1993). P. Colombo and T.E. Paulson, Atmosphere effects in the processing of silicon carbide and silicon oxycarbide thin films and coatings, J. Sol-Gel Sci. Tech. 2, 601–604 (1994). M. Harris, T. Chaudhary, L. Drzal, and R.M. Laine, Silicon oxycarbide coatings on graphite fibers, I. Chemistry, processing, and oxidation resistance, Mater. Sci. Eng. A A195, 223–236 (1995). T.M. Chaudhary, H. Ho, L.T. Drzal, M. Harris, and R.M. Laine, Silicon oxycarbide coatings on graphite fibers II. Adhesion, processing and interfacial properties, Mater. Sci. Eng. A A195, 237–249 (1995). A Donato, P. Colombo, and M.O. Abdirashid, Joining of SiC to SiC using a preceramic polymer, in High-Temperature CeramicMatrix Composites I: Design, Durability and Performance, edited by A.G. Evans and R. Naslain, Ceramic Transactions Vol. 57 (The American Ceramic Society, Westerville, OH, 1995), pp. 431–436. J.C. Pivin, P. Colombo, and M. Tonidandel, Ion irradiation of preceramic polymer and thin films, J. Am. Ceram. Soc. 79, 1967–1970 (1996). J.C. Pivin and P. Colombo, Conversion of inorganic-organic polymers to ceramics by ion implantation, Nuclear Instruments and Methods in Physics Research B, 120, 262–265 (1996). J.C. Pivin and P. Colombo, Ceramic coatings by ion irradiation of polycarbosilanes and polysiloxanes, Part I: Conversion mechanism, J. Mater. Sci. 32, 6163–6173 (1997). J.C. Pivin and P. Colombo, Ceramic coatings by ion irradiation of polycarbosilanes and polysiloxanes, Part II: Hardness and thermochemical stability, J. Mater. Sci. 32, 6175–6182 (1997). E. Pippel, J. Woltersdorf, P. Colombo, and A. Donato, Structure and composition of interlayers in joints between SiC bodies, J. Europ. Ceram. Soc. 17, 1259–1265 (1997). P. Colombo, V. Sglavo, E. Pippel, and J. Woltersdorf, Joining of reaction-bonded silicon carbide using a preceramic polymer, J. Mater. Sci. 33, 2409–2416 (1998). P. Colombo and M. Modesti, Silicon oxycarbide foams from a silicone preceramic polymer and polyurethane, J. Sol-Gel. Sci. Tech. 14(1), 103–111 (1999).

Lihat lebih banyak...

Comentários

Copyright © 2017 DADOSPDF Inc.