Calculo I (George B. Thomas) - Resolução dos exercícios

June 18, 2017 | Autor: Nicolle Vaz | Categoria: Mathematics, Cálculo
Share Embed


Descrição do Produto

CHAPTER 1 PRELIMINARIES 1.1 REAL NUMBERS AND THE REAL LINE 1. Executing long division,

" 9

2. Executing long division,

" 11

œ 0.1,

2 9

œ 0.2,

œ 0.09,

2 11

3 9

œ 0.3,

œ 0.18,

3 11

8 9

œ 0.8,

œ 0.27,

9 11

9 9

œ 0.9

œ 0.81,

11 11

œ 0.99

3. NT = necessarily true, NNT = Not necessarily true. Given: 2 < x < 6. a) NNT. 5 is a counter example. b) NT. 2 < x < 6 Ê 2  2 < x  2 < 6  2 Ê 0 < x  2 < 2. c) NT. 2 < x < 6 Ê 2/2 < x/2 < 6/2 Ê 1 < x < 3. d) NT. 2 < x < 6 Ê 1/2 > 1/x > 1/6 Ê 1/6 < 1/x < 1/2. e) NT. 2 < x < 6 Ê 1/2 > 1/x > 1/6 Ê 1/6 < 1/x < 1/2 Ê 6(1/6) < 6(1/x) < 6(1/2) Ê 1 < 6/x < 3. f) NT. 2 < x < 6 Ê x < 6 Ê (x  4) < 2 and 2 < x < 6 Ê x > 2 Ê x < 2 Ê x + 4 < 2 Ê (x  4) < 2. The pair of inequalities (x  4) < 2 and (x  4) < 2 Ê | x  4 | < 2. g) NT. 2 < x < 6 Ê 2 > x > 6 Ê 6 < x < 2. But 2 < 2. So 6 < x < 2 < 2 or 6 < x < 2. h) NT. 2 < x < 6 Ê 1(2) > 1(x) < 1(6) Ê 6 < x < 2 4. NT = necessarily true, NNT = Not necessarily true. Given: 1 < y  5 < 1. a) NT. 1 < y  5 < 1 Ê 1 + 5 < y  5 + 5 < 1 + 5 Ê 4 < y < 6. b) NNT. y = 5 is a counter example. (Actually, never true given that 4  y  6) c) NT. From a), 1 < y  5 < 1, Ê 4 < y < 6 Ê y > 4. d) NT. From a), 1 < y  5 < 1, Ê 4 < y < 6 Ê y < 6. e) NT. 1 < y  5 < 1 Ê 1 + 1 < y  5 + 1 < 1 + 1 Ê 0 < y  4 < 2. f) NT. 1 < y  5 < 1 Ê (1/2)(1 + 5) < (1/2)(y  5 + 5) < (1/2)(1 + 5) Ê 2 < y/2 < 3. g) NT. From a), 4 < y < 6 Ê 1/4 > 1/y > 1/6 Ê 1/6 < 1/y < 1/4. h) NT. 1 < y  5 < 1 Ê y  5 > 1 Ê y > 4 Ê y < 4 Ê y + 5 < 1 Ê (y  5) < 1. Also, 1 < y  5 < 1 Ê y  5 < 1. The pair of inequalities (y  5) < 1 and (y  5) < 1 Ê | y  5 | < 1. 5. 2x  4 Ê x  2 6. 8  3x   5 Ê 3x   3 Ê x Ÿ 1 7. 5x  $ Ÿ (  3x Ê 8x Ÿ 10 Ê x Ÿ

ïïïïïïïïïñqqqqqqqqp x 1 5 4

8. 3(2  x)  2(3  x) Ê 6  3x  6  2x Ê 0  5x Ê 0  x 9. 2x 

10.

" #

Ê

" 5

6 x 4



  7x 

ˆ

10 ‰ 6

3x4 2

7 6

Ê  "# 

  x or 

" 3

7 6

ïïïïïïïïïðqqqqqqqqp x 0

  5x

 x

Ê 12  2x  12x  16

Ê 28  14x Ê 2  x

qqqqqqqqqðïïïïïïïïî x 2

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

2 11.

Chapter 1 Preliminaries 4 5

" 3

(x  2) 

(x  6) Ê 12(x  2)  5(x  6)

Ê 12x  24  5x  30 Ê 7x  6 or x   67 12.  x2 5 Ÿ

123x 4

Ê (4x  20) Ÿ 24  6x

Ê 44 Ÿ 10x Ê  22 5 Ÿ x

qqqqqqqqqñïïïïïïïïî x 22/5

13. y œ 3 or y œ 3 14. y  3 œ 7 or y  3 œ 7 Ê y œ 10 or y œ 4 15. 2t  5 œ 4 or 2t  & œ 4 Ê 2t œ 1 or 2t œ 9 Ê t œ  "# or t œ  9# 16. 1  t œ 1 or 1  t œ 1 Ê t œ ! or t œ 2 Ê t œ 0 or t œ 2 17. 8  3s œ 18.

s #

9 2

or 8  3s œ  #9 Ê 3s œ  7# or 3s œ  25 # Ê sœ

 1 œ 1 or

s #

 1 œ 1 Ê

s #

œ 2 or

s #

7 6

or s œ

25 6

œ ! Ê s œ 4 or s œ 0

19. 2  x  2; solution interval (2ß 2) 20. 2 Ÿ x Ÿ 2; solution interval [2ß 2]

qqqqñïïïïïïïïñqqqqp x 2 2

21. 3 Ÿ t  1 Ÿ 3 Ê 2 Ÿ t Ÿ 4; solution interval [2ß 4] 22. 1  t  2  1 Ê 3  t  1; solution interval (3ß 1)

qqqqðïïïïïïïïðqqqqp t 3 1

23. %  3y  7  4 Ê 3  3y  11 Ê 1  y  solution interval ˆ1ß

11 3

;

11 ‰ 3

24. 1  2y  5  " Ê 6  2y  4 Ê 3  y  2; solution interval (3ß 2) 25. 1 Ÿ

z 5

1Ÿ1 Ê 0Ÿ

z 5

qqqqðïïïïïïïïðqqqqp y 3 2

Ÿ 2 Ê 0 Ÿ z Ÿ 10;

solution interval [0ß 10] 26. 2 Ÿ

 1 Ÿ 2 Ê 1 Ÿ solution interval  23 ß 2‘ 3z #

27.  "#  3  Ê

2 7

28. 3 

" x



x 2 x

2 5

" #

2 7

Ÿ 3 Ê  32 Ÿ z Ÿ 2; qqqqñïïïïïïïïñqqqqp z 2 2/3

Ê  7#   x"   5# Ê

7 #



" x



5 #

; solution interval ˆ 27 ß 25 ‰

43 Ê 1

Ê 2x

3z #

Ê

2 7

2 x

( Ê 1

x #



" 7

 x  2; solution interval ˆ 27 ß 2‰

qqqqðïïïïïïïïðqqqqp x 2 2/7

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.1 Real Numbers and the Real Line 29. 2s   4 or 2s   4 Ê s   2 or s Ÿ 2; solution intervals (_ß 2]  [2ß _) 30. s  3  

" #

or (s  3)  

" #

Ê s    5# or s  

7 #

Ê s    5# or s Ÿ  7# ; solution intervals ˆ_ß  7# ‘   5# ß _‰

ïïïïïïñqqqqqqñïïïïïïî s 7/2 5/2

31. 1  x  1 or ("  x)  1 Ê x  0 or x  2 Ê x  0 or x  2; solution intervals (_ß !)  (2ß _) 32. 2  3x  5 or (2  3x)  5 Ê 3x  3 or 3x  7 Ê x  1 or x  73 ; solution intervals (_ß 1)  ˆ 73 ß _‰ 33.

r" #

ïïïïïïðqqqqqqðïïïïïïî x 1 7/3

  1 or  ˆ r# 1 ‰   1 Ê r  1   2 or r  1 Ÿ 2

Ê r   1 or r Ÿ 3; solution intervals (_ß 3]  [1ß _) 34.

3r 5

"

Ê

or  ˆ 3r5  "‰ 

2 5

or  3r5   53 Ê r  37 or r  1 solution intervals (_ß ")  ˆ 73 ß _‰ 3r 5



2 5 7 5

ïïïïïïðqqqqqqðïïïïïïî r 1 7/3

35. x#  # Ê kxk  È2 Ê È2  x  È2 ; solution interval ŠÈ2ß È2‹

qqqqqqðïïïïïïðqqqqqqp x È# È #

36. 4 Ÿ x# Ê 2 Ÿ kxk Ê x   2 or x Ÿ 2; solution interval (_ß 2]  [2ß _)

ïïïïïïñqqqqqqñïïïïïïî r 2 2

37. 4  x#  9 Ê 2  kxk  3 Ê 2  x  3 or 2  x  3 Ê 2  x  3 or 3  x  2; solution intervals (3ß 2)  (2ß 3) 38.

" 9

 x# 

Ê

x

" #

" 3

 kxk 

" #

Ê

" 3

x

or  #"  x   3" ; solution intervals ˆ "# ß  3" ‰  ˆ 3" ß #" ‰ Ê

" 3

" 4

" #

or

" 3

 x 

39. (x  1)#  4 Ê kx  1k  2 Ê 2  x  1  2 Ê 1  x  3; solution interval ("ß $)

qqqqðïïïïðqqqqðïïïïðqqqp x 3 2 2 3 " #

qqqqðïïïïðqqqqðïïïïðqqqp x 1/2 1/3 1/3 1/2

qqqqqqðïïïïïïïïðqqqqp x 1 3

40. (x  3)#  # Ê kx  3k  È2 Ê È2  x  3  È2 or 3  È2  x  3  È2 ; solution interval Š3  È2ß 3  È2‹

qqqqqqðïïïïïïïïðqqqqp x 3  È # 3  È #

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

3

4

Chapter 1 Preliminaries

41. x#  x  0 Ê x#  x +

1 4

<

1 4

2 Ê ˆx  12 ‰ <

1 4

ʹx 

1 2

¹<

Ê  12 < x 

1 2

1 2

<

1 2

Ê 0 < x < 1.

So the solution is the interval (0ß 1) 42. x#  x  2   0 Ê x#  x +

1 4

 

9 4

Ê ¹x 

1 2

¹  

3 2

Ê x

1 2

 

3 2

or ˆx  12 ‰  

3 2

Ê x   2 or x Ÿ 1.

The solution interval is (_ß 1]  [2ß _) 43. True if a   0; False if a  0. 44. kx  1k œ 1  x Í k(x  1)k œ 1  x Í 1  x   0 Í x Ÿ 1 45. (1) ka  bk œ (a  b) or ka  bk œ (a  b); both squared equal (a  b)# (2) ab Ÿ kabk œ kak kbk (3) kak œ a or kak œ a, so kak# œ a# ; likewise, kbk# œ b# (4) x# Ÿ y# implies Èx# Ÿ Èy# or x Ÿ y for all nonnegative real numbers x and y. Let x œ ka  bk and y œ kak  kbk so that ka  bk# Ÿ akak  kbkb# Ê ka  bk Ÿ kak  kbk . 46. If a   0 and b   0, then ab   0 and kabk œ ab œ kak kbk . If a  0 and b  0, then ab  0 and kabk œ ab œ (a)(b) œ kak kbk . If a   0 and b  0, then ab Ÿ 0 and kabk œ (ab) œ (a)(b) œ kak kbk . If a  0 and b   0, then ab Ÿ 0 and kabk œ (ab) œ (a)(b) œ kak kbk . 47. 3 Ÿ x Ÿ 3 and x   "# Ê 

" #

 x Ÿ 3.

48. Graph of kxk  kyk Ÿ 1 is the interior of “diamond-shaped" region.

49. Let $ be a real number > 0 and f(x) = 2x + 1. Suppose that | x1 | < $ . Then | x1 | < $ Ê 2| x1 | < 2$ Ê | 2x  # | < 2$ Ê | (2x + 1)  3 | < 2$ Ê | f(x)  f(1) | < 2$ 50. Let % > 0 be any positive number and f(x) = 2x + 3. Suppose that | x  0 | < % /2. Then 2| x  0 | < % and | 2x + 3 3 | < %. But f(x) = 2x + 3 and f(0) = 3. Thus | f(x)  f(0) | < %. 51. Consider: i) a > 0; ii) a < 0; iii) a = 0. i) For a > 0, | a | œ a by definition. Now, a > 0 Ê a < 0. Let a = b. By definition, | b | œ b. Since b = a, | a | œ (a) œ a and | a | œ | a | œ a. ii) For a < 0, | a | œ a. Now, a < 0 Ê a > 0. Let a œ b. By definition, | b | œ b and thus |a| œ a. So again | a | œ |a|. iii) By definition | 0 | œ 0 and since 0 œ 0, | 0 | œ 0. Thus, by i), ii), and iii) | a | œ | a | for any real number. Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.2 Lines, Circles and Parabolas Prove | x | > 0 Ê x > a or x < a for any positive number, a. For x   0, | x | œ x. | x | > a Ê x > a. For x < 0, | x | œ x. | x | > a Ê x > a Ê x < a. ii) Prove x > a or x < a Ê | x | > 0 for any positive number, a. a > 0 and x > a Ê | x | œ x. So x > a Ê | x | > a. For a > 0, a < 0 and x < a Ê x < 0 Ê | x | œ x. So x < a Ê x > a Ê | x | > a.

52. i)

53. a)

1=1 Ê |1|=1 ʹb

b)

lal lbl

œ ¹a



" b

¹ œ ¹ a¹

† "b ¹ œ

†¹

" b

l bl lbl

¹ œ ¹ a¹

Ê ¹ b¹

† l bl "

† ¹ b" ¹ œ

œ

lbl lbl

Ê



¹ b ¹ ¹ "b ¹ ¹ b¹

œ

¹ b¹



¹ b¹ ¹ b¹

Ê ¹ b" ¹ œ "

¹ b¹

lal lbl

54. Prove Sn œ kan k œ kakn for any real number a and any positive integer n. ka" k œ kak " œ a, so S" is true. Now, assume that Sk œ ¸ak ¸ œ kak k is true form some positive integer 5 . Since ka" k œ kak " and ¸ak ¸ œ kak k , we have ¸ak" ¸ œ ¸ak † a" ¸ œ ¸ak ¸ka" k œ kak k kak " œ kak k+" . Thus, Sk" œ ¸ak" ¸ œ kak k+" is also true. Thus by the Principle of Mathematical Induction, Sn œ l an l œ l a ln is true for all n positive integers. 1.2 LINES, CIRCLES, AND PARABOLAS 1. ?x œ 1  (3) œ 2, ?y œ 2  2 œ 4; d œ È(?x)#  (?y)# œ È4  16 œ 2È5 2. ?x œ $  (1) œ 2, ?y œ 2  (2) œ 4; d œ È(2)#  4# œ 2È5 3. ?x œ 8.1  (3.2) œ 4.9, ?y œ 2  (2) œ 0; d œ È(4.9)#  0# œ 4.9 #

4. ?x œ 0  È2 œ È2, ?y œ 1.5  4 œ 2.5; d œ ÊŠÈ2‹  (2.5)# œ È8.25 5. Circle with center (!ß !) and radius 1.

6. Circle with center (!ß !) and radius È2.

7. Disk (i.e., circle together with its interior points) with center (!ß !) and radius È3. 8. The origin (a single point). 9. m œ

?y ?x

œ

1  2 2  (1)

œ3

perpendicular slope œ  "3

10. m œ

?y ?x

œ

#  " 2  (2)

œ  34

perpendicular slope œ

4 3

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

5

6

Chapter 1 Preliminaries

11. m œ

?y ?x

œ

33 1  2

œ0

12. m œ

14. (a) x œ È2

(b) y œ

#  0 #  (#)

; no slope

15. (a) x œ 0

16. (a) x œ 1

(b) y œ È2

(b) y œ 1.3

4 3

œ

perpendicular slope œ 0

perpendicular slope does not exist

13. (a) x œ 1

?y ?x

(b) y œ 0

17. P(1ß 1), m œ 1 Ê y  1 œ 1ax  (1)b Ê y œ x 18. P(2ß 3), m œ

" #

Ê y  (3) œ

19. P(3ß 4), Q(2ß 5) Ê m œ

?y ?x

20. P(8ß 0), Q(1ß 3) Ê m œ

œ

?y ?x

" #

(x  2) Ê y œ

54 2  3

œ

" #

x4

œ  "5 Ê y  4 œ  "5 (x  3) Ê y œ  "5 x 

30 1  (8)

œ

3 7

Ê y0œ

3 7

ax  (8)b Ê y œ

3 7

23 5

x

21. m œ  54 , b œ 6 Ê y œ  54 x  6

22. m œ "# , b œ 3 Ê y œ

" #

23. m œ 0, P(12ß 9) Ê y œ 9

24. No slope, P ˆ "3 ß %‰ Ê x œ

24 7

x3 " 3

25. a œ 1, b œ 4 Ê (0ß 4) and ("ß 0) are on the line Ê m œ

?y ?x

œ

04 1  0

œ 4 Ê y œ 4x  4

26. a œ 2, b œ 6 Ê (2ß 0) and (!ß 6) are on the line Ê m œ

?y ?x

œ

6  0 02

œ 3 Ê y œ 3x  6

27. P(5ß 1), L: 2x  5y œ 15 Ê mL œ  25 Ê parallel line is y  (1) œ  25 (x  5) Ê y œ  25 x  1 È È È 28. P ŠÈ2ß 2‹ , L: È2x  5y œ È3 Ê mL œ  52 Ê parallel line is y  2 œ  52 Šx  ŠÈ2‹‹ Ê y œ  52 x 

8 5

29. P(4ß 10), L: 6x  3y œ 5 Ê mL œ 2 Ê m¼ œ  "# Ê perpendicular line is y  10 œ  "# (x  4) Ê y œ  "# x  12 30. P(!ß 1), L: 8x  13y œ 13 Ê mL œ

8 13

13 Ê m¼ œ  13 8 Ê perpendicular line is y œ  8 x  1

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.2 Lines, Circles and Parabolas 31. x-intercept œ 4, y-intercept œ 3

32. x-intercept œ 4, y-intercept œ 2

33. x-intercept œ È3, y-intercept œ È2

34. x-intercept œ 2, y-intercept œ 3

35. Ax  By œ C" Í y œ  AB x 

C" B

and Bx  Ay œ C# Í y œ

B A

x

C# A.

Since ˆ AB ‰ ˆ AB ‰ œ 1 is the

product of the slopes, the lines are perpendicular. 36. Ax  By œ C" Í y œ  AB x  slope

 AB ,

C" B

and Ax  By œ C# Í y œ  AB x 

C# B.

Since the lines have the same

they are parallel.

37. New position œ axold  ?xß yold  ?yb œ (#  &ß 3  (6)) œ ($ß 3). 38. New position œ axold  ?xß yold  ?yb œ (6  (6)ß 0  0) œ (0ß 0). 39. ?x œ 5, ?y œ 6, B(3ß 3). Let A œ (xß y). Then ?x œ x#  x" Ê 5 œ 3  x Ê x œ 2 and ?y œ y#  y" Ê 6 œ 3  y Ê y œ 9. Therefore, A œ (#ß 9). 40. ?x œ "  " œ !, ?y œ !  ! œ !

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

7

8

Chapter 1 Preliminaries

41. C(!ß 2), a œ 2 Ê x#  (y  2)# œ 4

42. C($ß 0), a œ 3 Ê (x  3)#  y# œ 9

43. C(1ß 5), a œ È10 Ê (x  1)#  (y  5)# œ 10

44. C("ß "), a œ È2 Ê (x  1)#  (y  1)# œ 2 x œ 0 Ê (0  1)#  (y  1)# œ 2 Ê (y  1)# œ 1 Ê y  1 œ „ 1 Ê y œ 0 or y œ 2. Similarly, y œ 0 Ê x œ 0 or x œ 2

#

45. C ŠÈ3ß 2‹ , a œ 2 Ê Šx  È3‹  (y  2)# œ 4, #

x œ 0 Ê Š0  È3‹  (y  2)# œ 4 Ê (y  2)# œ 1 Ê y  2 œ „ 1 Ê y œ 1 or y œ 3. Also, y œ 0 #

#

Ê Šx  È3‹  (0  2)# œ 4 Ê Šx  È3‹ œ 0 Ê x œ È 3 # 46. C ˆ3ß "# ‰, a œ 5 Ê (x  3)#  ˆy  "# ‰ œ 25, so # x œ 0 Ê (0  3)#  ˆy  "# ‰ œ 25 # Ê ˆy  "# ‰ œ 16 Ê y 

" #

œ „4 Ê yœ

9 #

# or y œ  7# . Also, y œ 0 Ê (x  3)#  ˆ0  "# ‰ œ 25

Ê (x  3)# œ Ê xœ3„

99 4 3È11 #

Ê x3œ „

3È11 #

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.2 Lines, Circles and Parabolas 47. x#  y#  4x  4y  % œ 0 Ê x#  %B  y#  4y œ 4 Ê x#  4x  4  y#  4y  4 œ 4 Ê (x  2)#  (y  2)# œ 4 Ê C œ (2ß 2), a œ 2.

48. x#  y#  8x  4y  16 œ 0 Ê x#  8x  y#  4y œ 16 Ê x#  8x  16  y#  4y  4 œ 4 Ê (x  4)#  (y  2)# œ 4 Ê C œ (%ß 2), a œ 2.

49. x#  y#  3y  4 œ 0 Ê x#  y#  3y œ 4 Ê x#  y#  3y  94 œ 25 4 # Ê x#  ˆy  3# ‰ œ

25 4

Ê C œ ˆ0ß 3# ‰ ,

a œ 5# .

50. x#  y#  4x  #

9 4 #

œ0

Ê x  4x  y œ

9 4 #

Ê x#  4x  4  y œ Ê (x  2)#  y# œ

25 4

25 4

Ê C œ (2ß 0), a œ 5# .

51. x#  y#  4x  4y œ 0 Ê x#  4x  y#  4y œ 0 Ê x#  4x  4  y#  4y  4 œ 8 Ê (x  2)#  (y  2)# œ 8 Ê C(2ß 2), a œ È8.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

9

10

Chapter 1 Preliminaries

52. x#  y#  2x œ 3 Ê x#  2x  1  y# œ 4 Ê (x  1)#  y# œ 4 Ê C œ (1ß 0), a œ 2.

2 53. x œ  #ba œ  2(1) œ1

Ê y œ (1)#  2(1)  3 œ 4 Ê V œ ("ß 4). If x œ 0 then y œ 3. Also, y œ 0 Ê x#  2x  3 œ 0 Ê (x  3)(x  1) œ 0 Ê x œ 3 or x œ 1. Axis of parabola is x œ 1.

4 54. x œ  #ba œ  2(1) œ 2

Ê y œ (2)#  4(2)  3 œ 1 Ê V œ (2ß 1). If x œ 0 then y œ 3. Also, y œ 0 Ê x#  4x  3 œ 0 Ê (x  1)(x  3) œ 0 Ê x œ 1 or x œ 3. Axis of parabola is x œ 2.

55. x œ  #ba œ  2(4 1) œ 2 Ê y œ (2)#  4(2) œ 4 Ê V œ (2ß 4). If x œ 0 then y œ 0. Also, y œ 0 Ê x#  4x œ 0 Ê x(x  4) œ 0 Ê x œ 4 or x œ 0. Axis of parabola is x œ 2.

56. x œ  #ba œ  2(4 1) œ 2 Ê y œ (2)#  4(2)  5 œ 1 Ê V œ (2ß 1). If x œ 0 then y œ 5. Also, y œ 0 Ê x#  4x  5 œ 0 Ê x#  4x  5 œ 0 Ê x œ

4 „È  4 #

Ê no x intercepts. Axis of parabola is x œ 2.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.2 Lines, Circles and Parabolas 57. x œ  #ba œ  2(61) œ 3 Ê y œ (3)#  6(3)  5 œ 4 Ê V œ (3ß %). If x œ 0 then y œ 5. Also, y œ 0 Ê x#  6x  5 œ 0 Ê (x  5)(x  1) œ 0 Ê x œ 5 or x œ 1. Axis of parabola is x œ 3.

1 58. x œ  #ba œ  2(2) œ

" 4

#

Ê y œ 2 ˆ "4 ‰  4"  3 œ 23 8 ‰ Ê V œ ˆ "4 ß 23 . If x œ 0 then y œ 3. 8

Also, y œ 0 Ê 2x#  x  3 œ 0 Ê xœ

1„È23 4

Ê no x intercepts.

Axis of parabola is x œ "4 .

1 59. x œ  #ba œ  2(1/2) œ 1 " #

(1)#  (1)  4 œ 72 Ê V œ ˆ"ß 72 ‰ . If x œ 0 then y œ 4. Ê yœ

Also, y œ 0 Ê Ê xœ

1 „ È  7 1

" #

x#  x  4 œ 0 Ê no x intercepts.

Axis of parabola is x œ 1. 60. x œ  #ba œ  2(21/4) œ 4 Ê y œ  "4 (4)#  2(4)  4 œ 8 Ê V œ (4ß 8) . If x œ 0 then y œ 4. Also, y œ 0 Ê  "4 x#  2x  4 œ 0 Ê xœ

2 „ È 8 1/2

œ 4 „ 4È2.

Axis of parabola is x œ 4.

61. The points that lie outside the circle with center (!ß 0) and radius È7. 62. The points that lie inside the circle with center (!ß 0) and radius È5. 63. The points that lie on or inside the circle with center ("ß 0) and radius 2. 64. The points lying on or outside the circle with center (!ß 2) and radius 2. 65. The points lying outside the circle with center (!ß 0) and radius 1, but inside the circle with center (!ß 0), and radius 2 (i.e., a washer).

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

11

12

Chapter 1 Preliminaries

66. The points on or inside the circle centered at (!ß !) with radius 2 and on or inside the circle centered at (2ß 0) with radius 2.

67. x#  y#  6y  0 Ê x#  (y  3)#  9. The interior points of the circle centered at (!ß 3) with radius 3, but above the line y œ 3.

68. x#  y#  4x  2y  4 Ê (x  2)#  (y  1)#  9. The points exterior to the circle centered at (2ß 1) with radius 3 and to the right of the line x œ 2.

69. (x  2)#  (y  1)#  6

70. (x  4)#  (y  2)#  16

71. x#  y# Ÿ 2, x   1

72. x#  y#  4, (x  1)#  (y  3)#  10

73. x#  y# œ 1 and y œ 2x Ê 1 œ x#  4x# œ 5x# Ê Šx œ

" È5

and y œ

2 È5 ‹

or Šx œ  È"5 and y œ  È25 ‹ .

Thus, A Š È"5 ß È25 ‹ , B Š È"5 ß  È25 ‹ are the points of intersection.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.2 Lines, Circles, and Parabolas 74. x  y œ 1 and (x  1)#  y# œ 1 Ê 1 œ (y)#  y# œ 2y# Ê Šy œ

" È2

and x œ " 

Šy œ  È"2 and x œ 1  A Š" 

" È2

" È2 ‹

" È2 ‹ .

ß È"2 ‹ and B Š1 

or

Thus,

" È2

ß  È"2 ‹

are intersection points.

75. y  x œ 1 and y œ x# Ê x#  x œ 1 1 „È 5 . # 1 È 5 3 È 5 If x œ # , then y œ x  1 œ # . È È If x œ 1# 5 , then y œ x  1 œ 3# 5 . È È È È Thus, A Š 1# 5 ß 3# 5 ‹ and B Š 1# 5 ß 3# 5 ‹

Ê x#  x  1 œ 0 Ê x œ

are the intersection points.

76. y œ x and C œ (x  1)# Ê (x  1)# œ x 3 „È 5 . # È 5 3 3 È 5 x œ # , then y œ x œ # . If È È x œ 3# 5 , then y œ x œ  3# 5 . È È È Thus, A Š 3# 5 ß 5#3 ‹ and B Š 3# 5

Ê x#  3x  " œ 0 Ê x œ

If

È

ß  3# 5 ‹

are the intersection points.

77. y œ 2x#  1 œ x# Ê 3x# œ 1 Ê x œ È"3 and y œ  3" or x œ  È"3 and y œ  3" . Thus, A Š È"3 ß  3" ‹ and B Š È"3 ß  3" ‹ are the intersection points.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

13

14

Chapter 1 Preliminaries

78. y œ

x# 4

œ (x  1)# Ê 0 œ #

3x# 4

 2x  1

Ê 0 œ 3x  8x  4 œ (3x  2)(x  2) Ê x œ 2 and y œ yœ

#

x 4

x# 4

œ 1, or x œ

œ 9" . Thus, A(2ß 1) and

2 3 and 2 B ˆ 3 ß 9" ‰

are the intersection points.

79. x#  y# œ 1 œ (x  1)#  y# Ê x# œ (x  1)# œ x#  2x  1 Ê 0 œ 2x  1 Ê x œ "# . Hence y# œ "  x # œ A Š "# ß

È3 # ‹

and

3 4

or y œ „

È3 #

È B Š "# ß  #3 ‹

. Thus,

are the

intersection points.

80. x#  y# œ 1 œ x#  y Ê y# œ y Ê y(y  1) œ 0 Ê y œ 0 or y œ 1. If y œ 1, then x# œ "  y# œ 0 or x œ 0. If y œ 0, then x# œ 1  y# œ 1 or x œ „ 1. Thus, A(0ß 1), B("ß 0), and C(1ß 0) are the intersection points.

81. (a) A ¸ (69°ß 0 in), B ¸ (68°ß .4 in) Ê m œ (b) A ¸ (68°ß .4 in), B ¸ (10°ß 4 in) Ê m œ (c) A ¸ (10°ß 4 in), B ¸ (5°ß 4.6 in) Ê m œ 82. The time rate of heat transfer across a material, to the temperature gradient across the material, of the material.

?U ?>

œ

X -kA ? ?B

Ê

?U ÎA k =  ??> X . ?B

68°  69° .4  0 ¸ 2.5°/in. 10°  68° 4  .4 ¸ 16.1°/in. 5°  10° 4.6  4 ¸ 8.3°/in. ?U ?> , is directly ?X ?B (the slopes

Note that

?U ?>

proportional to the cross-sectional area, A, of the material, from the previous problem), and to a constant characteristic

and

?X ?B

are of opposite sign because heat flow is toward lower

temperature. So a small value of k corresponds to low heat flow through the material and thus the material is a good insulator.Since all three materials have the same cross section and the heat flow across each is the same (temperatures are X not changing), we may define another constant, K, characteristics of the material: K œ  ?"X Þ Using the values of ? ?B from ?B

the prevous problem, fiberglass has the smallest K at 0.06 and thus is the best insulator. Likewise, the wallboard is the poorest insulator, with K œ 0.4. 83. p œ kd  1 and p œ 10.94 at d œ 100 Ê k œ

10.94" 100

œ 0.0994. Then p œ 0.0994d  1 is the diver's

pressure equation so that d œ 50 Ê p œ (0.0994)(50)  1 œ 5.97 atmospheres. 84. The line of incidence passes through (!ß 1) and ("ß 0) Ê The line of reflection passes through ("ß 0) and (#ß ") 0 Ê m œ 1# 1 œ 1 Ê y  0 œ 1(x  1) Ê y œ x  1 is the line of reflection.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.2 Lines, Circles, and Parabolas 85. C œ

5 9

(F  32) and C œ F Ê F œ

86. m œ

37.1 100

œ

14 ?x

Ê ?x œ

14 .371 .

5 9

F

160 9

Ê

4 9

15

F œ  160 9 or F œ 40° gives the same numerical reading.

#

14 ‰ Therefore, distance between first and last rows is É(14)#  ˆ .371 ¸ 40.25 ft.

87. length AB œ È(5  1)#  (5  2)# œ È16  9 œ 5 length AC œ È(4  1)#  (#  #)# œ È9  16 œ 5 length BC œ È(4  5)#  (#  5)# œ È1  49 œ È50 œ 5È2 Á 5 #

88. length AB œ Ê(1  0)#  ŠÈ3  0‹ œ È1  3 œ 2 length AC œ È(2  0)#  (0  0)# œ È4  0 œ 2 #

length BC œ Ê(2  1)#  Š0  È3‹ œ È1  3 œ 2 89. Length AB œ È(?x)#  (?y)# œ È1#  4# œ È17 and length BC œ È(?x)#  (?y)# œ È4#  1# œ È17. Also, slope AB œ 41 and slope BC œ "4 , so AB ¼ BC. Thus, the points are vertices of a square. The coordinate increments from the fourth vertex D(xß y) to A must equal the increments from C to B Ê 2  x œ ?x œ 4 and 1  y œ ?y œ " Ê x œ 2 and y œ 2. Thus D(#ß 2) is the fourth vertex.

90. Let A œ (xß 2) and C œ (9ß y) Ê B œ (xß y). Then 9  x œ kADk and 2  y œ kDCk Ê 2(9  x)  2(2  y) œ 56 and 9  x œ 3(2  y) Ê 2(3(2  y))  2(2  y) œ 56 Ê y œ 5 Ê 9  x œ 3(2  (5)) Ê x œ 12. Therefore, A œ (12ß 2), C œ (9ß 5), and B œ (12ß 5). 91. Let A("ß "), B(#ß $), and C(2ß !) denote the points. Since BC is vertical and has length kBCk œ 3, let D" ("ß 4) be located vertically upward from A and D# ("ß 2) be located vertically downward from A so that kBCk œ kAD" k œ kAD# k œ 3. Denote the point D$ (xß y). Since the slope of AB equals the slope of 3 " CD$ we have yx 2 œ  3 Ê 3y  9 œ x  2 or

x  3y œ 11. Likewise, the slope of AC equals the slope 0 2 of BD$ so that yx   2 œ 3 Ê 3y œ 2x  4 or 2x  3y œ 4.

Solving the system of equations

x  3y œ "" we find x œ 5 and y œ 2 yielding the vertex D$ (5ß #). 2x  3y œ 4 

92. Let ax, yb, x Á ! and/or y Á ! be a point on the coordinate plane. The slope, m, of the segment a!ß !b to ax, yb is yx . A 90‰

rotation gives a segment with slope mw œ  m" œ  xy . If this segment has length equal to the original segment, its endpoint will be ay, xb or ay, xb, the first of these corresponds to a counter-clockwise rotation, the latter to a clockwise rotation. (a) ("ß 4); (b) (3ß 2); (c) (5ß 2); (d) (0ß x);

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

16

Chapter 1 Preliminaries (e) (yß 0);

(f) (yß x);

(g) (3ß 10)

93. 2x  ky œ 3 has slope  2k and 4x  y œ 1 has slope 4. The lines are perpendicular when  2k (4) œ 1 or k œ 8 and parallel when  2k œ 4 or k œ "# .

94. At the point of intersection, 2x  4y œ 6 and 2x  3y œ 1. Subtracting these equations we find 7y œ 7 or y œ 1. Substitution into either equation gives x œ 1 Ê (1ß 1) is the intersection point. The line through (1ß 1) and ("ß #) is vertical with equation x œ 1. 95. Let M(aß b) be the midpoint. Since the two triangles shown in the figure are congruent, the value a must lie midway between x" and x# , so a œ x" #x# . Similarly, b œ

y " y # # .

96. (a) L has slope 1 so M is the line through P(2ß 1) with slope 1; or the line y œ x  3. At the intersection point, Q, we have equal y-values, y œ x  2 œ x  3. Thus, 2x œ 1 or x œ "# . Hence Q has coordinates ˆ "# ß 5# ‰ . The distance from P to L œ the distance from P to Q œ Ɉ #3 ‰#  ˆ 3# ‰# œ É 18 4 œ (b) L has slope  43 so M has slope

3 4

3È 2 # .

and M has the equation 4y  3x œ 12. We can rewrite the equations of

84 the lines as L: x  y œ 3 and M: B  43 y œ 4. Adding these we get 25 12 y œ 7 so y œ 25 . Substitution 12 ‰ ˆ 12 84 ‰ into either equation gives x œ 43 ˆ 84 25  4 œ 25 so that Q 25 ß 25 is the point of intersection. The distance 3 4

from P to L œ Ɉ4 

12 ‰# 25

 ˆ6 

84 ‰# 25

œ

22 5 .

(c) M is a horizontal line with equation y œ b. The intersection point of L and M is Q("ß b). Thus, the distance from P to L is È(a  1)#  0# œ ka  1k . (d) If B œ 0 and A Á 0, then the distance from P to L is ¸ AC  x! ¸ as in (c). Similarly, if A œ 0 and B Á 0, the distance is ¸ CB  y! ¸ . If both A and B are Á 0 then L has slope  AB so M has slope AB . Thus, L: Ax  By œ C and M: Bx  Ay œ  Bx!  Ay! . Solving these equations simultaneously we find the point of intersection Q(xß y) with x œ

ACB aAy! Bx! b A# B#

P to Q equals È(?x)#  (?y)# , where (?x)# œ œ

A# aAx! By! Cb# aA# B# b#

#

#

BCA aAy! Bx! b . A# B# # # # # ABy! B x! Š x! aA B bAAC ‹ # B#

and y œ

#

#

A y! ABx! , and (?y)# œ Š y! aA B bABC ‹ œ # B# #

! Cb Thus, È(?x)#  (?y)# œ É aAx!A#By œ B#

kAx! By! Ck ÈA# B#

The distance from

B# aAx! By! Cb# . aA# B# b#

.

1.3 FUNCTIONS AND THEIR GRAPHS 1. domain œ (_ß _); range œ [1ß _) 3. domain œ (!ß _); y in range Ê y œ

2. domain œ [0ß _); range œ (_ß 1] " Èt

, t  0 Ê y# œ

" t

and y  ! Ê y can be any positive real number

Ê range œ (!ß _).

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.3 Functions and Their Graphs 4. domain œ [0ß _); y in range Ê y œ

" 1 È t

17

, t  0. If t œ 0, then y œ 1 and as t increases, y becomes a smaller

and smaller positive real number Ê range œ (0ß 1]. 5. 4  z# œ (2  z)(2  z)   0 Í z − [2ß 2] œ domain. Largest value is g(0) œ È4 œ 2 and smallest value is g(2) œ g(2) œ È0 œ 0 Ê range œ [0ß 2]. 6. domain œ (2ß 2) from Exercise 5; smallest value is g(0) œ "# and as 0  z increases to 2, g(z) gets larger and larger (also true as z  0 decreases to 2) Ê range œ  "# ß _‰ . 7. (a) Not the graph of a function of x since it fails the vertical line test. (b) Is the graph of a function of x since any vertical line intersects the graph at most once. 8. (a) Not the graph of a function of x since it fails the vertical line test. (b) Not the graph of a function of x since it fails the vertical line test. 9. y œ Ɉ "x ‰  " Ê (a) No (x  !Ñ; (c) No; if x   ",

" x

" x

 "   ! Ê x Ÿ 1 and x  !. So,

"Ê

" x

(b) No; division by ! undefined; (d) Ð!ß "Ó

 "  !;

10. y œ É#  Èx Ê #  Èx   ! Ê Èx   ! and Èx Ÿ #. Èx   ! Ê x   ! and Èx Ÿ # Ê x Ÿ %Þ So, ! Ÿ x Ÿ %. (a) No; (b) No; (c) Ò!ß %Ó #

11. base œ x; (height)#  ˆ #x ‰ œ x# Ê height œ

È3 #

x; area is a(x) œ

" #

(base)(height) œ

" #

(x) Š

È3 # x‹

œ

È3 4

x# ;

perimeter is p(x) œ x  x  x œ 3x. 12. s œ side length Ê s#  s# œ d# Ê s œ

d È2

; and area is a œ s# Ê a œ

" #

d#

13. Let D œ diagonal of a face of the cube and j œ the length of an edge. Then j#  D# œ d# and (by Exercise 10) D# œ 2j# Ê 3j# œ d# Ê j œ

d È3

. The surface area is 6j# œ

6d# 3

14. The coordinates of P are ˆxß Èx‰ so the slope of the line joining P to the origin is m œ ˆx, Èx‰ œ ˆ m"# ,

#

œ 2d# and the volume is j$ œ Š d3 ‹ Èx x

œ

" Èx

"‰ m .

15. The domain is a_ß _b.

16. The domain is a_ß _b.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

$Î#

œ

d$ 3È 3

(x  0). Thus,

.

18

Chapter 1 Preliminaries

17. The domain is a_ß _b.

18. The domain is Ð_ß !Ó.

19. The domain is a_ß !b  a!ß _b.

20. The domain is a_ß !b  a!ß _b.

21. Neither graph passes the vertical line test (a)

(b)

22. Neither graph passes the vertical line test (a)

(b)

Ú xyœ" Þ Ú yœ1x Þ or or kx  yk œ 1 Í Û Í Û ß ß Ü x  y œ " à Ü y œ "  x à

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.3 Functions and Their Graphs 23.

x y

0 0

25. y œ œ

1 1

2 0

24.

x y

0 1

1 0

2 0

" , x0 26. y œ œ x x, 0 Ÿ x

3  x, x Ÿ 1 2x, 1  x

27. (a) Line through a!ß !b and a"ß "b: y œ x Line through a"ß "b and a#ß !b: y œ x  2 x, 0 Ÿ x Ÿ 1 f(x) œ œ x  2, 1  x Ÿ 2 Ú Ý Ý 2, ! Ÿ x  " !ß " Ÿ x  # (b) f(x) œ Û Ý Ý 2ß # Ÿ x  $ Ü !ß $ Ÿ x Ÿ % 28. (a) Line through a!ß 2b and a#ß !b: y œ x  2 " Line through a2ß "b and a&ß !b: m œ !&  # œ x  #, 0  x Ÿ # f(x) œ œ "  $ x  &$ , #  x Ÿ &

" $

$  ! !  Ð"Ñ œ "  $ % #! œ #

(b) Line through a"ß !b and a!ß $b: m œ Line through a!ß $b and a#ß "b: m œ f(x) œ œ

œ  "$ , so y œ  "$ ax  2b  " œ  "$ x 

& $

$, so y œ $x  $ œ #, so y œ #x  $

$x  $, "  x Ÿ ! #x  $, !  x Ÿ #

29. (a) Line through a"ß "b and a!ß !b: y œ x Line through a!ß "b and a"ß "b: y œ " Line through a"ß "b and a$ß !b: m œ !" $" œ Ú x " Ÿ x  ! " !xŸ" f(x) œ Û Ü  "# x  $# "x$

" #

œ  "# , so y œ  "# ax  "b  " œ  "# x 

$ #

(b) Line through a#ß "b and a!ß !b: y œ "# x

Line through a!ß #b and a"ß !b: y œ #x  # Line through a"ß "b and a$ß "b: y œ "

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

19

20

Chapter 1 Preliminaries Ú

" #x

f(x) œ Û #x  # Ü "

# Ÿ x Ÿ ! !xŸ" "xŸ$

30. (a) Line through ˆ T# ß !‰ and aTß "b: m œ

Ú A, Ý Ý Ý Aß f(x) œ Û Aß Ý Ý Ý Ü Aß

! Ÿ x  T# T # Ÿ x T T Ÿ x  $#T $T # Ÿ x Ÿ #T x #

31. (a) From the graph, (b)

x #

1

x  0:

x #

x  0:

x 2

œ T# , so y œ T# ˆx  T# ‰  0 œ T# x  "

!, 0 Ÿ x Ÿ T# # T T x  ", #  x Ÿ T

f(x) œ 

(b)

"! TaTÎ#b

4 x

1

x #

Ê 4 x



1

4 x

Ê x − (2ß 0)  (%ß _)

 1  4x  0 # 2x8 0 Ê x 2x

0 Ê

(x4)(x2) #x

0

(x4)(x2) #x

0

Ê x  4 since x is positive; 1

4 x

0 Ê

x# 2x8 2x

0 Ê

Ê x  2 since x is negative; sign of (x  4)(x  2)    ïïïïïðïïïïïðïïïïî 2 % Solution interval: (#ß 0)  (%ß _)

3 2 x 1  x  1 3 2 x 1  x  1

32. (a) From the graph, (b) Case x  1:

Ê x − (_ß 5)  (1ß 1) Ê

3(x1) x 1

2

Ê 3x  3  2x  2 Ê x  5. Thus, x − (_ß 5) solves the inequality. Case 1  x  1:

3 x 1



2 x 1

Ê

3(x1) x 1

2

Ê 3x  3  2x  2 Ê x  5 which is true if x  1. Thus, x − (1ß 1) solves the inequality. Case 1  x: x3 1  x2 1 Ê 3x  3  2x  2 Ê x  5 which is never true if 1  x, so no solution here. In conclusion, x − (_ß 5)  (1ß 1). 33. (a) ÚxÛ œ 0 for x − [0ß 1)

(b) ÜxÝ œ 0 for x − (1ß 0]

34. ÚxÛ œ ÜxÝ only when x is an integer. 35. For any real number x, n Ÿ x Ÿ n  ", where n is an integer. Now: n Ÿ x Ÿ n  " Ê Ðn  "Ñ Ÿ x Ÿ n. By definition: ÜxÝ œ n and ÚxÛ œ n Ê ÚxÛ œ n. So ÜxÝ œ ÚxÛ for all x − d .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.3 Functions and Their Graphs

21

36. To find f(x) you delete the decimal or fractional portion of x, leaving only the integer part.

37. v œ f(x) œ xÐ"%  2xÑÐ22  2xÑ œ %x$  72x#  $!)x; !  x  7Þ 38. (a) Let h œ height of the triangle. Since the triangle is isosceles, AB #  AB # œ 2# Ê AB œ È2Þ So, #

h#  "# œ ŠÈ2‹ Ê h œ " Ê B is at a!ß "b Ê slope of AB œ " Ê The equation of AB is y œ f(x) œ B  "; x − Ò!ß "Ó. (b) AÐxÑ œ 2x y œ 2xÐx  "Ñ œ 2x#  #x; x − Ò!ß "Ó. 39. (a) Because the circumference of the original circle was )1 and a piece of length x was removed. x x (b) r œ )1# 1 œ %  #1 (c) h œ È"'  r# œ É"'  ˆ%  #

x‰ (d) V œ "$ 1 r# h œ "$ 1ˆ )1# † 1

x ‰# #1

œ É"'  ˆ16 

È"'1x  x# #1

œ

4x 1



x# ‰ %1#

œ É 4x 1 

x# %1#

œ É "'%11#x 

x# %1#

œ

È"'1xx# #1

a)1  xb# È"'1x  x# #%1#

40. (a) Note that 2 mi = 10,560 ft, so there are È)!!#  x# feet of river cable at $180 per foot and a"!ß &'!  xb feet of land cable at $100 per foot. The cost is Caxb œ ")!È)!!#  x#  "!!a"!ß &'!  xb. (b) Ca!b œ $"ß #!!ß !!! Ca&!!b ¸ $"ß "(&ß )"# Ca"!!!b ¸ $"ß ")'ß &"# Ca"&!!b ¸ $"ß #"#ß !!! Ca#!!!b ¸ $"ß #%$ß ($# Ca#&!!b ¸ $"ß #()ß %(* Ca$!!!b ¸ $"ß $"%ß )(! Values beyond this are all larger. It would appear that the least expensive location is less than 2000 feet from the point P. 41. A curve symmetric about the x-axis will not pass the vertical line test because the points ax, yb and ax, yb lie on the same vertical line. The graph of the function y œ faxb œ ! is the x-axis, a horizontal line for which there is a single y-value, !, for any x. 42. Pick 11, for example: ""  & œ "' Ä # † "' œ $# Ä $#  ' œ #' Ä faxb œ

#ax&b' #

#' #

œ "$ Ä "$  # œ "", the original number.

 # œ x, the number you started with.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

22

Chapter 1 Preliminaries

1.4 IDENTIFYING FUNCTIONS; MATHEMATICAL MODELS 1. (a) linear, polynomial of degree 1, algebraic. (c) rational, algebraic.

(b) power, algebraic. (d) exponential.

2. (a) polynomial of degree 4, algebraic. (c) algebraic.

(b) exponential. (d) power, algebraic.

3. (a) rational, algebraic. (c) trigonometric.

(b) algebraic. (d) logarithmic.

4. (a) logarithmic. (c) exponential.

(b) algebraic. (d) trigonometric.

5. (a) Graph h because it is an even function and rises less rapidly than does Graph g. (b) Graph f because it is an odd function. (c) Graph g because it is an even function and rises more rapidly than does Graph h. 6. (a) Graph f because it is linear. (b) Graph g because it contains a!ß "b. (c) Graph h because it is a nonlinear odd function. 7. Symmetric about the origin Dec: _  x  _ Inc: nowhere

8. Symmetric about the y-axis Dec: _  x  ! Inc: !  x  _

9. Symmetric about the origin Dec: nowhere Inc: _  x  ! !x_

10. Symmetric about the y-axis Dec: !  x  _ Inc: _  x  !

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.4 Identifying Functions; Mathematical Models 11. Symmetric about the y-axis Dec: _  x Ÿ ! Inc: !  x  _

12. No symmetry Dec: _  x Ÿ ! Inc: nowhere

13. Symmetric about the origin Dec: nowhere Inc: _  x  _

14. No symmetry Dec: ! Ÿ x  _ Inc: nowhere

15. No symmetry Dec: ! Ÿ x  _ Inc: nowhere

16. No symmetry Dec: _  x Ÿ ! Inc: nowhere

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

23

24

Chapter 1 Preliminaries

17. Symmetric about the y-axis Dec: _  x Ÿ ! Inc: !  x  _

18. Symmetric about the y-axis Dec: ! Ÿ x  _ Inc: _  x  !

19. Since a horizontal line not through the origin is symmetric with respect to the y-axis, but not with respect to the origin, the function is even. 20. faxb œ x& œ

" x&

and faxb œ axb& œ

" a x b&

œ ˆ x"& ‰ œ faxb. Thus the function is odd.

21. Since faxb œ x#  " œ axb#  " œ faxb. The function is even. 22. Since Òfaxb œ x#  xÓ Á Òfaxb œ axb#  xÓ and Òfaxb œ x#  xÓ Á Òfaxb œ axb#  xÓ the function is neither even nor odd. 23. Since gaxb œ x$  x, gaxb œ x$  x œ ax$  xb œ gaxb. So the function is odd. 24. gaxb œ x%  $x#  " œ axb%  $axb#  " œ gaxbß thus the function is even. 25. gaxb œ

" x#  "

26. gaxb œ

x x#  " ;

27. hatb œ

" t  ";

œ

" axb# "

œ gaxb. Thus the function is even.

gaxb œ  x#x" œ gaxb. So the function is odd.

h a t b œ

" t  " ;

h at b œ

" "  t.

Since hatb Á hatb and hatb Á hatb, the function is neither even nor odd.

28. Since l t$ | œ l atb$ |, hatb œ hatb and the function is even. 29. hatb œ 2t  ", hatb œ 2t  ". So hatb Á hatb. hatb œ 2t  ", so hatb Á hatb. The function is neither even nor odd. 30. hatb œ 2l t l  " and hatb œ 2l t l  " œ 2l t l  ". So hatb œ hatb and the function is even. 31. (a)

The graph supports the assumption that y is proportional to x. The constant of proportionality is estimated from the slope of the regression line, which is 0.166.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.4 Identifying Functions; Mathematical Models (b)

25

The graph supports the assumption that y is proportional to x"Î# . The constant of proportionality is estimated from the slope of the regression line, which is 2.03.

32. (a) Because of the wide range of values of the data, two graphs are needed to observe all of the points in relation to the regression line.

The graphs support the assumption that y is proportional to $x . The constant of proportionality is estimated from the slope of the regression line, which is 5.00. (b) The graph supports the assumption that y is proportional to ln x. The constant of proportionality is extimated from the slope of the regression line, which is 2.99.

33. (a) The scatterplot of y œ reaction distance versus x œ speed is

Answers for the constant of proportionality may vary. The constant of proportionality is the slope of the line, which is approximately 1.1.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

26

Chapter 1 Preliminaries (b) Calculate x w œ speed squared. The scatterplot of x w versus y œ braking distance is:

Answers for the constant of proportionality may vary. The constant of proportionality is the slope of the line, which is approximately 0.059. 34. Kepler's 3rd Law is Tadaysb œ !Þ%"R$Î# , R in millions of miles. "Quaoar" is 4 ‚ "!* miles from Earth, or about 4 ‚ "!*  *$ ‚ "!' ¸ % ‚ "!* miles from the sun. Let R œ 4000 (millions of miles) and T œ a!Þ%"ba%!!!b$Î# days ¸ "!$ß (#$ days. 35. (a)

The hypothesis is reasonable. (b) The constant of proportionality is the slope of the line ¸ (c) y(in.) œ a!Þ)( in./unit massba"$ unit massb œ ""Þ$" in. 36. (a)

)Þ(%"  ! "!  !

in./unit mass œ !Þ)(% in./unit mass.

(b)

Graph (b) suggests that y œ k x$ is the better model. This graph is more linear than is graph (a). 1.5 COMBINING FUNCTIONS; SHIFTING AND SCALING GRAPHS 1. Df : _  x  _, Dg : x   1 Ê Dfbg œ Dfg : x   1. Rf : _  y  _, Rg : y   0, Rfbg : y   1, Rfg : y   0 2. Df : x  1   0 Ê x   1, Dg : x  1   0 Ê x   1. Therefore Dfbg œ Dfg : x   1. Rf œ Rg : y   0, Rfbg : y   È2, Rfg : y   0

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.5 Combining Functions; Shifting and Scaling Graphs 3. Df : _  x  _, Dg : _  x  _ Ê DfÎg : _  x  _ since g(x) Á 0 for any x; DgÎf : _  x  _ since f(x) Á 0 for any x. Rf : y œ 2, Rg : y   1, RfÎg : 0  y Ÿ 2, RgÎf : y   "# 4. Df : _  x  _, Dg : x   0 Ê DfÎg : x   0 since g(x) Á 0 for any x   0; DgÎf : x   0 since f(x) Á 0 for any x   0. Rf : y œ 1, Rg : y   1, RfÎg : 0  y Ÿ 1, RgÎf : y   " 5. (a) (b) (c) (d) (e) (f) (g) (h)

f(g(0)) œ f(3) œ 2 g(f(0)) œ g(5) œ 22 f(g(x)) œ f(x#  3) œ x#  3  5 œ x#  2 g(f(x)) œ g(x  5) œ (x  5)#  3 œ x#  10x  22 f(f(5)) œ f(0) œ 5 g(g(2)) œ g(1) œ 2 f(f(x)) œ f(x  5) œ (x  5)  5 œ x  10 g(g(x)) œ g(x#  3) œ (x#  3)#  3 œ x%  6x#  6

6. (a) f ˆg ˆ "# ‰‰ œ f ˆ 23 ‰ œ  3" (b) g ˆf ˆ "# ‰‰ œ g ˆ "# ‰ œ 2 (c) f(g(x)) œ f ˆ x " 1 ‰ œ

" x 1

1œ

(d) g(f(x)) œ g(x  1) œ

" (x1)  1

(e) f(f(2)) œ f(1) œ 0 (f) g(g(2)) œ g ˆ "3 ‰ œ

œ

" 4 3

œ

x x1 " x

3 4

(g) f(f(x)) œ f(x  1) œ (x  1)  1 œ x  2 " (h) g(g(x)) œ g ˆ x " 1 ‰ œ " " 1 œ xx  # (x Á 1 and x Á 2) x1

# 7. (a) u(v(f(x))) œ u ˆv ˆ "x ‰‰ œ u ˆ x"# ‰ œ 4 ˆ x" ‰  5 œ x4#  5 (b) u(f(v(x))) œ u af ax# bb œ u ˆ x"# ‰ œ 4 ˆ x"# ‰  5 œ x4#  5 # (c) v(u(f(x))) œ v ˆu ˆ "x ‰‰ œ v ˆ4 ˆ x" ‰  5‰ œ ˆ 4x  5‰

(d) v(f(u(x))) œ v(f(4x  5)) œ v ˆ 4x " 5 ‰ œ ˆ 4x " 5 ‰ (e) f(u(v(x))) œ f au ax# bb œ f a4 ax# b  5b œ

" 4x#  5

(f) f(v(u(x))) œ f(v(4x  5)) œ f a(4x  5)# b œ 8. (a) h(g(f(x))) œ h ˆg ˆÈx‰‰ œ h Š

Èx 4 ‹

#

œ 4Š

" (4x  5)#

Èx 4 ‹

 8 œ Èx  8

(b) h(f(g(x))) œ h ˆf ˆ x4 ‰‰ œ h ˆÈ x4 ‰ œ 4È x4  8 œ 2Èx  8 4È x  8 œ Èx  2 4 È4x  8 È œ 4 œ x# 2

(c) g(h(f(x))) œ g ˆh ˆÈx‰‰ œ g ˆ4Èx  8‰ œ (d) g(f(h(x))) œ g(f(4x  8)) œ g ŠÈ4x  8‹

(e) f(g(h(x))) œ f(g(4x  8)) œ f ˆ 4x 4 8 ‰ œ f(x  2) œ Èx  2 (f) f(h(g(x))) œ f ˆh ˆ x ‰‰ œ f ˆ4 ˆ x ‰  8‰ œ f(x  8) œ Èx  8 4

4

9. (a) y œ f(g(x)) (c) y œ g(g(x)) (e) y œ g(h(f(x)))

(b) y œ j(g(x)) (d) y œ j(j(x)) (f) y œ h(j(f(x)))

10. (a) y œ f(j(x)) (c) y œ h(h(x)) (e) y œ j(g(f(x)))

(b) y œ h(g(x)) œ g(h(x)) (d) y œ f(f(x)) (f) y œ g(f(h(x))) Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

27

28

Chapter 1 Preliminaries g(x)

f(x)

(f ‰ g)(x)

(a)

x7

Èx

Èx  7

(b)

x2

3x

3(x  2) œ 3x  6

(c)

x#

Èx  5

Èx#  5

(d)

x x1

x x1

" x1 " x

1

11.

(e) (f)

x xc1 x xc1  1

" x

(b) af‰gbaxb œ

gaxb" g ax b

œ

x x  (x1)

œx

x

" x

12. (a) af‰gbaxb œ lgaxbl œ

œ

x

" lx  "l . x x"

Ê"

" g ax b

œ

x x"

Ê"

x x"

œ

" g ax b

Ê

" x"

œ

" gaxb ß so

gaxb œ x  ".

(c) Since af‰gbaxb œ Ègaxb œ lxl, gaxb œ x . (d) Since af‰gbaxb œ fˆÈx‰ œ l x l, faxb œ x# . (Note that the domain of the composite is Ò!ß _Ñ.) #

The completed table is shown. Note that the absolute value sign in part (d) is optional. gaxb faxb af‰gbaxb " " lxl x" lx  "l x" x

x"

Èx

x# Èx

x#

x x"

lxl lxl

13. (a) fagaxbb œ É 1x  1 œ É 1x x gafaxbb œ

1 Èx  1

(b) Domain af‰gb: Ð0, _Ñ, domain ag‰f b: Ð1, _Ñ (c) Range af‰gb: Ð1, _Ñ, range ag‰f b: Ð0, _Ñ 14. (a) fagaxbb œ 1  2Èx  x gafaxbb œ 1  kxk (b) Domain af‰gb: Ð0, _Ñ, domain ag‰f b: Ð0, _Ñ (c) Range af‰gb: Ð0, _Ñ, range ag‰f b: Ð_, 1Ñ 15. (a) y œ (x  7)#

(b) y œ (x  4)#

16. (a) y œ x#  3

(b) y œ x#  5

17. (a) Position 4

(b) Position 1

(c) Position 2

(d) Position 3

18. (a) y œ (x  1)#  4

(b) y œ (x  2)#  3

(c) y œ (x  4)#  1

(d) y œ (x  2)#

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.5 Combining Functions; Shifting and Scaling Graphs 19.

20.

21.

22.

23.

24.

25.

26.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

29

30

Chapter 1 Preliminaries

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.5 Combining Functions; Shifting and Scaling Graphs 37.

38.

39.

40.

41.

42.

43.

44.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

31

32

Chapter 1 Preliminaries

45.

46.

47.

48.

49. (a) domain: [0ß 2]; range: [#ß $]

(b) domain: [0ß 2]; range: [1ß 0]

(c) domain: [0ß 2]; range: [0ß 2]

(d) domain: [0ß 2]; range: [1ß 0]

(e) domain: [2ß 0]; range: [!ß 1]

(f) domain: [1ß 3]; range: [!ß "]

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.5 Combining Functions; Shifting and Scaling Graphs (g) domain: [2ß 0]; range: [!ß "]

(h) domain: [1ß 1]; range: [!ß "]

50. (a) domain: [0ß 4]; range: [3ß 0]

(b) domain: [4ß 0]; range: [!ß $]

(c) domain: [4ß 0]; range: [!ß $]

(d) domain: [4ß 0]; range: ["ß %]

(e) domain: [#ß 4]; range: [3ß 0]

(f) domain: [2ß 2]; range: [3ß 0]

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

33

34

Chapter 1 Preliminaries (g) domain: ["ß 5]; range: [3ß 0]

(h) domain: [0ß 4]; range: [0ß 3]

51. y œ 3x#  3 52. y œ a2xb#  1 œ %x#  1 53. y œ "# ˆ"  54. y œ 1 

"‰ x#

" axÎ$b#

œ

" #



œ1

" #x#

* x#

55. y œ È%x  1 56. y œ 3Èx  1 # 57. y œ É%  ˆ x# ‰ œ "# È16  x#

58. y œ "$ È%  x# 59. y œ "  a3xb$ œ "  27x$ $

60. y œ "  ˆ x# ‰ œ " 

x$ )

"Î# "Î# 61. Let y œ È#x  " œ faxb and let gaxb œ x"Î# , haxb œ ˆx  "# ‰ , iaxb œ È#ˆx  "# ‰ , and "Î# jaxb œ ’È#ˆx  "# ‰ “ œ faBb. The graph of haxb is the graph of gaxb shifted left

" #

unit; the graph of iaxb is the graph

of haxb stretched vertically by a factor of È#; and the graph of jaxb œ faxb is the graph of iaxb reflected across the x-axis.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.5 Combining Functions; Shifting and Scaling Graphs 62. Let y œ È" 

x #

œ faxbÞ Let gaxb œ axb"Î# , haxb œ ax  #b"Î# , and iaxb œ

" È # a x

 #b"Î# œ È" 

x #

35

œ faxbÞ

The graph of gaxb is the graph of y œ Èx reflected across the x-axis. The graph of haxb is the graph of gaxb shifted right two units. And the graph of iaxb is the graph of haxb compressed vertically by a factor of È#.

63. y œ faxb œ x$ . Shift faxb one unit right followed by a shift two units up to get gaxb œ ax  "b3  #.

64. y œ a"  Bb$  # œ Òax  "b$  a#bÓ œ faxb. Let gaxb œ x$ , haxb œ ax  "b$ , iaxb œ ax  "b$  a#b, and jaxb œ Òax  "b$  a#bÓ. The graph of haxb is the graph of gaxb shifted right one unit; the graph of iaxb is the graph of haxb shifted down two units; and the graph of faxb is the graph of iaxb reflected across the x-axis.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

36

Chapter 1 Preliminaries

65. Compress the graph of faxb œ get haxb œ

" #x

 ".

66. Let faxb œ

" x#

and gaxb œ

# x#

" x

horizontally by a factor of 2 to get gaxb œ

"œ

" # Š B# ‹

"œ

"

#

ŠxÎÈ#‹

"œ

" # ’Š"ÎÈ#‹B“

" #x .

Then shift gaxb vertically down 1 unit to

 "Þ Since È# ¸ "Þ%, we see that the graph of

faxb stretched horizontally by a factor of 1.4 and shifted up 1 unit is the graph of gaxb.

$ $ 67. Reflect the graph of y œ faxb œ È x across the x-axis to get gaxb œ È x.

68. y œ faxb œ a#xb#Î$ œ Òa"ba#bxÓ#Î$ œ a"b#Î$ a#xb#Î$ œ a#xb#Î$ . So the graph of faxb is the graph of gaxb œ x#Î$ compressed horizontally by a factor of 2.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.5 Combining Functions; Shifting and Scaling Graphs 69.

70.

71. *x#  #&y# œ ##& Ê

x# &#

73. $x#  ay  #b# œ $ Ê



x# "#



75. $ax  "b#  #ay  #b# œ ' Ê

ax  " b # #

ŠÈ#‹



y  a#b‘# #

ŠÈ$‹

y# $#

a y  #b # #

ŠÈ$‹

œ"

74. ax  "b#  #y# œ % Ê



y# %#

x  a"b‘# ##

œ"



# # 76. 'ˆx  $# ‰  *ˆy  "# ‰ œ &% #

œ"

x# # È Š (‹

72. "'x#  (y# œ ""# Ê

œ"

Ê

’xˆ $# ‰“ $#



ˆy  "# ‰# #

ŠÈ'‹

œ"

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

y# # ŠÈ#‹

œ"

37

38 77.

Chapter 1 Preliminaries x# "'



y# *

œ " has its center at a!ß !b. Shiftinig 4 units left and 3 units up gives the center at ah, kb œ a%ß $b. So the

equation is

x  a4b‘# 4#



ay  3 b # 3#

œ"Ê

ax  %b # 4#



a y  $b # 3#

œ ". Center, C, is a%ß $b, and major axis, AB, is the segment

from a)ß $b to a!ß $b.

78. The ellipse

x# %



y# #&

œ " has center ah, kb œ a!ß !b. Shifting the ellipse 3 units right and 2 units down produces an ellipse

with center at ah, kb œ a$ß #b and an equation a$ß $b to a$ß (b is the major axis.

ax  3 b# %



y  a#b‘# #&

œ ". Center, C, is a3ß #b, and AB, the segment from

79. (a) (fg)(x) œ f(x)g(x) œ f(x)(g(x)) œ (fg)(x), odd (b) Š gf ‹ (x) œ (c) ˆ gf ‰ (x) œ (d) (e) (f) (g) (h) (i)

f(x) g(x) g(x) f(x)

œ œ

f(x) g(x) g(x) f(x)

œ  Š gf ‹ (x), odd œ  ˆ gf ‰ (x), odd

f # (x) œ f(x)f(x) œ f(x)f(x) œ f # (x), even g# (x) œ (g(x))# œ (g(x))# œ g# (x), even (f ‰ g)(x) œ f(g(x)) œ f(g(x)) œ f(g(x)) œ (f ‰ g)(x), even (g ‰ f)(x) œ g(f(x)) œ g(f(x)) œ (g ‰ f)(x), even (f ‰ f)(x) œ f(f(x)) œ f(f(x)) œ (f ‰ f)(x), even (g ‰ g)(x) œ g(g(x)) œ g(g(x)) œ g(g(x)) œ (g ‰ g)(x), odd

80. Yes, f(x) œ 0 is both even and odd since f(x) œ 0 œ f(x) and f(x) œ 0 œ f(x).

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.6 Trigonometric Functions 81. (a)

(b)

(c)

(d)

82.

1.6 TRIGONOMETRIC FUNCTIONS 1. (a) s œ r) œ (10) ˆ 451 ‰ œ 81 m radians and

51 4

1 ‰ 3. ) œ 80° Ê ) œ 80° ˆ 180° œ

41 9

2. ) œ

s r

œ

101 8

œ

51 4

1 ‰ (b) s œ r) œ (10)(110°) ˆ 180° œ

1101 18

œ

551 9

m

ˆ 180° ‰ œ 225° 1 Ê s œ (6) ˆ 491 ‰ œ 8.4 in. (since the diameter œ 12 in. Ê radius œ 6 in.)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

39

40

Chapter 1 Preliminaries

4. d œ 1 meter Ê r œ 50 cm Ê ) œ 5.

1

)

 231

0

1 #

s r

œ

30 50

31 4 " È2  È" 2

sin )

0

cos )

1

È  #3  "#

tan )

0

È3

0

und.

"

und.

" È3

und.

0

1

und.

È 2

cot )

1

#

und.

 È23

sec ) csc )

0

"

"

0

" und.

7. cos x œ  45 , tan x œ  34 9. sin x œ 

È8 3

, tan x œ È8

"

‰ ¸ 34° œ 0.6 rad or 0.6 ˆ 180° 1 6.

È2

 3#1

) sin )

"

cos )

!

" #

tan )

und.

È 3

cot )

!

 È"3

sec )

und.

#

csc )

"

 È23

2 È5

10. sin x œ

12 13

11. sin x œ  È"5 , cos x œ  È25

12. cos x œ 

13.

14.

15.

 1'

È  #3

8. sin x œ

period œ 1

 13

, cos x œ

" È2

&1 ' " # È  #3

 È"3

"

 È"3

È 3

"

È 3

2 È3

È2

 È23

#

È2

#

 "# È3 #

" È5

, tan x œ  12 5 È3 #

, tan x œ

" È3

period œ 41 16.

period œ 2 17.

period œ 4 18.

period œ 6

period œ 1

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

1 % " È2

Section 1.6 Trigonometric Functions 19.

20.

period œ 21

period œ 21

21.

22.

period œ 21

period œ 21

23. period œ 1# , symmetric about the origin

24. period œ 1, symmetric about the origin

25. period œ 4, symmetric about the y-axis

26. period œ 41, symmetric about the origin

27. (a) Cos x and sec x are positive in QI and QIV and negative in QII and QIII. Sec x is undefined when cos x is 0. The range of sec x is (_ß 1]  ["ß _); the range of cos x is ["ß 1].

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

41

42

Chapter 1 Preliminaries (b) Sin x and csc x are positive in QI and QII and negative in QIII and QIV. Csc x is undefined when sin x is 0. The range of csc x is (_ß 1]  [1ß _); the range of sin x is ["ß "].

28. Since cot x œ

" tan x

, cot x is undefined when tan x œ 0

and is zero when tan x is undefined. As tan x approaches zero through positive values, cot x approaches infinity. Also, cot x approaches negative infinity as tan x approaches zero through negative values.

29. D: _  x  _; R: y œ 1, 0, 1

30. D: _  x  _; R: y œ 1, 0, 1

31. cos ˆx  1# ‰ œ cos x cos ˆ 1# ‰  sin x sin ˆ 1# ‰ œ (cos x)(0)  (sin x)(1) œ sin x 32. cos ˆx  1# ‰ œ cos x cos ˆ 1# ‰  sin x sin ˆ 1# ‰ œ (cos x)(0)  (sin x)(1) œ sin x 33. sin ˆx  1# ‰ œ sin x cos ˆ 1# ‰  cos x sin ˆ 1# ‰ œ (sin x)(0)  (cos x)(1) œ cos x 34. sin ˆx  1# ‰ œ sin x cos ˆ 1# ‰  cos x sin ˆ 1# ‰ œ (sin x)(0)  (cos x)(1) œ cos x 35. cos (A  B) œ cos (A  (B)) œ cos A cos (B)  sin A sin (B) œ cos A cos B  sin A (sin B) œ cos A cos B  sin A sin B 36. sin (A  B) œ sin (A  (B)) œ sin A cos (B)  cos A sin (B) œ sin A cos B  cos A (sin B) œ sin A cos B  cos A sin B 37. If B œ A, A  B œ 0 Ê cos (A  B) œ cos 0 œ 1. Also cos (A  B) œ cos (A  A) œ cos A cos A  sin A sin A œ cos# A  sin# A. Therefore, cos# A  sin# A œ 1. 38. If B œ 21, then cos (A  21) œ cos A cos 21  sin A sin 21 œ (cos A)(1)  (sin A)(0) œ cos A and sin (A  21) œ sin A cos 21  cos A sin 21 œ (sin A)(1)  (cos A)(0) œ sin A. The result agrees with the fact that the cosine and sine functions have period 21. 39. cos (1  x) œ cos 1 cos B  sin 1 sin x œ (1)(cos x)  (0)(sin x) œ cos x

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.6 Trigonometric Functions 40. sin (21  x) œ sin 21 cos (x)  cos (21) sin (x) œ (0)(cos (x))  (1)(sin (x)) œ sin x 41. sin ˆ 3#1  x‰ œ sin ˆ 3#1 ‰ cos (x)  cos ˆ 3#1 ‰ sin (x) œ (1)(cos x)  (0)(sin (x)) œ cos x 42. cos ˆ 3#1  x‰ œ cos ˆ 3#1 ‰ cos x  sin ˆ 3#1 ‰ sin x œ (0)(cos x)  (1)(sin x) œ sin x œ sin ˆ 14  13 ‰ œ sin

44. cos

111 1#

45. cos

1 12

œ cos ˆ 13  14 ‰ œ cos

46. sin

51 1#

œ sin ˆ 231  14 ‰ œ sin ˆ 231 ‰ cos ˆ 14 ‰  cos ˆ 231 ‰ sin ˆ 14 ‰ œ Š

21 ‰ 3

cos

œ cos

È

47. cos#

1 8

œ

1cos ˆ 281 ‰ #

œ

1 # 2 #

49. sin#

1 1#

œ

1cos ˆ 211# ‰ #

œ

1 # 3 #

È

1 3

1 4

1 3

 cos

cos

21 3

1 4

1 3

È2 È3 # ‹Š # ‹

71 1#

œ cos ˆ 14 

1 4

È2 ˆ"‰ # ‹ #

43. sin

sin

 sin

1 4

cos ˆ 14 ‰  sin

œŠ

sin 1 3

21 3

œŠ



È2 ˆ "‰ # ‹  #

sin ˆ 14 ‰ œ ˆ "# ‰ Š

œ

2 È 2 4

48. cos#

1 1#

œ

2 È 3 4

50. sin#

1 8



È2 # ‹

œ

È2 È3 # ‹Š # ‹



1cos ˆ 211# ‰ #

1cos ˆ 281 ‰ #

51. tan (A  B) œ

sin (AB) cos (AB)

œ

sin A cos Bcos A cos B cos A cos Bsin A sin B

œ

sin A cos B cos A sin B cos A cos B  cos A cos B sin A sin B cos A cos B  cos A cos B cos A cos B

œ

tan Atan B 1tan A tan B

52. tan (A  B) œ

sin (AB) cos (AB)

œ

sin A cos Bcos A cos B cos A cos Bsin A sin B

œ

sin A cos B cos A sin B cos A cos B  cos A cos B sin A sin B cos A cos B  cos A cos B cos A cos B

œ

tan Atan B 1tan A tan B

È 2 È 6 4

œ

È3 È2 # ‹ Š # ‹

È3 È2 # ‹Š # ‹

œ

È 6 È 2 4

œ

 ˆ "# ‰ Š

œ

œ

œ

È

1 # 3 #

È

1 # 2 #

œ œ

1 È 3 2È 2 È2 # ‹

œ

1 È 3 2È 2

2 È 3 4

2 È 2 4

53. According to the figure in the text, we have the following: By the law of cosines, c# œ a#  b#  2ab cos ) œ 1#  1#  2 cos (A  B) œ 2  2 cos (A  B). By distance formula, c# œ (cos A  cos B)#  (sin A  sin B)# œ cos# A  2 cos A cos B  cos# B  sin# A  2 sin A sin B  sin# B œ 2  2(cos A cos B  sin A sin B). Thus c# œ 2  2 cos (A  B) œ 2  2(cos A cos B  sin A sin B) Ê cos (A  B) œ cos A cos B  sin A sin B. 54. (a) cosaA  Bb œ cos A cos B  sin A sin B sin ) œ cosˆ 1#  )‰ and cos ) œ sinˆ 1#  )‰ Let ) œ A  B

sinaA  Bb œ cos’ 1#  aA  Bb“ œ cos’ˆ 1#  A‰  B“ œ cos ˆ 1#  A‰ cos B  sin ˆ 1#  A‰ sin B œ sin A cos B  cos A sin B (b) cosaA  Bb œ cos A cos B  sin A sin B cosaA  aBbb œ cos A cos aBb  sin A sin aBb Ê cosaA  Bb œ cos A cos aBb  sin A sin aBb œ cos A cos B  sin A asin Bb œ cos A cos B  sin A sin B Because the cosine function is even and the sine functions is odd. 55. c# œ a#  b#  2ab cos C œ 2#  3#  2(2)(3) cos (60°) œ 4  9  12 cos (60°) œ 13  12 ˆ "# ‰ œ 7. Thus, c œ È7 ¸ 2.65. 56. c# œ a#  b#  2ab cos C œ 2#  3#  2(2)(3) cos (40°) œ 13  12 cos (40°). Thus, c œ È13  12 cos 40° ¸ 1.951.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

43

44

Chapter 1 Preliminaries

57. From the figures in the text, we see that sin B œ hc . If C is an acute angle, then sin C œ hb . On the other hand, if C is obtuse (as in the figure on the right), then sin C œ sin (1  C) œ hb . Thus, in either case, h œ b sin C œ c sin B Ê ah œ ab sin C œ ac sin B. a #  b # c # 2ab

By the law of cosines, cos C œ

and cos B œ

a # c #  b # . 2ac

Moreover, since the sum of the

interior angles of a triangle is 1, we have sin A œ sin (1  (B  C)) œ sin (B  C) œ sin B cos C  cos B sin C #

#

#

#

#

#

b c c b ˆ h ‰ h ‰ œ ˆ hc ‰ ’ a 2ab a2a#  b#  c#  c#  b# b œ “  ’ a 2ac “ b œ ˆ 2abc

ah bc

Ê ah œ bc sin A.

Combining our results we have ah œ ab sin C, ah œ ac sin B, and ah œ bc sin A. Dividing by abc gives h sin A sin C sin B bc œ ðóóóóóóóñóóóóóóóò a œ c œ b . law of sines 58. By the law of sines, Thus sin B œ

3È 3 2È 7

sin A #

œ

sin B 3

œ

È3/2 c .

By Exercise 55 we know that c œ È7.

¶ 0.982.

59. From the figure at the right and the law of cosines, b# œ a#  2#  2(2a) cos B œ a#  4  4a ˆ "# ‰ œ a#  2a  4. Applying the law of sines to the figure, Ê

È2/2 a

œ

È3/2 b

sin A a

œ

sin B b

Ê b œ É 3# a. Thus, combining results,

a#  2a  4 œ b# œ

3 #

a# Ê 0 œ

" #

a#  2a  4

Ê 0 œ a#  4a  8. From the quadratic formula and the fact that a  0, we have aœ

4È4# 4(1)(8) #

œ

4 È 3 4 #

¶ 1.464.

60. (a) The graphs of y œ sin x and y œ x nearly coincide when x is near the origin (when the calculator is in radians mode). (b) In degree mode, when x is near zero degrees the sine of x is much closer to zero than x itself. The curves look like intersecting straight lines near the origin when the calculator is in degree mode. 61. A œ 2, B œ 21, C œ 1, D œ 1

62. A œ "# , B œ 2, C œ 1, D œ

" #

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.6 Trigonometric Functions 63. A œ  12 , B œ 4, C œ 0, D œ

64. A œ

L 21 ,

" 1

B œ L, C œ 0, D œ 0

65. (a) amplitude œ kAk œ 37 (c) right horizontal shift œ C œ 101

(b) period œ kBk œ 365 (d) upward vertical shift œ D œ 25

66. (a) It is highest when the value of the sine is 1 at f(101) œ 37 sin (0)  25 œ 62° F. The lowest mean daily temp is 37(1)  25 œ 12° F. (b) The average of the highest and lowest mean daily temperatures œ The average of the sine function is its horizontal axis, y œ 25.

62°(12)° #

œ 25° F.

67-70. Example CAS commands: Maple f := x -> A*sin((2*Pi/B)*(x-C))+D1; A:=3; C:=0; D1:=0; f_list := [seq( f(x), B=[1,3,2*Pi,5*Pi] )]; plot( f_list, x=-4*Pi..4*Pi, scaling=constrained, color=[red,blue,green,cyan], linestyle=[1,3,4,7], legend=["B=1","B=3","B=2*Pi","B=3*Pi"], title="#67 (Section 1.6)" ); Mathematica Clear[a, b, c, d, f, x] f[x_]:=a Sin[21/b (x  c)] + d Plot[f[x]/.{a Ä 3, b Ä 1, c Ä 0, d Ä 0}, {x, 41, 41 }] 67. (a) The graph stretches horizontally.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

45

46

Chapter 1 Preliminaries (b) The period remains the same: period œ l B l. The graph has a horizontal shift of

" #

period.

68. (a) The graph is shifted right C units.

(b) The graph is shifted left C units. (c) A shift of „ one period will produce no apparent shift. l C l œ ' 69. The graph shifts upwards l D lunits for D  ! and down l D lunits for D  !Þ

70. (a) The graph stretches l A l units.

(b) For A  !, the graph is inverted. 1.7 GRAPHING WITH CALCULATORS AND COMPUTERS 1-4.

The most appropriate viewing window displays the maxima, minima, intercepts, and end behavior of the graphs and has little unused space.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.7 Graphing with Calculators and Computers 1. d.

2. c.

3. d.

4. b.

5-30.

For any display there are many appropriate display widows. The graphs given as answers in Exercises 530 are not unique in appearance.

5. Ò2ß 5Ó by Ò15ß 40Ó

6. Ò4ß 4Ó by Ò4ß 4Ó

7. Ò2ß 6Ó by Ò250ß 50Ó

8. Ò1ß 5Ó by Ò5ß 30Ó

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

47

48

Chapter 1 Preliminaries

9. Ò4ß 4Ó by Ò5ß 5Ó

10. Ò2ß 2Ó by Ò2ß 8Ó

11. Ò2ß 6Ó by Ò5ß 4Ó

12. Ò4ß 4Ó by Ò8ß 8Ó

13. Ò"ß 'Ó by Ò"ß %Ó

14. Ò"ß 'Ó by Ò"ß &Ó

15. Ò3ß 3Ó by Ò!ß "!Ó

16. Ò"ß #Ó by Ò!ß "Ó

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.7 Graphing with Calculators and Computers 17. Ò&ß "Ó by Ò&ß &Ó

18. Ò&ß "Ó by Ò#ß %Ó

19. Ò%ß %Ó by Ò!ß $Ó

20. Ò&ß &Ó by Ò#ß #Ó

21. Ò"!ß "!Ó by Ò'ß 'Ó

22. Ò&ß &Ó by Ò#ß #Ó

23. Ò'ß "!Ó by Ò'ß 'Ó

24. Ò$ß &Ó by Ò#ß "!Ó

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

49

50

Chapter 1 Preliminaries

25. Ò!Þ!$ß !Þ!$Ó by Ò"Þ#&ß "Þ#&Ó

26. Ò!Þ"ß !Þ"Ó by Ò$ß $Ó

27. Ò$!!ß $!!Ó by Ò"Þ#&ß "Þ#&Ó

28. Ò&!ß &!Ó by Ò!Þ"ß !Þ"Ó

29. Ò!Þ#&ß !Þ#&Ó by Ò!Þ$ß !Þ$Ó

30. Ò!Þ"&ß !Þ"&Ó by Ò!Þ!#ß !Þ!&Ó

31. x#  #x œ %  %y  y# Ê y œ # „ Èx#  #x  ). The lower half is produced by graphing y œ #  Èx#  #x  ).

32. y#  "'x# œ " Ê y œ „ È"  "'x# . The upper branch is produced by graphing y œ È"  "'x# .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 1.7 Graphing with Calculators and Computers 33.

34.

35.

36.

37.

38Þ

39.

40.

41. (a) y œ "!&*Þ"%x  #!(%*(# (b) m œ "!&*Þ"% dollars/year, which is the yearly increase in compensation.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

51

52

Chapter 1 Preliminaries (c)

(d) Answers may vary slightly. y œ a"!&*Þ14ba#!"!b  #!(%*(# œ $&$ß 899 42. (a) Let C œ cost and x œ year. C œ a(*'!Þ("bx  "Þ' ‚ "!( (b) Slope represents increase in cost per year (c) C œ a#'$(Þ"%bx  &Þ# ‚ "!' (d) The median price is rising faster in the northeast (the slope is larger). 43. (a) Let x represent the speed in miles per hour and d the stopping distance in feet. The quadratic regression function is d œ !Þ!)''x#  "Þ*(x  &!Þ". (b)

(c) From the graph in part (b), the stopping distance is about $(! feet when the vehicle is (# mph and it is about &#& feet when the speed is )& mph. Algebraically: dquadratic a(#b œ !Þ!)''a(#b#  "Þ*(a(#b  &!Þ" œ $'(Þ' ft. dquadratic a)&b œ !Þ!)''a)&b#  "Þ*(a)&b  &!Þ" œ &##Þ) ft. (d) The linear regression function is d œ 'Þ)*x  "%!Þ% Ê dlinear a(#b œ 'Þ)*a(#b  "%!Þ% œ $&&Þ( ft and dlinear a)&b œ 'Þ)*a)&b  "%!Þ% œ %%&Þ# ft. The linear regression line is shown on the graph in part (b). The quadratic regression curve clearly gives the better fit.

44. (a) The power regression function is y œ %Þ%%'%(x!Þ&""%"% .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 1 Practice Exercises (b)

(c) 15Þ2 km/h (d) The linear regression function is y œ !Þ*"$'(&x  %Þ")**(' and it is shown on the graph in part (b). The linear regession function gives a speed of "%Þ# km/h when y œ "" m. The power regression curve in part (a) better fits the data. CHAPTER 1 PRACTICE EXERCISES 1. (  2x   $ Ê #x   % Ê x   # 2.

 3x  "! Ê x   "! $

3.

" & ax

 "b  "% ax  #b Ê %ax  "b  &ax  #b

x$ #

   %$ x Ê $ax  $b   #a%  xb

qqqqqqqqðïïïïïïïî x  "! $

Ê %x  %  &x  "! Ê '  x

4.

Ê $x  *   )  #x Ê &x   " Ê x   5.

qqqqqqqqñïïïïïïïî x " &

" &

lx  " l œ ( Ê x  " œ ( or ax  "b œ ( Ê x œ ' or x œ )

6. ly  $ l  % Ê %  y  $  % Ê "  y  ( 7. ¹"  x# ¹ 

$ #

Ê "

x #

  $# or " 

x #



$ #

Ê  x#   &# or  x# 

" #

Ê x  & or x  "

Ê x  & or x  " 8. ¹ #x$( ¹ Ÿ & Ê & Ÿ

#x( $

Ÿ & Ê 1& Ÿ #x  ( Ÿ 1& Ê 22 Ÿ #x Ÿ 8 Ê "" Ÿ x Ÿ %

9. Since the particle moved to the y-axis, #  ?x œ ! Ê ?x œ 2. Since ?y œ 3?x œ 6, the new coordinates are (x  ?xß y  ?y) œ (#  #ß &  ') œ (0ß 11). 10. (a)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

53

54

Chapter 1 Preliminaries (b)

line AB

slope 10  1 9 3 2  8 œ 6 œ  # 10  6 4 2 2  (4) œ 6 œ 3 6  (3) 9 3 %  2 œ 6 œ  # 1  (3) 4 2 82 œ 6 œ 3 66 œ0 %  14 3

BC CD DA CE

BD is vertical and has no slope (c) Yes; A, B, C and D form a parallelogram. 3 ˆ 14 ‰ (d) Yes. The line AB has equation y  1 œ  3# (x  8). Replacing x by 14 3 gives y œ  # 3  8  " 3 ˆ 10 ‰ 14 œ  #  3  1 œ 5  1 œ 6. Thus, E ˆ 3 ß 6‰ lies on the line AB and the points A, B and E are collinear. (e) The line CD has equation y  3 œ  3# (x  2) or y œ  3# x. Thus the line passes through the origin. 11. The triangle ABC is neither an isosceles triangle nor is it a right triangle. The lengths of AB, BC and AC are È53, È72 and È65, respectively. The slopes of AB, BC and AC are 7 , 1 and " , respectively. #

8

12. P(xß 3x  1) is a point on the line y œ 3x  1. If the distance from P to (!ß 0) equals the distance from P to ($ß %), then x#  (3x  1)# œ (x  3)#  (3  3x)# Ê x#  9x#  6x  1 œ x#  6x  9  9  18x  9x# 23 ˆ 17 ‰ ˆ 17 23 ‰ Ê 18x œ 17 or x œ 17 18 Ê y œ 3x  1 œ 3 18  1 œ 6 . Thus the point is P 18 ß 6 . 13. y œ $ax  "b  a'b Ê y œ $x  * 14. y œ  "# ax  "b  # Ê y œ  "# x 

$ #

15. x œ ! 16. m œ

#  ' "  a$b

œ

) %

œ # Ê y œ #ax  $b  ' Ê y œ #x

17. y œ # 18. m œ

&$ #  $

œ

# &

œ  &# Ê y œ  &# ax  $b  $ Ê y œ  &# x 

#" &

19. y œ $x  $ 20. Since #x  y œ # is equivalent to y œ #x  #, the slope of the given line (and hence the slope of the desired line) is 2. y œ #a x  "b  " Ê y œ # x  & 21. Since %x  $y œ "# is equivalent to y œ  %$ x  %, the slope of the given line (and hence the slope of the desired line) is  %$ . y œ  %$ ax  4b  "2 Ê y œ  %$ x 

#! $

22. Since $x  &y œ " is equivalent to y œ $& x  "& , the slope of the given line is  5$ .



 5$ ax

 #b  $ Ê y œ

 5$ x



"* $

$ &

and the slope of the perpendicular line is

23. Since "# x  "$ y œ " is equivalent to y œ  $# x  $, the slope of the given line is  $# and the slope of the perpendicular line is #$ . y œ #$ ax  "b  # Ê y œ #$ x 

) $

24. The line passes through a!ß &b and a$ß !b. m œ

!  a&b $!

œ

& $

Ê y œ $& x  &

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 1 Practice Exercises 25. The area is A œ 1 r# and the circumference is C œ #1 r. Thus, r œ 26. The surface area is S œ %1 r# Ê r œ ˆ %S1 ‰ surface area gives S œ %1 r# œ %1 ˆ $%V1 ‰

"Î#

#Î$

C #1

#

Ê A œ 1ˆ #C1 ‰ œ

C# %1 .

$ $V . The volume is V œ %$ 1 r$ Ê r œ É %1 . Substitution into the formula for

.

27. The coordinates of a point on the parabola are axß x# b. The angle of inclination ) joining this point to the origin satisfies the equation tan ) œ 28. tan ) œ

rise run

œ

h &!!

x# x

œ x. Thus the point has coordinates axß x# b œ atan )ß tan# )b.

Ê h œ &!! tan ) ft.

29.

30.

Symmetric about the origin.

Symmetric about the y-axis.

31.

32.

Neither

Symmetric about the y-axis.

33. yaxb œ axb#  " œ x#  " œ yaxb. Even. 34. yaxb œ axb&  axb$  axb œ x&  x$  x œ yaxb. Odd. 35. yaxb œ "  cosaxb œ "  cos x œ yaxb. Even. 36. yaxb œ secaxb tanaxb œ 37. yaxb œ

axb% " axb$ #axb

œ

x% " x$ #x

sinaxb cos# axb

œ

sin x cos# x

œ sec x tan x œ yaxb. Odd.

%

" œ  xx$ # x œ yaxb. Odd.

38. yaxb œ "  sinaxb œ "  sin x. Neither even nor odd. 39. yaxb œ x  cosaxb œ x  cos x. Neither even nor odd. 40. yaxb œ Éaxb%  " œ Èx%  " œ yaxb. Even.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

55

56

Chapter 1 Preliminaries

41. (a) The function is defined for all values of x, so the domain is a_ß _b. (b) Since l x l attains all nonnegative values, the range is Ò#ß _Ñ. 42. (a) Since the square root requires "  x   !, the domain is Ð_ß "Ó. (b) Since È"  x attains all nonnegative values, the range is Ò#ß _Ñ. 43. (a) Since the square root requires "'  x#   !, the domain is Ò%ß %Ó. (b) For values of x in the domain, ! Ÿ "'  x# Ÿ "', so ! Ÿ È"'  x# Ÿ %. The range is Ò!ß %Ó. 44. (a) The function is defined for all values of x, so the domain is a_ß _b. (b) Since $#x attains all positive values, the range is a"ß _b. 45. (a) The function is defined for all values of x, so the domain is a_ß _b. (b) Since #ex attains all positive values, the range is a$ß _b. 46. (a) The function is equivalent to y œ tan #x, so we require #x Á

k1 #

for odd integers k. The domain is given by x Á

k1 %

for

odd integers k. (b) Since the tangent function attains all values, the range is a_ß _b. 47. (a) The function is defined for all values of x, so the domain is a_ß _b. (b) The sine function attains values from " to ", so # Ÿ #sina$x  1b Ÿ # and hence $ Ÿ #sina$x  1b  " Ÿ ". The range is Ò3ß 1Ó. 48. (a) The function is defined for all values of x, so the domain is a_ß _b. & (b) The function is equivalent to y œ È x# , which attains all nonnegative values. The range is Ò!ß _Ñ. 49. (a) The logarithm requires x  $  !, so the domain is a$ß _b. (b) The logarithm attains all real values, so the range is a_ß _b. 50. (a) The function is defined for all values of x, so the domain is a_ß _b. (b) The cube root attains all real values, so the range is a_ß _b. 51. (a) The function is defined for % Ÿ x Ÿ %, so the domain is Ò%ß %Ó. (b) The function is equivalent to y œ Èl x l, % Ÿ x Ÿ %, which attains values from ! to # for x in the domain. The range is Ò!ß #Ó. 52. (a) The function is defined for # Ÿ x Ÿ #, so the domain is Ò#ß #Ó. (b) The range is Ò"ß "Ó. 53. First piece: Line through a!ß "b and a"ß !b. m œ Second piece: Line through a"ß "b and a#ß !b. m faxb œ œ

"  x, ! Ÿ x  " #  x, " Ÿ x Ÿ #

54. First piece: Line through a!ß !b and a2ß 5b. m œ Second piece: Line through a2ß 5b and a4ß !b. m faxb œ 

10 

5 2 x, 5x 2 ,

!" " "! œ " œ " " œ !#  " œ "

" Ê y œ x  " œ "  x œ " Ê y œ ax  "b  " œ x  # œ #  x

5! 5 5 2! œ 2 Ê y œ 2x 5 5 5 œ !4  2 œ 2 œ 2 Ê

y œ  52 ax  2b  5 œ  52 x  10 œ 10 

!Ÿx2 (Note: x œ 2 can be included on either piece.) 2ŸxŸ4 Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

5x 2

Chapter 1 Practice Exercises 55. (a) af‰gba"b œ faga"bb œ fŠ È""  # ‹ œ fa"b œ (b) ag‰f ba#b œ gafa#bb œ gˆ "2 ‰ œ (c) af‰f baxb œ fafaxbb œ fˆ "x ‰ œ

" É "#  #

" "Îx

œ

" È#Þ&

" "

œ"

or É &#

œ x, x Á !

(d) ag‰gbaxb œ gagaxbb œ gŠ Èx" # ‹ œ

" " É Èx  # #

œ

% x# È É "  #È x  #

$ 56. (a) af‰gba"b œ faga"bb œ fˆÈ "  "‰ œ fa!b œ #  ! œ # $ (b) ag‰f ba#b œ faga#bb œ ga#  #b œ ga!b œ È !"œ"

(c) af‰f baxb œ fafaxbb œ fa#  xb œ #  a#  xb œ x $ $ $ È (d) ag‰gbaxb œ gagaxbb œ gˆÈ x  "‰ œ É x""

#

57. (a) af‰gbaxb œ fagaxbb œ fˆÈx  #‰ œ #  ˆÈx  #‰ œ x, x   #. ag‰f baxb œ fagaxbb œ ga#  x# b œ Èa#  x# b  # œ È%  x# (b) Domain of f‰g: Ò#ß _ÑÞ Domain of g‰f: Ò#ß #ÓÞ (c) Range of f‰g: Ð_ß #ÓÞ Range of g‰f: Ò!ß #ÓÞ % 58. (a) af‰gbaxb œ fagaxbb œ fŠÈ"  x‹ œ ÉÈ"  x œ È "  x.

ag‰f baxb œ fagaxbb œ gˆÈx‰ œ É"  Èx (b) Domain of f‰g: Ð_ß "ÓÞ Domain of g‰f: Ò!ß "ÓÞ (c) Range of f‰g: Ò!ß _ÑÞ Range of g‰f: Ò!ß "ÓÞ 59.

60.

The graph of f# (x) œ f" akxkb is the same as the graph of f" (x) to the right of the y-axis. The graph of f# (x) to the left of the y-axis is the reflection of y œ f" (x), x   0 across the y-axis.

The graph of f# (x) œ f" akxkb is the same as the graph of f" (x) to the right of the y-axis. The graph of f# (x) to the left of the y-axis is the reflection of y œ f" (x), x   0 across the y-axis.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

57

58

Chapter 1 Preliminaries

61.

62.

The graph of f# (x) œ f" akxkb is the same as the graph of f" (x) to the right of the y-axis. The graph of f# (x) to the left of the y-axis is the reflection of y œ f" (x), x   0 across the y-axis.

It does not change the graph.

63.

64.

The graph of f# (x) œ f" akxkb is the same as the graph of f" (x) to the right of the y-axis. The graph of f# (x) to the left of the y-axis is the reflection of y œ f" (x), x   0 across the y-axis. 65.

66.

Whenever g" (x) is positive, the graph of y œ g# (x) œ kg" (x)k is the same as the graph of y œ g" (x). When g" (x) is negative, the graph of y œ g# (x) is the reflection of the graph of y œ g" (x) across the x-axis. 67.

The graph of f# (x) œ f" akxkb is the same as the graph of f" (x) to the right of the y-axis. The graph of f# (x) to the left of the y-axis is the reflection of y œ f" (x), x   0 across the y-axis.

It does not change the graph.

Whenever g" (x) is positive, the graph of y œ g# (x) œ kg" (x)k is the same as the graph of y œ g" (x). When g" (x) is negative, the graph of y œ g# (x) is the reflection of the graph of y œ g" (x) across the x-axis.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 1 Practice Exercises

59

68.

Whenever g" (x) is positive, the graph of y œ g# (x) œ kg" (x)k is the same as the graph of y œ g" (x). When g" (x) is negative, the graph of y œ g# (x) is the reflection of the graph of y œ g" (x) across the x-axis.

69.

70.

period œ 1

period œ 41

71.

72.

period œ 2

period œ 4

73.

74.

period œ 21

period œ 21

75. (a) sin B œ sin

1 3

œ

b c

œ

b #

Ê b œ 2 sin

1 3

œ 2Š

È3 # ‹

œ È3. By the theorem of Pythagoras,

a#  b# œ c# Ê a œ Èc#  b# œ È4  3 œ 1. (b) sin B œ sin

1 3

œ

b c

œ

2 c

Ê cœ

2 sin 13

œ È23 œ Š ‹ #

4 È3

#

. Thus, a œ Èc#  b# œ ÊŠ È43 ‹  (2)# œ É 43 œ

76. (a) sin A œ

a c

Ê a œ c sin A

(b) tan A œ

a b

Ê a œ b tan A

77. (a) tan B œ

b a

Ê aœ

(b) sin A œ

a c

Ê cœ

b tan B

a sin A

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

2 È3

.

60

Chapter 1 Preliminaries

78. (a) sin A œ

(c) sin A œ

a c

a c

œ

È c # b # c

79. Let h œ height of vertical pole, and let b and c denote the distances of points B and C from the base of the pole, measured along the flatground, respectively. Then, tan 50° œ hc , tan 35° œ hb , and b  c œ 10. Thus, h œ c tan 50° and h œ b tan 35° œ (c  10) tan 35° Ê c tan 50° œ (c  10) tan 35° Ê c (tan 50°  tan 35°) œ 10 tan 35° tan 35° Ê c œ tan10 50°tan 35° Ê h œ c tan 50° œ

10 tan 35° tan 50° tan 50°tan 35°

¸ 16.98 m.

80. Let h œ height of balloon above ground. From the figure at the right, tan 40° œ ha , tan 70° œ hb , and a  b œ 2. Thus, h œ b tan 70° Ê h œ (2  a) tan 70° and h œ a tan 40° Ê (2  a) tan 70° œ a tan 40° Ê a(tan 40°  tan 70°) 70° œ 2 tan 70° Ê a œ tan 240°tantan 70° Ê h œ a tan 40° œ

2 tan 70° tan 40° tan 40°tan 70°

¸ 1.3 km.

81. (a)

(b) The period appears to be 41. (c) f(x  41) œ sin (x  41)  cos ˆ x#41 ‰ œ sin (x  21)  cos ˆ x#  21‰ œ sin x  cos since the period of sine and cosine is 21. Thus, f(x) has period 41.

x #

82. (a)

(b) D œ (_ß 0)  (!ß _); R œ [1ß 1] (c) f is not periodic. For suppose f has period p. Then f ˆ #"1  kp‰ œ f ˆ #"1 ‰ œ sin 21 œ 0 for all integers k. Choose k so large that

" #1

 kp 

" 1

Ê 0

" (1/21)kp

 1. But then

f ˆ #"1  kp‰ œ sin Š (1/#1")kp ‹  0 which is a contradiction. Thus f has no period, as claimed.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 1 Additional and Advanced Exercises CHAPTER 1 ADDITIONAL AND ADVANCED EXERCISES 1. (a) The given graph is reflected about the y-axis.

(b) The given graph is reflected about the x-axis.

(c) The given graph is shifted left 1 unit, stretched vertically by a factor of 2, reflected about the x-axis, and then shifted upward 1 unit.

2. (a)

(d) The given graph is shifted right 2 units, stretched vertically by a factor of 3, and then shifted downward 2 units.

(b)

3. There are (infinitely) many such function pairs. For example, f(x) œ 3x and g(x) œ 4x satisfy f(g(x)) œ f(4x) œ 3(4x) œ 12x œ 4(3x) œ g(3x) œ g(f(x)). 4. Yes, there are many such function pairs. For example, if g(x) œ (2x  3)$ and f(x) œ x"Î$ , then (f ‰ g)(x) œ f(g(x)) œ f a(2x  3)$ b œ a(2x  3)$ b

"Î$

œ 2x  3.

5. If f is odd and defined at x, then f(x) œ f(x). Thus g(x) œ f(x)  2 œ f(x)  2 whereas g(x) œ (f(x)  2) œ f(x)  2. Then g cannot be odd because g(x) œ g(x) Ê f(x)  2 œ f(x)  2 Ê 4 œ 0, which is a contradiction. Also, g(x) is not even unless f(x) œ 0 for all x. On the other hand, if f is even, then g(x) œ f(x)  2 is also even: g(x) œ f(x)  2 œ f(x)  2 œ g(x). 6. If g is odd and g(0) is defined, then g(0) œ g(0) œ g(0). Therefore, 2g(0) œ 0 Ê g(0) œ 0.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

61

62

Chapter 1 Preliminaries

7. For (xß y) in the 1st quadrant, kxk  kyk œ 1  x Í x  y œ 1  x Í y œ 1. For (xß y) in the 2nd quadrant, kxk  kyk œ x  1 Í x  y œ x  1 Í y œ 2x  1. In the 3rd quadrant, kxk  kyk œ x  1 Í x  y œ x  1 Í y œ 2x  1. In the 4th quadrant, kxk  kyk œ x  1 Í x  (y) œ x  1 Í y œ 1. The graph is given at the right. 8. We use reasoning similar to Exercise 7. (1) 1st quadrant: y  kyk œ x  kxk Í 2y œ 2x Í y œ x. (2) 2nd quadrant: y  kyk œ x  kxk Í 2y œ x  (x) œ 0 Í y œ 0. (3) 3rd quadrant: y  kyk œ x  kxk Í y  (y) œ x  (x) Í 0 œ 0 Ê all points in the 3rd quadrant satisfy the equation. (4) 4th quadrant: y  kyk œ x  kxk Í y  (y) œ 2x Í 0 œ x. Combining these results we have the graph given at the right:

9. By the law of sines, 10. By the law of sines,

sin 13 È3

œ

sin 14 4

œ

sin A a

œ

sin A a

œ

sin B b

œ

sin B b

œ

sin 14 b

Ê bœ

sin B 3

Ê sin B œ

È3 sin (1/4) sin (1/3) 3 4

11. By the law of cosines, a# œ b#  c#  2bc cos A Ê cos A œ

sin

œ

È3 Š È2 ‹

È3

#

œ È2.

#

1 4

œ

b #  c #  a# 2bc

3 4

Š

œ

12. By the law of cosines, c# œ a#  b#  2ab cos C œ 2#  3#  (2)(2)(3) cos

È2 # ‹

œ

3È 2 8

2#  3#  2# 2(2)(3)

1 4

.

œ 34 .

œ 4  9  12 Š

È2 # ‹

œ 13  6È2 Ê c œ É13  6È2 , since c  0. # a # c #  b # 4 # 3 # œ 2(2)(2)(4) #ac È135 3È15 121 256 œ 16 œ 16 .

œ

4169 16

# 4 # 5 # a # b #  c # œ 2(2)(2)(4) 2ab È231 25 256 œ 16 .

œ

41625 16

13. By the law of cosines, b# œ a#  c#  2ac cos B Ê cos B œ œ

11 16 .

Since 0  B  1, sin B œ È1  cos# B œ É1 

14. By the law of cosines, c# œ a#  b#  2ab cos C Ê cos C œ 5 œ  16 . Since 0  C  1, sin C œ È1  cos# C œ É1 

15. (a) sin# x  cos# x œ 1 Ê sin# x œ 1  cos# x œ (1  cos x)(1  cos x) Ê (1  cos x) œ Ê

1cos x sin x

œ

sin# x 1cos x

sin x 1cos x

(b) Using the definition of the tangent function and the double angle formulas, we have tan# ˆ x# ‰ œ

sin# ˆ x# ‰ cos# ˆ #x ‰

œ

"cos Š2 Š #x ‹‹ #

"cos Š2 Š #x ‹‹ #

œ

1cos x 1cos x

.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 1 Additional and Advanced Exercises 16. The angles labeled # in the accompanying figure are equal since both angles subtend arc CD. Similarly, the two angles labeled ! are equal since they both subtend arc AB. Thus, triangles AED and BEC are similar which ) b implies ab c œ 2a cos a c Ê (a  c)(a  c) œ b(2a cos )  b) Ê a#  c# œ 2ab cos )  b# Ê c# œ a#  b#  2ab cos ).

17. As in the proof of the law of sines of Section P.5, Exercise 57, ah œ bc sin A œ ab sin C œ ac sin B Ê the area of ABC œ "# (base)(height) œ "# ah œ "# bc sin A œ "# ab sin C œ "# ac sin B. 18. As in Section P.5, Exercise 57, (Area of ABC)# œ œ

" 4

(base)# (height)# œ

" 4

a# h # œ

" 4

a# b# sin# C

a# b# a"  cos# Cb . By the law of cosines, c# œ a#  b#  2ab cos C Ê cos C œ

Thus, (area of ABC)# œ œ

" 4

" 16

" 4

a# b# a"  cos# Cb œ #

Š4a# b#  aa#  b#  c# b ‹ œ

" 16

" 4

a# b# Œ"  Š a

#

 b #  c# ‹ #ab

#



a# b# 4

a #  b #  c# 2ab

Š" 

#

.

#

aa  b  c # b 4a# b#

#



ca2ab  aa#  b#  c# bb a2ab  aa#  b#  c# bbd

" ca(a  b)#  c# b ac#  (a  b)# bd œ 16 c((a  b)  c)((a  b)  c)(c  (a  b))(c  (a  b))d a  b  c  a  b  c a  b  c a  b  c œ ˆ # ‰ ˆ # ‰ ˆ # ‰ ˆ # ‰‘ œ s(s  a)(s  b)(s  c), where s œ a#bc .

œ

" 16

Therefore, the area of ABC equals Ès(s  a)(s  b)(s  c) . 19. 1. 2. 3. 4. 5. 6.

b  c  (a  c) œ b  a, which is positive since a  b. Thus, a  c  b  c. b  c  (a  c) œ b  a, which is positive since a  b. Thus, a  c  b  c. c  0 and a  b Ê c  0 œ c and b  a are positive Ê (b  a)c œ bc  ac is positive Ê ac  bc. a  b and c  0 Ê b  a and c are positive Ê (b  a)(c) œ ac  bc is positive Ê bc  ac. Since a  0, a and "a are positive Ê "a  0. Since 0  a  b, both "a and b" are positive. By (3), a  b and "a  0 Ê a ˆ "a ‰  b ˆ "a ‰ or 1  ba Ê 1 ˆ "b ‰ 

7.

b a

b a

" a

" b

0 Ê

" b



" a . " a 

and b" are both negative, i.e., 0 and b"  0. By (4), a  b and  1 Ê 1 ˆ b" ‰  ba ˆ b" ‰ by (4) since b"  0 Ê b"  "a .

ab0 Ê Ê

ˆ b" ‰ by (3) since

" a

 0 Ê b ˆ "a ‰  a ˆ "a ‰

20. (a) If a œ 0, then 0 œ kak  kbk Í b Á 0 Í 0 œ kak#  kbk# . Since kak# œ kak kak œ ka# k œ a# and kbk# œ b# we obtain a#  b# . If a Á 0 then kak  0 and kak  kbk Ê a#  b# . On the other hand, if a#  b# then a# œ kak#  kbk# œ b# Ê 0  kbk#  kak# œ akbk  kakb akbk  kakb . Since akbk  kakb  0 and the product akbk  kakb akbk  kakb is positive, we must have akbk  kakb  0 Ê kbk  kak . Thus kak  kbk Í a#  b# . (b) ab Ÿ kabk Ê ab   2 kabk by Exercise 19(4) above Ê a#  2ab  b#   kak#  2 kak kbk  kbk# , since kak# œ a# and kbk# œ b# . Factoring both sides, (a  b)#   akak  kbkb# Ê ka  bk   kkak  kbkk , by part (a). 21. The fact that ka"  a#  á  an k Ÿ ka" k  ka# k  á  kan k holds for n œ 1 is obvious. It also holds for n œ 2 by the triangle inequality. We now show it holds for all positive integers n, by induction. Suppose it holds for n œ k   1: ka"  a#  á  ak k Ÿ ka" k  ka# k  á  kak k (this is the induction hypothesis). Then ka"  a#  á  ak  akb1 k œ kaa"  a#  á  ak b  akb1 k Ÿ ka"  a#  á  ak k  kakb1 k (by the triangle inequality) Ÿ ka" k  ka# k  á  kak k  kakb1 k (by the induction hypothesis) and the inequality holds for n œ k  1. Hence it holds for all n by induction. Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

63

64

Chapter 1 Preliminaries

22. The fact that ka"  a#  á  an k   ka" k  ka# k  á  kan k holds for n œ 1 is obvious. It holds for n œ 2 by Exercise 21(b), since ka"  a# k œ ka"  (a# )k   kka" k  ka# kk œ kka" k  ka# kk   ka" k  ka# k . We now show it holds for all positive integers n by induction. Suppose the inequality holds for n œ k   1. Then ka"  a#  á  ak k   ka" k  ka# k  á  kak k (this is the induction hypothesis). Thus ka"  á  ak  akb1 k œ kaa"  á  ak b  aakb1 bk   kkaa"  á  ak bk  kakb1 kk (by Exercise 21(b)) œ kka"  á  ak k  kakb1 kk   ka"  á  ak k  kakb1 k   ka" k  ka# k  á  kak k  kakb1 k (by the induction hypothesis). Hence the inequality holds for all n by induction. 23. If f is even and odd, then f(x) œ f(x) and f(x) œ f(x) Ê f(x) œ f(x) for all x in the domain of f. Thus 2f(x) œ 0 Ê f(x) œ 0. f(x)  f((x)) œ f(x) #f(x) œ E(x) Ê E # even function. Define O(x) œ f(x)  E(x) œ f(x)  f(x) #f(x) œ f(x) #f(x) . Then O(x) œ f(x)  #f((x)) œ f(x)# f(x) œ  Š f(x) #f(x) ‹ œ O(x) Ê O is an odd function

24. (a) As suggested, let E(x) œ

f(x)  f(x) #

Ê E(x) œ

is an

Ê f(x) œ E(x)  O(x) is the sum of an even and an odd function. (b) Part (a) shows that f(x) œ E(x)  O(x) is the sum of an even and an odd function. If also f(x) œ E" (x)  O" (x), where E" is even and O" is odd, then f(x)  f(x) œ 0 œ aE" (x)  O" (x)b  (E(x)  O(x)). Thus, E(x)  E" (x) œ O" (x)  O(x) for all x in the domain of f (which is the same as the domain of E  E" and O  O" ). Now (E  E" )(x) œ E(x)  E" (x) œ E(x)  E" (x) (since E and E" are even) œ (E  E" )(x) Ê E  E" is even. Likewise, (O"  O)(x) œ O" (x)  O(x) œ O" (x)  (O(x)) (since O and O" are odd) œ (O" (x)  O(x)) œ (O"  O)(x) Ê O"  O is odd. Therefore, E  E" and O"  O are both even and odd so they must be zero at each x in the domain of f by Exercise 23. That is, E" œ E and O" œ O, so the decomposition of f found in part (a) is unique. 25. y œ ax#  bx  c œ a Šx#  ba x 

b# 4a# ‹



b# 4a

 c œ a ˆx 

b ‰# 2a



b# 4a

c

(a) If a  0 the graph is a parabola that opens upward. Increasing a causes a vertical stretching and a shift of the vertex toward the y-axis and upward. If a  0 the graph is a parabola that opens downward. Decreasing a causes a vertical stretching and a shift of the vertex toward the y-axis and downward. (b) If a  0 the graph is a parabola that opens upward. If also b  0, then increasing b causes a shift of the graph downward to the left; if b  0, then decreasing b causes a shift of the graph downward and to the right. If a  0 the graph is a parabola that opens downward. If b  0, increasing b shifts the graph upward to the right. If b  0, decreasing b shifts the graph upward to the left. (c) Changing c (for fixed a and b) by ?c shifts the graph upward ?c units if ?c  0, and downward ?c units if ?c  0. 26. (a) If a  0, the graph rises to the right of the vertical line x œ b and falls to the left. If a  0, the graph falls to the right of the line x œ b and rises to the left. If a œ 0, the graph reduces to the horizontal line y œ c. As kak increases, the slope at any given point x œ x! increases in magnitude and the graph becomes steeper. As kak decreases, the slope at x! decreases in magnitude and the graph rises or falls more gradually. (b) Increasing b shifts the graph to the left; decreasing b shifts it to the right. (c) Increasing c shifts the graph upward; decreasing c shifts it downward. 27. If m  0, the x-intercept of y œ mx  2 must be negative. If m  0, then the x-intercept exceeds Ê 0 œ mx  2 and x 

" #

Ê x œ  m2 

" #

Ê 0  m  4.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

" #

Chapter 1 Additional and Advanced Exercises 28. Each of the triangles pictured has the same base b œ v?t œ v(1 sec). Moreover, the height of each triangle is the same value h. Thus "# (base)(height) œ

" #

bh

œ A" œ A# œ A$ œ á . In conclusion, the object sweeps out equal areas in each one second interval.

29. (a) By Exercise #95 of Section 1.2, the coordinates of P are ˆ a# 0 ß b# 0 ‰ œ ˆ #a ß b# ‰ . Thus the slope of OP œ

(b)

?y ?x

œ

b/2 a/2

œ

b a . b 0 The slope of AB œ 0a œ  ba . The line # of their slopes is " œ ˆ ba ‰ ˆ ba ‰ œ  ba#

segments AB and OP are perpendicular when the product . Thus, b# œ a# Ê a œ b (since both are positive). Therefore, AB

is perpendicular to OP when a œ b.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

65

66

Chapter 1 Preliminaries

NOTES:

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

CHAPTER 2 LIMITS AND CONTINUITY 2.1 RATES OF CHANGE AND LIMITS 1. (a) Does not exist. As x approaches 1 from the right, g(x) approaches 0. As x approaches 1 from the left, g(x) approaches 1. There is no single number L that all the values g(x) get arbitrarily close to as x Ä 1. (b) 1 (c) 0 2. (a) 0 (b) 1 (c) Does not exist. As t approaches 0 from the left, f(t) approaches 1. As t approaches 0 from the right, f(t) approaches 1. There is no single number L that f(t) gets arbitrarily close to as t Ä 0. 3. (a) True (d) False

(b) True (e) False

(c) False (f) True

4. (a) False (d) True

(b) False (e) True

(c) True

5.

x

lim x Ä 0 kx k x kx k

does not exist because

x kx k

œ

x x

œ 1 if x  0 and

approaches 1. As x approaches 0 from the right,

x kx k

x kxk

œ

x x

œ 1 if x  0. As x approaches 0 from the left,

approaches 1. There is no single number L that all

the function values get arbitrarily close to as x Ä 0. 6. As x approaches 1 from the left, the values of

" x 1

become increasingly large and negative. As x approaches 1

from the right, the values become increasingly large and positive. There is no one number L that all the function values get arbitrarily close to as x Ä 1, so lim x" 1 does not exist. xÄ1

7. Nothing can be said about f(x) because the existence of a limit as x Ä x! does not depend on how the function is defined at x! . In order for a limit to exist, f(x) must be arbitrarily close to a single real number L when x is close enough to x! . That is, the existence of a limit depends on the values of f(x) for x near x! , not on the definition of f(x) at x! itself. 8. Nothing can be said. In order for lim f(x) to exist, f(x) must close to a single value for x near 0 regardless of xÄ0

the value f(0) itself. 9. No, the definition does not require that f be defined at x œ 1 in order for a limiting value to exist there. If f(1) is defined, it can be any real number, so we can conclude nothing about f(1) from lim f(x) œ 5. xÄ1

10. No, because the existence of a limit depends on the values of f(x) when x is near 1, not on f(1) itself. If lim f(x) exists, its value may be some number other than f(1) œ 5. We can conclude nothing about lim f(x), xÄ1

xÄ1

whether it exists or what its value is if it does exist, from knowing the value of f(1) alone.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

68

Chapter 2 Limits and Continuity

11. (a) f(x) œ ax#  *b/(x  3) x 3.1 f(x) 6.1 2.9 5.9

x f(x)

3.01 6.01

3.001 6.001

3.0001 6.0001

3.00001 6.00001

3.000001 6.000001

2.99 5.99

2.999 5.999

2.9999 5.9999

2.99999 5.99999

2.999999 5.999999

The estimate is lim f(x) œ 6. x Ä $

(b)

(c) f(x) œ

x#  9 x3

œ

(x  3)(x  3) x3

œ x  3 if x Á 3, and lim (x  3) œ 3  3 œ 6. x Ä $

12. (a) g(x) œ ax#  #b/ Šx  È2‹ x g(x)

1.4 2.81421

1.41 2.82421

1.414 2.82821

1.4142 2.828413

1.41421 2.828423

1.414213 2.828426

(b)

(c) g(x) œ

x#  2 x  È2

œ

Šx  È2‹ Šx  È2‹ Šx  È2‹

œ x  È2 if x Á È2, and

13. (a) G(x) œ (x  6)/ ax#  4x  12b x 5.9 5.99 G(x) .126582 .1251564 x G(x)

6.1 .123456

6.01 .124843

5.999 .1250156 6.001 .124984

lim

x Ä È#

5.9999 .1250015 6.0001 .124998

Šx  È2‹ œ È2  È2 œ 2È2.

5.99999 .1250001 6.00001 .124999

5.999999 .1250000 6.000001 .124999

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.1 Rates of Change and Limits (b)

(c) G(x) œ

x6 ax#  4x  12b

œ

x6 (x  6)(x  2)

œ

" x#

14. (a) h(x) œ ax#  2x  3b / ax#  4x  3b x 2.9 2.99 h(x) 2.052631 2.005025 x h(x)

3.1 1.952380

3.01 1.995024

"

if x Á 6, and lim

x Ä ' x  2

œ

" '  2

œ  "8 œ 0.125.

2.999 2.000500

2.9999 2.000050

2.99999 2.000005

2.999999 2.0000005

3.001 1.999500

3.0001 1.999950

3.00001 1.999995

3.000001 1.999999

(b)

(c) h(x) œ

x#  2x 3 x#  4x  3

œ

(x  3)(x  1) (x  3)(x  1)

œ

x1 x1

15. (a) f(x) œ ax#  1b / akxk  1b x 1.1 1.01 f(x) 2.1 2.01 x f(x)

.9 1.9

.99 1.99

if x Á 3, and lim

x1

x Ä $ x1

œ

31 31

œ

4 #

œ 2.

1.001 2.001

1.0001 2.0001

1.00001 2.00001

1.000001 2.000001

.999 1.999

.9999 1.9999

.99999 1.99999

.999999 1.999999

(b)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

69

70

Chapter 2 Limits and Continuity (c) f(x) œ

x#  " kx k  1

(x  1)(x  1)

1 œ  (x  x1)(x  1) (x  1)

œ x  1, x   0 and x Á 1 , and lim (1  x) œ 1  (1) œ 2. x Ä 1 œ 1  x, x  0 and x Á 1

16. (a) F(x) œ ax#  3x  2b / a2  kxkb x 2.1 2.01 F(x) 1.1 1.01 1.9 .9

x F(x)

1.99 .99

2.001 1.001

2.0001 1.0001

2.00001 1.00001

2.000001 1.000001

1.999 .999

1.9999 .9999

1.99999 .99999

1.999999 .999999

(b)

(c) F(x) œ

x#  3x  2 2  kx k

(x  2)(x  1)

œ  (x  2)(x# x") 2x

17. (a) g()) œ (sin ))/) ) .1 g()) .998334

, x 0 , and lim (x  1) œ 2  1 œ 1. x Ä # œ x  1, x  0 and x Á 2

.01 .999983

.001 .999999

.0001 .999999

.00001 .999999

.000001 .999999

.1 .998334

.01 .999983

.001 .999999

.0001 .999999

.00001 .999999

.000001 .999999

18. (a) G(t) œ (1  cos t)/t# t .1 G(t) .499583

.01 .499995

.001 .499999

.0001 .5

.00001 .5

.000001 .5

.1 .499583

.01 .499995

.001 .499999

.0001 .5

.00001 .5

.000001 .5

) g()) lim g()) œ 1

)Ä!

(b)

t G(t)

lim G(t) œ 0.5

tÄ!

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.1 Rates of Change and Limits (b)

Graph is NOT TO SCALE 19. (a) f(x) œ x"ÎÐ"xÑ x .9 f(x) .348678 x f(x)

1.1 .385543

.99 .366032

.999 .367695

.9999 .367861

.99999 .367877

.999999 .367879

1.01 .369711

1.001 .368063

1.0001 .367897

1.00001 .367881

1.000001 .367878

lim f(x) ¸ 0.36788

xÄ1

(b)

Graph is NOT TO SCALE. Also the intersection of the axes is not the origin: the axes intersect at the point (1ß 2.71820). 20. (a) f(x) œ a3x  1b /x x .1 f(x) 1.161231

.01 1.104669

.001 1.099215

.0001 1.098672

.00001 1.098618

.000001 1.098612

.1 1.040415

.01 1.092599

.001 1.098009

.0001 1.098551

.00001 1.098606

.000001 1.098611

x f(x)

lim f(x) ¸ 1.0986

xÄ!

(b)

21. lim 2x œ 2(2) œ 4

22. lim 2x œ 2(0) œ 0

23. lim" (3x  1) œ 3 ˆ "3 ‰  1 œ 0

24. lim

xÄ#



$

xÄ!

1

x Ä 1 3x1

œ

" 3(1)  1

œ  #"

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

71

72 25.

Chapter 2 Limits and Continuity lim 3x(2x  1) œ 3(1)(2(1)  1) œ 9

26.

x Ä "

1 #

27. lim1 x sin x œ xÄ

#

1 #

sin

œ

1 #

28. xlim Ä1

29. (a)

?f ?x

œ

f(3)  f(2) 3#

30. (a)

?g ?x

œ

g(1)  g(1) 1  (1)

31. (a)

?h ?t

œ

h ˆ 341 ‰  h ˆ 14 ‰ 1 31 4  4

œ

?g ?t

œ

g(1)  g(0) 10

(2  1)  (2  1) 10

32. (a) 33.

?R ?)

œ

R(2)  R(0) 20

34.

?P ?)

œ

P(2)  P(1) 21

35. (a)

œ œ

28  9 1

œ

œ

œ

1 1 2

Q% (18ß 550)

œ

3 3

œ 1

" 1 1

œ

" 1 1

œ

f(1)  f(") 1  (1)

œ

20 #

œ1

œ0

(b)

?g ?x

œ

g(0)g(2) 0(2)

œ

04 #

œ 2

(b)

?h ?t

œ

h ˆ 1# ‰  h ˆ 16 ‰ 11 # 6

œ

?g ?t

œ

g(1)  g(1) 1  (1)

œ

1  1 1 #

œ  14

œ

650  225 20  10 650  375 20  14 650  475 20  16.5 650  550 20  18

Q$ (16.5ß 475)

cos 1 1 1

œ

?f ?x

œ  12

3" #

(b)

0  È3 1 3

œ

3 È 3 1

(2  1)  (2  ") #1

œ0

œ1 œ22œ0

Slope of PQ œ

Q# (14ß 375)

œ

3(1)# 2(1)1

(b)

(8  16  10)("  %  &) 1

Q" (10ß 225)

cos x 1 1

œ

œ 19

È 8 1  È 1 #

Q

3x#

lim x Ä 1 2x1

?p ?t

œ 42.5 m/sec œ 45.83 m/sec œ 50.00 m/sec œ 50.00 m/sec

(b) At t œ 20, the Cobra was traveling approximately 50 m/sec or 180 km/h. 36. (a)

Slope of PQ œ

Q Q" (5ß 20) Q# (7ß 39) Q$ (8.5ß 58) Q% (9.5ß 72)

80  20 10  5 80  39 10  7 80  58 10  8.5 80  72 10  9.5

?p ?t

œ 12 m/sec œ 13.7 m/sec œ 14.7 m/sec œ 16 m/sec

(b) Approximately 16 m/sec 37. (a)

(b)

?p ?t

œ

174  62 1994  1992

œ

112 #

œ 56 thousand dollars per year

(c) The average rate of change from 1991 to 1992 is ??pt œ The average rate of change from 1992 to 1993

is ??pt

œ

62  27 1992  1991 111  62 1993  1992

œ 35 thousand dollars per year. œ 49 thousand dollars per year.

So, the rate at which profits were changing in 1992 is approximatley "# a35  49b œ 42 thousand dollars per year.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.1 Rates of Change and Limits 38. (a) F(x) œ (x  2)/(x  2) x 1.2 F(x) 4.0 ?F ?x ?F ?x ?F ?x

œ

?g ?x ?g ?x

œ

œ œ

1.1 3.4

1.01 3.04

1.001 3.004

1.0001 3.0004

1 3

4.0  (3) œ 5.0; 1.2  1 3.04  (3) œ 4.04; 1.01  1 3.!!!%  (3) œ 4.!!!%; 1.0001  1

?F ?x ?F ?x

œ œ

3.4  (3) œ 4.4; 1.1  1 3.004  (3) œ 4.!!%; 1.001  1

È g(2)  g(1) œ #21" ¸ 0.414213 21 È1  h" g(1  h)  g(1) (1  h)  1 œ h

?g ?x

œ

g(1.5)  g(1) 1.5  1

(b) The rate of change of F(x) at x œ 1 is 4. 39. (a)

œ

œ

È1.5  " 0.5

¸ 0.449489

(b) g(x) œ Èx 1h È1  h

1.1 1.04880

1.01 1.004987

1.001 1.0004998

1.0001 1.0000499

1.00001 1.000005

1.000001 1.0000005

ŠÈ1  h  1‹ /h

0.4880

0.4987

0.4998

0.499

0.5

0.5

(c) The rate of change of g(x) at x œ 1 is 0.5. (d) The calculator gives lim hÄ! 40. (a) i) ii) (b)

f(3)  f(2) 32 f(T)  f(2) T#

œ œ

"" 3 #

1 " " T  # T#

T f(T) af(T)  f(2)b/aT  2b

œ œ

" 6

1

È1  h" h

œ  6"

 #TT T#

2 #T

œ "# .

œ

2.1 0.476190 0.2381

2T #T(T  2)

œ

2T #T(2  T)

2.01 0.497512 0.2488

œ  #"T , T Á 2

2.001 0.499750 0.2500

2.0001 0.4999750 0.2500

2.00001 0.499997 0.2500

2.000001 0.499999 0.2500

(c) The table indicates the rate of change is 0.25 at t œ 2. " ‰ (d) lim ˆ #T œ  4" TÄ#

41-46. Example CAS commands: Maple: f := x -> (x^4  16)/(x  2); x0 := 2; plot( f(x), x œ x0-1..x0+1, color œ black, title œ "Section 2.1, #41(a)" ); limit( f(x), x œ x0 ); In Exercise 43, note that the standard cube root, x^(1/3), is not defined for x (surd(x+1, 3)  1)/x. Mathematica: (assigned function and values for x0 and h may vary) Clear[f, x] f[x_]:=(x3  x2  5x  3)/(x  1)2 x0= 1; h = 0.1; Plot[f[x],{x, x0  h, x0  h}] Limit[f[x], x Ä x0]

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

73

74

Chapter 2 Limits and Continuity

2.2 CALCULATING LIMITS USING THE LIMIT LAWS 1. 3. 4. 5.

lim (2x  5) œ 2(7)  5 œ 14  5 œ 9

lim ax#  5x  2b œ (2)#  5(2)  2 œ 4  10  2 œ 4 lim ax$  2x#  4x  8b œ (2)$  2(2)#  4(2)  8 œ 8  8  8  8 œ 16

x Ä #

lim 8(t  5)(t  7) œ 8(6  5)(6  7) œ 8 x3

œ

9.

lim y Ä & 5  y

y#

23 26

# y Ä # y  5y  6

œ

5 8

(5)# 5  (5)

œ

y2

10. lim

13.

6.

tÄ'

lim x Ä # x6

12.

lim (10  3x) œ 10  3(12) œ 10  36 œ 26

x Ä 1#

xÄ#

7.

11.

2.

x Ä (

œ

8. œ

25 10

œ

22 (2)#  5(#)  6

lim# 3s(2s  1) œ 3 ˆ 23 ‰ 2 ˆ 23 ‰  1‘ œ 2 ˆ 43  1‰ œ



$

4

lim x Ä & x7

œ

4 57

œ

4 #

œ 2

5 #

œ

4 4  10  6

œ

4 #0

œ

" 5

lim 3(2x  1)# œ 3(2(1)  1)# œ 3(3)# œ 27

x Ä "

lim (x  3)"*)% œ (4  3)"*)% œ (1)"*)% œ 1

x Ä %

%

lim (5  y)%Î$ œ [5  (3)]%Î$ œ (8)%Î$ œ ˆ(8)"Î$ ‰ œ 2% œ 16

y Ä $

14. lim (2z  8)"Î$ œ (2(0)  8)"Î$ œ (8)"Î$ œ 2 zÄ!

15. lim

3

œ

3 È3(0)  1  1

œ

3 È1  1

œ

3 2

16. lim

5

œ

5 È5(0)  4  2

œ

5 È4  #

œ

5 4

17. lim

È3h  1  " h

h Ä ! È3h  1  1 h Ä ! È5h  4  2

hÄ0

œ

3 È"  "

œ

È5h  4  2 h hÄ0 5 È4  2

19. lim

œ

x5

# x Ä & x  25

20. 21.

œ lim

a3h  "b  1

È5h  4  2 h hÄ0



È5h  4  2 È5h  4  2

œ lim

a5h  4b  4

h Ä 0 hŠÈ3h  1  "‹

œ lim

3h

œ lim

5h

h Ä 0 hŠÈ3h  1  "‹

œ lim

3

h Ä 0 È3h1"

h Ä 0 hŠÈ5h  4  2‹

h Ä 0 hŠÈ5h  4  2‹

œ lim

5 4 x5

œ lim

x Ä & (x  5)(x  5)

x3

lim

È3h  1  1 È3h  1  1

œ lim

lim # x Ä $ x  4x  3 x Ä &



hÄ0

$ #

18. lim œ

È3h  1  " h

œ lim

x#  3x  "0 x5

œ lim

œ lim

x3

x Ä $ (x  3)(x  1)

œ lim

x Ä &

1

x Ä & x5

(x  5)(x  2) x5

œ

œ lim

" 55

œ

" 10

1

œ

" 3  1

x Ä $ x  1

œ  "2

œ lim (x  2) œ &  # œ 7 x Ä &

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

5

h Ä 0 È5h  4  2

2 3

Section 2.2 Calculating Limits Using the Limit Laws (x  5)(x  2) x2

22. lim

x#  7x  "0 x#

œ lim

23. lim

t#  t  2 t#  1

t Ä " (t  1)(t  1)

xÄ#

tÄ"

t#  3t  2

lim # t Ä " t  t  2

25.

lim $ # x Ä # x  2x

2x  4

5y$  8y#

u%  "

$ u Ä 1 u 1

œ lim

y# (5y  8)

œ lim

œ lim

4x  x#

œ lim

x Ä 1 Èx  3  2

lim

x Ä "

œ lim

xÄ%

œ

x Ä "

35.

x2 x Ä 2 È x #  5  3

œ lim

œ

lim

"

œ lim

x ˆ2  È x ‰ ˆ 2  È x ‰ 2  Èx

œ lim

xÄ1

x1

œ lim

x2

x Ä 2 Èx#  12  4

œ lim

x Ä 2

(x  3) Š2  Èx#  5‹

9  x#

œ

lim

12 32

œ

3 8

" 6

œ lim x ˆ2  Èx‰ œ 4(2  2) œ 16 xÄ%

(x  1) ˆÈx  3  #‰ (x  3)  4

2 33

œ lim ŠÈx  3  #‹ xÄ1

œ  "3

ax#  12b  16 x Ä 2 (x  2) ŠÈx#  12  4‹

œ lim 4 È16  4

œ

œ lim

" 2

ax  2b ŠÈx#  5  3‹ ax #  5 b  9

x Ä 2

œ

Š2  Èx#  5‹ Š2  Èx#  5‹

x Ä 3

x Ä 3 (x  3) Š2  Èx#  5‹

È x#  5  3 x2

œ

œ

4 3

ax #  8 b  * x Ä 1 (x  1) ŠÈx#  8  $‹

ax  2b ŠÈx#  5  3‹

œ lim

444 (4)(8)

œ

œ

œ lim

œ

œ

(1  1)(1  1) 111

" È9  3

œ

x Ä * Èx  3

x Ä 2 ŠÈx#  5  3‹ ŠÈx#  5  3‹

(x  2)(x  2)

œ

v#  2v  4 (v  2) av#  4b vÄ#

(x  2) ŠÈx#  12  4‹

œ lim

œ  #"

œ lim

ŠÈx#  12  4‹ ŠÈx#  12  4‹

xÄ2

œ  13

au#  "b (u  1) u#  u  1

x Ä 1 È x #  )  $

ax  2b ŠÈx#  5  3‹

2  È x#  5 x3 x Ä 3

lim

uÄ1

œ lim

(x  2)(x  2)

lim

x Ä 2

8 16

(x  1) ŠÈx#  8  $‹

x Ä 2 (x  2) ŠÈx#  12  4‹

lim

œ

ŠÈx#  8  $‹ ŠÈx#  8  $‹

lim

(x  1)(x  1)

Èx#  12  4 x2 xÄ2

œ

5y  8

œ È4  2 œ 4

33. lim

34.

œ  21

x Ä 1 ˆÈ x  3  # ‰ ˆ È x  3  # ‰

x Ä 1 (x  1) ŠÈx#  )  $‹

œ lim

2 4

(x  1) ˆÈx  3  2‰

œ lim

È x#  8  3 x1

œ lim

x(4  x)

x Ä % 2  Èx

x1

31. lim

Èx  3

x Ä * ˆÈ x  3 ‰ ˆ È x  3 ‰

x Ä % 2  Èx

œ

2

œ lim

(v  2) av#  2v  4b (v  2)(v  2) av#  4b vÄ#

3 #

1  2 1  2

# y Ä ! 3y  16

au#  "b (u  1)(u  1) au#  u  1b (u  1)

œ

œ

# x Ä # x

# # y Ä ! y a3y  16b

Èx  3 x9

t2

t Ä " t  2

œ lim

uÄ1

12 11

œ

œ lim

2(x  2)

œ lim

30. lim

t2

œ lim

v$  8 %  16 v vÄ#

xÄ*

32.

t Ä " (t  2)(t  1)

œ lim

28. lim

29. lim

xÄ#

t Ä " t1

(t  2)(t  1)

œ lim

œ lim (x  5) œ 2  5 œ 3

œ lim

# x Ä # x (x  2)

% # y Ä 0 3y  16y

27. lim

(t  2)(t  1)

œ lim

24.

26. lim

xÄ#

È9  3 4

œ  23

œ lim

(3  x)(3  x)

4  ax #  5 b

x Ä 3 (x  3) Š2  Èx#  5‹

x Ä 3 (x  3) Š2  Èx#  5‹

œ lim

3x

x Ä 3 2  È x #  5

œ

6 2  È4

œ

3 2

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

75

76

Chapter 2 Limits and Continuity 4x x Ä 4 5  È x#  9

œ lim

a4  xb Š5  Èx#  9‹

œ lim

36. lim

x Ä 4 Š5  Èx#  9‹ Š5  Èx#  9‹

a4  xb Š5  Èx#  9‹

xÄ4

16  x#

œ lim

(4  x)(4  x)

xÄ4

25  ax#  9b

xÄ4

a4  xb Š5  Èx#  9‹

œ lim

a4  xb Š5  Èx#  9‹

5  È x#  9 4x

œ lim

xÄ4

œ

5  È25 8

œ

5 4

37. (a) quotient rule (b) difference and power rules (c) sum and constant multiple rules 38. (a) quotient rule (b) power and product rules (c) difference and constant multiple rules 39. (a) xlim f(x) g(x) œ ’xlim f(x)“ ’ x lim g(x)“ œ (5)(2) œ 10 Äc Äc Äc (b) xlim 2f(x) g(x) œ 2 ’xlim f(x)“ ’ xlim g(x)“ œ 2(5)(2) œ 20 Äc Äc Äc (c) xlim [f(x)  3g(x)] œ xlim f(x)  3 xlim g(x) œ 5  3(2) œ 1 Äc Äc Äc lim f(x) f(x) 5 5 xÄc (d) xlim œ lim f(x)  lim g(x) œ 5(2) œ 7 Ä c f(x)  g(x) x

40. (a) (b) (c) (d) 41. (a) (b) (c) (d) 42. (a) (b) (c)

Äc

Äc

lim [g(x)  3] œ lim g(x)  lim 3 œ $  $ œ !

xÄ%

xÄ%

xÄ%

lim xf(x) œ lim x † lim f(x) œ (4)(0) œ 0

xÄ%

xÄ%

#

xÄ%

#

lim [g(x)] œ ’ lim g(x)“ œ [3]# œ 9

xÄ%

g(x) x Ä % f(x)  1

lim

xÄ%

œ

Ä%

lim g(x)

x

lim f(x)  lim 1

xÄ%

xÄ%

œ

3 01

œ3

lim [f(x)  g(x)] œ lim f(x)  lim g(x) œ 7  (3) œ 4

xÄb

xÄb

xÄb

lim f(x) † g(x) œ ’ lim f(x)“ ’ lim g(x)“ œ (7)(3) œ 21

xÄb

xÄb

xÄb

lim 4g(x) œ ’ lim 4“ ’ lim g(x)“ œ (4)(3) œ 12

xÄb

xÄb

xÄb

lim f(x)/g(x) œ lim f(x)/ lim g(x) œ

xÄb

xÄb

xÄb

7 3

œ  73

lim [p(x)  r(x)  s(x)] œ lim p(x)  lim r(x)  lim s(x) œ 4  0  (3) œ 1

x Ä #

x Ä #

x Ä #

x Ä #

lim p(x) † r(x) † s(x) œ ’ lim p(x)“ ’ lim r(x)“ ’ lim s(x)“ œ (4)(0)(3) œ 0

x Ä #

x Ä #

(1  h)#  1# h hÄ!

œ lim

hÄ!

(2  h)#  (2)# h

45. lim

[3(2  h)  4]  [3(2)  4] h

hÄ!

x Ä #

x Ä #

44. lim

hÄ!

x Ä #

lim [4p(x)  5r(x)]/s(x) œ ’4 lim p(x)  5 lim r(x)“ ‚ lim s(x) œ [4(4)  5(0)]/3 œ

x Ä #

43. lim

"‰ ˆ #" h ‰  ˆ # h hÄ!

46. lim

x

1  2h  h#  1 h

œ lim

hÄ!

œ lim

hÄ!

44hh# 4 h

œ lim

hÄ!

œ lim

3h

hÄ! h

2 2  h " 2h

œ lim

x Ä #

h(2  h) h

hÄ!

x Ä #

œ lim (2  h) œ 2

h(h  4) h

hÄ!

œ lim (h  4) œ 4 hÄ!

œ3

œ lim

hÄ!

2  (2  h) 2h(#  h)

œ lim

h

h Ä ! h(4  2h)

œ  "4

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

"6 3

Section 2.2 Calculating Limits Using the Limit Laws È7  h  È7 h hÄ!

47. lim

œ lim

ŠÈ7  h  È7‹ ŠÈ7  h  È7‹

œ lim

h ŠÈ7  h  È7‹

hÄ!

h

h Ä ! h ŠÈ7hÈ7‹

È3(0  h)  1  È3(0)  1 h hÄ! 3h

h Ä ! h ŠÈ3h  1  "‹

œ

h Ä ! È 7 h  È 7

48. lim

œ lim

"

œ lim

œ lim

" #È 7

ŠÈ3h  1  "‹ ŠÈ3h  1  "‹

œ lim

h ŠÈ3h  1 "‹

hÄ!

œ lim

œ

3

h Ä ! È3h  1  1

(7  h)  7

h Ä ! h ŠÈ7  h  È7‹

(3h  1)  "

œ lim

h Ä ! h ŠÈ3h  1  1 ‹

3 #

49. lim È5  2x# œ È5  2(0)# œ È5 and lim È5  x# œ È5  (0)# œ È5; by the sandwich theorem, xÄ!

xÄ!

lim f(x) œ È5

xÄ!

50. lim a2  x# b œ 2  0 œ 2 and lim 2 cos x œ 2(1) œ 2; by the sandwich theorem, lim g(x) œ 2 xÄ!

51. (a)

xÄ!

lim Š1 

xÄ!

x# 6‹

œ1

0 6

xÄ!

œ 1 and lim 1 œ 1; by the sandwich theorem, lim

(b) For x Á 0, y œ (x sin x)/(2  2 cos x) lies between the other two graphs in the figure, and the graphs converge as x Ä 0.

52. (a)

lim Š "# 

xÄ!

lim

xÄ!

1cos x x#

x# 24 ‹

œ lim

1

xÄ! #

 lim

x#

x Ä ! #4

œ

" #

x sin x

x Ä ! 22 cos x

xÄ!

0œ

" #

and lim

"

xÄ! #

œ1

œ "# ; by the sandwich theorem,

œ "# .

(b) For all x Á 0, the graph of f(x) œ (1  cos x)/x# lies between the line y œ "# and the parabola yœ

" #

 x# /24, and the graphs converge as x Ä 0.

53. xlim f(x) exists at those points c where xlim x% œ xlim x# . Thus, c% œ c# Ê c# a1  c# b œ 0 Äc Äc Äc Ê c œ 0, 1, or 1. Moreover, lim f(x) œ lim x# œ 0 and lim f(x) œ lim f(x) œ 1. xÄ!

xÄ!

x Ä 1

xÄ1

54. Nothing can be concluded about the values of f, g, and h at x œ 2. Yes, f(2) could be 0. Since the conditions of the sandwich theorem are satisfied, lim f(x) œ 5 Á 0. xÄ#

55. 1 œ lim

xÄ%

f(x)5 x 2

lim f(x)  lim 5 % xÄ% œ xÄlim x  lim 2 œ xÄ%

xÄ%

lim f(x)  5

xÄ%

%#

Ê lim f(x)  5 œ 2(1) Ê lim f(x) œ 2  5 œ 7. xÄ%

xÄ%

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

77

78

Chapter 2 Limits and Continuity

56. (a) 1 œ lim

f(x) x#

lim f(x) lim f(x) # xÄ# œ xÄlim Ê % x# œ

(b) 1 œ lim

f(x) x#

œ ’ lim

x Ä # x Ä #

xÄ#

x Ä #

57. (a) 0 œ 3 † 0 œ ’ lim

xÄ#

lim f(x) œ 4.

x Ä #

f(x) lim x" “ x “ ’x Ä #

œ ’ lim

x Ä #

f(x) ˆ " ‰ x “ #

Ê

lim

x Ä #

f(x) x

œ 2.

f(x)  5 x  # “ ’xlim Ä#

5 (x  2)“ œ lim ’Š f(x) x  # ‹ (x  2)“ œ lim [f(x)  5] œ lim f(x)  5

f(x)  5 x  # “ ’xlim Ä#

(x  2)“ Ê lim f(x) œ 5 as in part (a).

xÄ#

Ê lim f(x) œ 5.

xÄ#

xÄ#

xÄ#

(b) 0 œ 4 † 0 œ ’ lim

xÄ#

58. (a) 0 œ 1 † 0 œ ’ lim

f(x) # “ ’ lim xÄ! x xÄ!

(b) 0 œ 1 † 0 œ 59. (a)

lim x sin

xÄ!

(b) 1 Ÿ sin

60. (a)

" x

’ lim f(x) # “ ’ lim xÄ! x xÄ!

" x

xÄ#

#

x“ œ ’ lim

f(x)

# xÄ! x

x“ œ

lim ’ f(x) x# xÄ!

# “ ’ lim x# “ œ lim ’ f(x) x# † x “ œ lim f(x). That is, lim f(x) œ 0.

xÄ!

† x“ œ

xÄ!

lim f(x) . xÄ! x

That is,

xÄ!

lim f(x) xÄ! x

œ 0.

œ0

Ÿ 1 for x Á 0:

x  0 Ê x Ÿ x sin

" x

Ÿ x Ê lim x sin

" x

œ 0 by the sandwich theorem;

x  0 Ê x   x sin

" x

  x Ê lim x sin

" x

œ 0 by the sandwich theorem.

xÄ! xÄ!

lim x# cos ˆ x"$ ‰ œ 0

xÄ!

(b) 1 Ÿ cos ˆ x"$ ‰ Ÿ 1 for x Á 0 Ê x# Ÿ x# cos ˆ x"$ ‰ Ÿ x# Ê lim x# cos ˆ x"$ ‰ œ 0 by the sandwich theorem since lim x# œ 0.

xÄ!

xÄ!

2.3 PRECISE DEFINITION OF A LIMIT 1. Step 1: Step 2:

kx  5k  $ Ê $  x  5  $ Ê $  5  x  $  5 $  5 œ 7 Ê $ œ 2, or $  5 œ 1 Ê $ œ 4. The value of $ which assures kx  5k  $ Ê 1  x  7 is the smaller value, $ œ 2.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

xÄ!

Section 2.3 Precise Definition of a Limit 2. Step 1: Step 2:

kx  2k  $ Ê $  x  2  $ Ê $  #  x  $  2 $  2 œ 1 Ê $ œ 1, or $  2 œ 7 Ê $ œ 5. The value of $ which assures kx  2k  $ Ê 1  x  7 is the smaller value, $ œ 1.

Step 1: Step 2:

kx  (3)k  $ Ê $  x  $  $ Ê $  3  x  $  3 $  3 œ  7# Ê $ œ "# , or $  $ œ  "# Ê $ œ 5# .

3.

The value of $ which assures kx  (3)k  $ Ê  7#  x   "# is the smaller value, $ œ "# .

4.

Step 1:

¸x  ˆ 3# ‰¸  $ Ê $  x 

Step 2:

$ 

Step 1:

¸x  "# ¸  $ Ê $  x 

Step 2:

$ 

œ

3 #

 $ Ê $  " #

3 #

x$

3 #

Ê $ œ #, or $  œ  Ê $ œ 1. The value of $ which assures ¸x  ˆ 3# ‰¸  $ Ê  7#  x   "# is the smaller value, $ œ ". 3 #

7 #

3 #

5. " #

 $ Ê $ 

" #

x$

" or $  #" œ 47 Ê $ œ 14 . " 4 The value of $ which assures ¸x  # ¸  $ Ê 9  x 

œ

4 9

Ê $œ

" 18 ,

" #

4 7

" #

is the smaller value, $ œ

" 18 .

6.

Step 1: Step 2:

kx  3k  $ Ê $  x  3  $ Ê $  3  x  $  3 $  $ œ 2.7591 Ê $ œ 0.2409, or $  $ œ 3.2391 Ê $ œ 0.2391. The value of $ which assures kx  3k  $ Ê 2.7591  x  3.2391 is the smaller value, $ œ 0.2391.

7. Step 1: Step 2:

kx  5k  $ Ê $  x  5  $ Ê $  5  x  $  5 From the graph, $  5 œ 4.9 Ê $ œ 0.1, or $  5 œ 5.1 Ê $ œ 0.1; thus $ œ 0.1 in either case.

8. Step 1: Step 2:

kx  (3)k  $ Ê $  x  3  $ Ê $  3  x  $  3 From the graph, $  3 œ 3.1 Ê $ œ 0.1, or $  3 œ 2.9 Ê $ œ 0.1; thus $ œ 0.1.

9. Step 1: Step 2:

kx  1k  $ Ê $  x  1  $ Ê $  1  x  $  1 9 7 From the graph, $  1 œ 16 Ê $ œ 16 , or $  1 œ 25 16 Ê $ œ

10. Step 1: Step 2:

kx  3k  $ Ê $  x  3  $ Ê $  3  x  $  3 From the graph, $  3 œ 2.61 Ê $ œ 0.39, or $  3 œ 3.41 Ê $ œ 0.41; thus $ œ 0.39.

11. Step 1:

kx  2k  $ Ê $  x  2  $ Ê $  2  x  $  2 From the graph, $  2 œ È3 Ê $ œ 2  È3 ¸ 0.2679, or $  2 œ È5 Ê $ œ È5  2 ¸ 0.2361; thus $ œ È5  2.

Step 2:

9 16 ;

thus $ œ

7 16 .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

79

80

Chapter 2 Limits and Continuity

12. Step 1: Step 2:

kx  (1)k  $ Ê $  x  1  $ Ê $  1  x  $  1 From the graph, $  1 œ  thus $ œ

È5  2 # .

È5 #

Ê $œ

È5  2 #

¸ 0.1180, or $  1 œ 

13. Step 1: Step 2:

kx  (1)k  $ Ê $  x  1  $ Ê $  1  x  $  1 7 16 From the graph, $  1 œ  16 9 Ê $ œ 9 ¸ 0.77, or $  1 œ  25 Ê

14. Step 1:

¸x  "# ¸  $ Ê $  x 

Step 2:

From the graph, $  thus $ œ 0.00248.

" #

œ

" #  1 2.01

$ Ê $  Ê $œ

1 2



" #

x$

" #.01

" #

¸ 0.00248, or $ 

" #

œ

È3 #

9 25

Ê $œ

2  È3 #

œ 0.36; thus $ œ

1 1.99

Ê $œ

1 1.99



¸ 0.1340;

9 25

" #

œ 0.36.

¸ 0.00251;

15. Step 1: Step 2:

k(x  1)  5k  0.01 Ê kx  4k  0.01 Ê 0.01  x  4  0.01 Ê 3.99  x  4.01 kx  4k  $ Ê $  x  4  $ Ê $  4  x  $  4 Ê $ œ 0.01.

16. Step 1:

k(2x  2)  (6)k  0.02 Ê k2x  4k  0.02 Ê 0.02  2x  4  0.02 Ê 4.02  2x  3.98 Ê 2.01  x  1.99 kx  (2)k  $ Ê $  x  2  $ Ê $  2  x  $  2 Ê $ œ 0.01.

Step 2: 17. Step 1: Step 2: 18. Step 1: Step 2:

¹Èx  1  "¹  0.1 Ê 0.1  Èx  1  "  0.1 Ê 0.9  Èx  1  1.1 Ê 0.81  x  1  1.21 Ê 0.19  x  0.21 kx  0k  $ Ê $  x  $ . Then, $ œ !Þ"* Ê $ œ !Þ"* or $ œ !Þ#"; thus, $ œ 0.19. ¸Èx  "# ¸  0.1 Ê 0.1  Èx  "#  0.1 Ê 0.4  Èx  0.6 Ê 0.16  x  0.36 ¸x  "4 ¸  $ Ê $  x  4"  $ Ê $  4"  B  $  4" . Then, $ 

19. Step 1: Step 2:

20. Step 1: Step 2:

21. Step 1: Step 2:

22. Step 1: Step 2:

" 4

œ 0.16 Ê $ œ 0.09 or $ 

" 4

œ 0.36 Ê $ œ 0.11; thus $ œ 0.09.

¹È19  x  $¹  " Ê "  È19  x  $  1 Ê 2  È19  x  % Ê 4  19  x  16 Ê %  x  19  16 Ê 15  x  3 or 3  x  15 kx  10k  $ Ê $  x  10  $ Ê $  10  x  $  10. Then $  10 œ 3 Ê $ œ 7, or $  10 œ 15 Ê $ œ 5; thus $ œ 5. ¹Èx  7  4¹  1 Ê "  Èx  7  %  1 Ê 3  Èx  7  5 Ê 9  x  7  25 Ê 16  x  32 kx  23k  $ Ê $  x  23  $ Ê $  23  x  $  23. Then $  23 œ 16 Ê $ œ 7, or $  23 œ 32 Ê $ œ 9; thus $ œ 7. ¸ "x  4" ¸  0.05 Ê 0.05 

" x



" 4

 0.05 Ê 0.2 

" x

 0.3 Ê

kx  4k  $ Ê $  x  4  $ Ê $  4  x  $  4. 2 2 Then $  % œ 10 3 or $ œ 3 , or $  4 œ 5 or $ œ 1; thus $ œ 3 .

10 #

x

10 3

or

10 3

 x  5.

kx#  3k  !.1 Ê 0.1  x#  3  0.1 Ê 2.9  x#  3.1 Ê È2.9  x  È3.1 ¹x  È3¹  $ Ê $  x  È3  $ Ê $  È3  x  $  È3. Then $  È3 œ È2.9 Ê $ œ È3  È2.9 ¸ 0.0291, or $  È3 œ È3.1 Ê $ œ È3.1  È3 ¸ 0.0286; thus $ œ 0.0286.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.3 Precise Definition of a Limit 23. Step 1: Step 2:

81

kx#  4k  0.5 Ê 0.5  x#  4  0.5 Ê 3.5  x#  4.5 Ê È3.5  kxk  È4.5 Ê È4.5  x  È3.5, for x near 2. kx  (2)k  $ Ê $  x  2  $ Ê $  #  x  $  2. Then $  # œ È4.5 Ê $ œ È4.5  # ¸ 0.1213, or $  # œ È3.5 Ê $ œ #  È3.5 ¸ 0.1292; thus $ œ È4.5  2 ¸ 0.12.

24. Step 1: Step 2:

25. Step 1: Step 2:

¸ "x  (1)¸  0.1 Ê 0.1 

" x

11  1  0.1 Ê  10 

" x

9 10 10 10   10 Ê  10 11  x   9 or  9  x   11 .

kx  (1)k  $ Ê $  x  1  $ Ê $  "  x  $  ". " 10 " Then $  " œ  10 9 Ê $ œ 9 , or $  " œ  11 Ê $ œ 11 ; thus $ œ

" 11 .

kax#  5b  11k  " Ê kx#  16k  1 Ê "  x#  16  1 Ê 15  x#  17 Ê È15  x  È17. kx  4k  $ Ê $  x  4  $ Ê $  %  x  $  %. Then $  % œ È15 Ê $ œ %  È15 ¸ 0.1270, or $  % œ È17 Ê $ œ È17  % ¸ 0.1231; thus $ œ È17  4 ¸ 0.12.

26. Step 1: Step 2:

27. Step 1: Step 2:

28. Step 1: Step 2:

29. Step 1: Step 2:

¸ 120 ¸ x  5  " Ê " 

Step 2:

&1 Ê 4

120 x

6 Ê

" 4



x 120



" 6

Ê 30  x  20 or 20  x  30.

kx  24k  $ Ê $  x  24  $ Ê $  24  x  $  24. Then $  24 œ 20 Ê $ œ 4, or $  24 œ 30 Ê $ œ 6; thus Ê $ œ 4. kmx  2mk  0.03 Ê 0.03  mx  2m  0.03 Ê 0.03  2m  mx  0.03  2m Ê 0.03 2  0.03 m x2 m . kx  2k  $ Ê $  x  2  $ Ê $  #  x  $  #. 0.03 0.03 Then $  # œ #  0.03 m Ê $ œ m , or $  # œ #  m Ê $ œ

0.03 m .

In either case, $ œ

kmx  3mk  c Ê c  mx  3m  c Ê c  3m  mx  c  3m Ê 3  kx  3k  $ Ê $  x  3  $ Ê $  $  B  $  $. Then $  $ œ $  mc Ê $ œ mc , or $  $ œ $  mc Ê $ œ ¸(mx  b)  ˆ m#  b‰¸  - Ê c  mx  m#  c Ê c  ¸x  "# ¸  $ Ê $  x  "#  $ Ê $  "#  x  $  "# . Then $ 

30. Step 1:

120 x

" #

œ

" #



c m

Ê $œ

c m,

or $ 

" #

œ

" #



c m

c m. m #

Ê $œ

c m

 x 3

In either case, $ œ



c m.

In either case, $ œ

c m.

m #

Ê

c m

c m. " #

 mx  c 

0.03 m .

c m

x

" #



c m.

k(mx  b)  (m  b)k  0.05 Ê 0.05  mx  m  0.05 Ê 0.05  m  mx  0.05  m 0.05 Ê 1  0.05 m x" m . kx  1k  $ Ê $  x  1  $ Ê $  "  x  $  ". 0.05 0.05 Then $  " œ "  0.05 m Ê $ œ m , or $  " œ "  m Ê $ œ

0.05 m .

In either case, $ œ

0.05 m .

31. lim (3  2x) œ 3  2(3) œ 3 xÄ3

Step 1: Step 2:

32.

ka3  2xb  (3)k  0.02 Ê 0.02  6  2x  0.02 Ê 6.02  2x  5.98 Ê 3.01  x  2.99 or 2.99  x  3.01. 0  k x  3k  $ Ê  $  x  3  $ Ê  $  $  x  $  $ . Then $  $ œ 2.99 Ê $ œ 0.01, or $  $ œ 3.01 Ê $ œ 0.01; thus $ œ 0.01.

lim (3x  #) œ (3)(1)  2 œ 1

x Ä 1

Step 1:

k(3x  2)  1k  0.03 Ê 0.03  3x  3  0.03 Ê 0.01  x  1  0.01 Ê 1.01  x  0.99.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

82

Chapter 2 Limits and Continuity kx  (1)k  $ Ê $  x  1  $ Ê $  "  x  $  1. Then $  " œ 1.01 Ê $ œ 0.01, or $  " œ 0.99 Ê $ œ 0.01; thus $ œ 0.01.

Step 2:

33. lim

x#  4

x Ä # x#

34.

35.

œ lim

xÄ#

#

(x  2)(x  2) (x  2)

œ lim (x  2) œ #  # œ 4, x Á 2 xÄ#

(x  2)(x  2) (x  2)

Step 1:

¹Š xx 24 ‹

Step 2:

Ê 1.95  x  2.05, x Á 2. kx  2k  $ Ê $  x  2  $ Ê $  #  x  $  2. Then $  # œ 1.95 Ê $ œ 0.05, or $  # œ 2.05 Ê $ œ 0.05; thus $ œ 0.05.

lim

x Ä &

x#  6x  5 x5

 4¹  0.05 Ê 0.05 

œ lim

x Ä &

(x  5)(x  1) (x  5)

 %  0.05 Ê 3.95  x  2  4.05, x Á 2

œ lim (x  1) œ 4, x Á 5. x Ä &

(x  5)(x  ") (x  5)

Step 1:

# ¹Š x x 6x5 5 ‹

Step 2:

Ê 5.05  x  4.95, x Á 5. kx  (5)k  $ Ê $  x  5  $ Ê $  &  x  $  &. Then $  & œ 5.05 Ê $ œ 0.05, or $  & œ 4.95 Ê $ œ 0.05; thus $ œ 0.05.

 (4)¹  0.05 Ê 0.05 

 4  0.05 Ê 4.05  x  1  3.95, x Á 5

lim È1  5x œ È1  5(3) œ È16 œ 4

x Ä $

Step 1:

¹È1  5x  4¹  0.5 Ê 0.5  È1  5x  4  0.5 Ê 3.5  È1  5x  4.5 Ê 12.25  1  5x  20.25

Step 2:

Ê 11.25  5x  19.25 Ê 3.85  x  2.25. kx  (3)k  $ Ê $  x  3  $ Ê $  $  x  $  $. Then $  $ œ 3.85 Ê $ œ 0.85, or $  $ œ 2.25 Ê 0.75; thus $ œ 0.75.

36. lim

4

xÄ# x

œ

4 #

œ2

Step 1:

¸ 4x  2¸  0.4 Ê 0.4 

Step 2:

kx  2k  $ Ê $  x  2  $ Ê $  #  x  $  #. Then $  # œ 53 Ê $ œ "3 , or $  # œ 5# Ê $ œ "# ; thus $ œ 3" .

4 x

 2  0.4 Ê 1.6 

4 x

 2.4 Ê

10 16



x 4



10 24

Ê

10 4

x

10 6

or

5 3

 x  25 .

37. Step 1: Step 2:

k(9  x)  5k  % Ê %  4  x  % Ê %  4  x  %  4 Ê %  %  x  4  % Ê %  %  x  4  %. kx  4k  $ Ê $  x  4  $ Ê $  %  x  $  %. Then $  4 œ %  4 Ê $ œ %, or $  % œ %  % Ê $ œ %. Thus choose $ œ %.

38. Step 1:

k(3x  7)  2k  % Ê %  3x  9  % Ê 9  %  3x  *  % Ê 3 

Step 2:

39. Step 1: Step 2:

40. Step 1:

% 3

 x  3  3% .

kx  3k  $ Ê $  x  3  $ Ê $  3  x  $  3. Then $  3 œ $  3% Ê $ œ 3% , or $  3 œ 3  3% Ê $ œ 3% . Thus choose $ œ 3% . ¹Èx  5  2¹  % Ê %  Èx  5  #  % Ê #  %  Èx  5  #  % Ê (#  %)#  x  5  (#  %)# Ê (#  %)#  &  x  (#  %)#  5. kx  9k  $ Ê $  x  9  $ Ê $  9  x  $  9. Then $  * œ %#  %%  * Ê $ œ %%  %# , or $  * œ %#  %%  * Ê $ œ %%  %# . Thus choose the smaller distance, $ œ %%  %# . ¹È4  x  2¹  % Ê %  È4  x  #  % Ê #  %  È4  x  #  % Ê (#  %)#  %  x  (#  %)# Ê (#  %)#  x  4  (#  %)# Ê (#  %)#  %  x  (#  %)#  %.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.3 Precise Definition of a Limit Step 2:

41. Step 1: Step 2:

42. Step 1: Step 2:

43. Step 1: Step 2:

kx  0k  $ Ê $  x  $ . Then $ œ (#  %)#  4 œ %#  %% Ê $ œ %%  %# , or $ œ (#  %)#  4 œ 4%  %# . Thus choose the smaller distance, $ œ 4%  %# . For x Á 1, kx#  1k  % Ê %  x#  "  % Ê "  %  x#  "  % Ê È1  %  kxk  È1  % Ê È"  %  x  È1  % near B œ ". kx  1k  $ Ê $  x  1  $ Ê $  "  x  $  ". Then $  " œ È1  % Ê $ œ "  È1  %, or $  1 œ È"  % Ê $ œ È"  %  1. Choose $ œ min š"  È1  %ß È1  %  "›, that is, the smaller of the two distances. For x Á 2, kx#  4k  % Ê %  x#  4  % Ê 4  %  x#  4  % Ê È4  %  kxk  È4  % Ê È4  %  x  È4  % near B œ 2. kx  (2)k  $ Ê $  x  2  $ Ê $  2  x  $  2. Then $  2 œ È%  % Ê $ œ È%  %  #, or $  # œ È%  % Ê $ œ #  È%  %. Choose $ œ min šÈ%  %  #ß #  È%  %› . ¸ "x  1¸  % Ê % 

" x

"% Ê "% 

" x

"% Ê

" 1%

% "%,

" 1%.

x

kx  1k  $ Ê $  x  1  $ Ê "  $  x  "  $ . Then "  $ œ " " % Ê $ œ "  " " % œ " % % , or "  $ œ " " % Ê $ œ Choose $ œ

44. Step 1:

83

" "%

"œ

% "%.

the smaller of the two distances.

¸ x"#  "3 ¸  % Ê % 

" x#



" 3

% Ê

" 3

% 

" x#



" 3

% Ê

1  3% 3



" x#



1  $% 3

Ê

3 " 

%$ x# 

3 " 

%$3 È $. Ê É 1 3 $%  kxk  É " 3 $% , or É " 3 $%  x  É "$ % for x near

Step 2:

¹x  È3¹  $ Ê $  x  È3  $ Ê È3  $  x  È3  $ . Then È3  $ œ É " 3 $% Ê $ œ È3  É " 3 $% , or È3  $ œ É " 3 $% Ê $ œ É " 3 $%  È3. Choose $ œ min šÈ3  É " 3 $% ß É " 3 $%  È3›.

45. Step 1: Step 2:

46. Step 1: Step 2:

47. Step 1:

#

¹Š xx*3 ‹  (6)¹  % Ê %  (x  3)  6  %, x Á 3 Ê %  x  3  % Ê %  $  x  %  $. kx  (3)k  $ Ê $  x  3  $ Ê $  $  x  $  3. Then $  $ œ %  $ Ê $ œ %, or $  $ œ %  $ Ê $ œ %. Choose $ œ %. #

¹Š xx11 ‹  2¹  % Ê %  (x  1)  2  %, x Á 1 Ê "  %  x  "  %. kx  1k  $ Ê $  x  1  $ Ê "  $  x  "  $ . Then "  $ œ "  % Ê $ œ %, or "  $ œ "  % Ê $ œ %. Choose $ œ %. x  1: l(4  2x)  2l  % Ê !  2  2x  % since x  1Þ Thus, 1 

% #

 x  !;

x   1: l(6x  4)  2l  % Ê ! Ÿ 6x  6  % since x   1. Thus, " Ÿ x  1  6% . Step 2:

48. Step 1:

kx  1k  $ Ê $  x  1  $ Ê "  $  x  1  $ . Then 1  $ œ "  #% Ê $ œ #% , or "  $ œ 1  6% Ê $ œ 6% . Choose $ œ 6% . x  !: k2x  0k  % Ê %  2x  ! Ê  #%  x  0; x   0: ¸ x#  !¸  % Ê ! Ÿ x  #%.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

84

Chapter 2 Limits and Continuity Step 2:

kx  0k  $ Ê $  x  $ . Then $ œ  #% Ê $ œ #% , or $ œ #% Ê $ œ #%. Choose $ œ #% .

49. By the figure, x Ÿ x sin

" x

Ÿ x for all x  0 and x   x sin

then by the sandwich theorem, in either case, lim x sin xÄ!

50. By the figure, x# Ÿ x# sin

" x

" x

" x

  x for x  0. Since lim (x) œ lim x œ 0, xÄ!

œ 0.

xÄ!

Ÿ x# for all x except possibly at x œ 0. Since lim ax# b œ lim x# œ 0, then

by the sandwich theorem, lim x# sin xÄ!

" x

xÄ!

œ 0.

xÄ!

51. As x approaches the value 0, the values of g(x) approach k. Thus for every number %  0, there exists a $  ! such that !  kx  0k  $ Ê kg(x)  kk  %. 52. Write x œ h  c. Then !  lx  cl  $ Í $  x  c  $ , x Á c Í $  ah  cb  c  $ , h  c Á c Í $  h  $ , h Á ! Í !  lh  !l  $ . Thus, limfaxb œ L Í for any %  !, there exists $  ! such that lfaxb  Ll  % whenever !  lx  cl  $ xÄc

Í lfah  cb  Ll  % whenever !  lh  !l  $ Í limfah  cb œ L. hÄ!

53. Let f(x) œ x# . The function values do get closer to 1 as x approaches 0, but lim f(x) œ 0, not 1. The xÄ!

function f(x) œ x# never gets arbitrarily close to 1 for x near 0.

54. Let f(x) œ sin x, L œ "# , and x! œ 0. There exists a value of x (namely, x œ 16 ) for which ¸sin x  "# ¸  % for any given %  0. However, lim sin x œ 0, not "# . The wrong statement does not require x to be arbitrarily close to xÄ!

x! . As another example, let g(x) œ sin "x , L œ #" , and x! œ 0. We can choose infinitely many values of x near 0 such that sin

" x

œ

" #

as you can see from the accompanying figure. However, lim sin xÄ!

" x

fails to exist. The

wrong statement does not require all values of x arbitrarily close to x! œ 0 to lie within %  0 of L œ "# . Again you can see from the figure that there are also infinitely many values of x near 0 such that sin "x œ 0. If we choose %  4" we cannot satisfy the inequality ¸sin x"  #" ¸  % for all values of x sufficiently near x! œ 0.

#

55. kA  *k Ÿ 0.01 Ê 0.01 Ÿ 1 ˆ x# ‰  9 Ÿ 0.01 Ê 8.99 Ÿ Ê

2É 8.99 1

ŸxŸ

2É 9.01 1

1 x# 4

Ÿ 9.01 Ê

4 1

(8.99) Ÿ x# Ÿ

4 1

(9.01)

or 3.384 Ÿ x Ÿ 3.387. To be safe, the left endpoint was rounded up and the right

endpoint was rounded down. 56. V œ RI Ê

V R

œ I Ê ¸ VR  5¸ Ÿ 0.1 Ê 0.1 Ÿ

120 R

 5 Ÿ 0.1 Ê 4.9 Ÿ

120 R

Ÿ 5.1 Ê

10 49

 

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

R 1#0

 

10 51

Ê

Section 2.3 Precise Definition of a Limit (120)(10) 51

ŸRŸ

(120)(10) 49

85

Ê 23.53 Ÿ R Ÿ 24.48.

To be safe, the left endpoint was rounded up and the right endpoint was rounded down. 57. (a) $  x  1  0 Ê "  $  x  1 Ê f(x) œ x. Then kf(x)  2k œ kx  2k œ 2  x  2  1 œ 1. That is, kf(x)  2k   1   "# no matter how small $ is taken when "  $  x  1 Ê lim f(x) Á 2. xÄ1

(b) 0  x  1  $ Ê "  x  "  $ Ê f(x) œ x  1. Then kf(x)  1k œ k(x  1)  1k œ kxk œ x  1. That is, kf(x)  1k   1 no matter how small $ is taken when "  x  "  $ Ê lim f(x) Á 1. xÄ1

(c) $  x  1  ! Ê "  $  x  1 Ê f(x) œ x. Then kf(x)  1.5k œ kx  1.5k œ 1.5  x  1.5  1 œ 0.5. Also, !  x  1  $ Ê 1  x  "  $ Ê f(x) œ x  1. Then kf(x)  1.5k œ k(x  1)  1.5k œ kx  0.5k œ x  0.5  "  0.5 œ 0.5. Thus, no matter how small $ is taken, there exists a value of x such that $  x  1  $ but kf(x)  1.5k   "# Ê lim f(x) Á 1.5. xÄ1

58. (a) For 2  x  2  $ Ê h(x) œ 2 Ê kh(x)  4k œ 2. Thus for %  2, kh(x)  4k   % whenever 2  x  2  $ no matter how small we choose $  0 Ê lim h(x) Á 4. xÄ#

(b) For 2  x  2  $ Ê h(x) œ 2 Ê kh(x)  3k œ 1. Thus for %  1, kh(x)  3k   % whenever 2  x  2  $ no matter how small we choose $  0 Ê lim h(x) Á 3. xÄ#

(c) For 2  $  x  2 Ê h(x) œ x# so kh(x)  2k œ kx#  2k . No matter how small $  0 is chosen, x# is close to 4 when x is near 2 and to the left on the real line Ê kx#  2k will be close to 2. Thus if %  1, kh(x)  2k   % whenever 2  $  x  2 no mater how small we choose $  0 Ê lim h(x) Á 2. xÄ#

59. (a) For 3  $  x  3 Ê f(x)  4.8 Ê kf(x)  4k   0.8. Thus for %  0.8, kf(x)  4k   % whenever 3  $  x  3 no matter how small we choose $  0 Ê lim f(x) Á 4. xÄ$

(b) For 3  x  3  $ Ê f(x)  3 Ê kf(x)  4.8k   1.8. Thus for %  1.8, kf(x)  4.8k   % whenever 3  x  3  $ no matter how small we choose $  0 Ê lim f(x) Á 4.8. xÄ$

(c) For 3  $  x  3 Ê f(x)  4.8 Ê kf(x)  3k   1.8. Again, for %  1.8, kf(x)  3k   % whenever $  $  x  3 no matter how small we choose $  0 Ê lim f(x) Á 3. xÄ$

60. (a) No matter how small we choose $  0, for x near 1 satisfying "  $  x  "  $ , the values of g(x) are near 1 Ê kg(x)  2k is near 1. Then, for % œ "# we have kg(x)  2k   "# for some x satisfying "  $  x  "  $ , or !  kx  1k  $ Ê

lim g(x) Á 2.

x Ä 1

(b) Yes, lim g(x) œ 1 because from the graph we can find a $  ! such that kg(x)  1k  % if !  kx  (1)k  $ . x Ä 1

61-66. Example CAS commands (values of del may vary for a specified eps): Maple: f := x -> (x^4-81)/(x-3);x0 := 3; plot( f(x), x=x0-1..x0+1, color=black, # (a) title="Section 2.3, #61(a)" ); L := limit( f(x), x=x0 ); # (b) epsilon := 0.2; # (c) plot( [f(x),L-epsilon,L+epsilon], x=x0-0.01..x0+0.01, color=black, linestyle=[1,3,3], title="Section 2.3, #61(c)" ); q := fsolve( abs( f(x)-L ) = epsilon, x=x0-1..x0+1 ); # (d) delta := abs(x0-q); plot( [f(x),L-epsilon,L+epsilon], x=x0-delta..x0+delta, color=black, title="Section 2.3, #61(d)" ); for eps in [0.1, 0.005, 0.001 ] do # (e)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

86

Chapter 2 Limits and Continuity q := fsolve( abs( f(x)-L ) = eps, x=x0-1..x0+1 ); delta := abs(x0-q); head := sprintf("Section 2.3, #61(e)\n epsilon = %5f, delta = %5f\n", eps, delta ); print(plot( [f(x),L-eps,L+eps], x=x0-delta..x0+delta, color=black, linestyle=[1,3,3], title=head )); end do: Mathematica (assigned function and values for x0, eps and del may vary): Clear[f, x] y1: œ L  eps; y2: œ L  eps; x0 œ 1; f[x_]: œ (3x2  (7x  1)Sqrt[x]  5)/(x  1) Plot[f[x], {x, x0  0.2, x0  0.2}] L: œ Limit[f[x], x Ä x0] eps œ 0.1; del œ 0.2; Plot[{f[x], y1, y2},{x, x0  del, x0  del}, PlotRange Ä {L  2eps, L  2eps}]

2.4 ONE-SIDED LIMITS AND LIMITS AT INFINITY 1. (a) True (e) True (i) False

(b) True (f) True (j) False

(c) False (g) False (k) True

(d) True (h) False (l) False

2. (a) True (e) True (i) True

(b) False (f) True (j) False

(c) False (g) True (k) True

(d) True (h) True

3. (a)

lim f(x) œ

x Ä #b

2 #

 " œ #, lim c f(x) œ $  # œ " xÄ#

(b) No, lim f(x) does not exist because lim b f(x) Á lim c f(x) xÄ# xÄ# xÄ# (c) lim c f(x) œ 4#  1 œ 3, lim b f(x) œ 4#  " œ $ xÄ%

xÄ%

(d) Yes, lim f(x) œ 3 because 3 œ lim c f(x) œ lim b f(x) xÄ% xÄ% xÄ% 4. (a)

lim f(x) œ

x Ä #b

2 #

œ 1, lim c f(x) œ $  # œ ", f(2) œ 2 xÄ#

(b) Yes, lim f(x) œ 1 because " œ lim b f(x) œ lim c f(x) xÄ# xÄ# xÄ# (c) lim c f(x) œ 3  (1) œ 4, lim b f(x) œ 3  (1) œ 4 x Ä "

x Ä "

(d) Yes, lim f(x) œ 4 because 4 œ x Ä "

lim

x Ä "c

f(x) œ

lim

x Ä "b

f(x)

5. (a) No, lim b f(x) does not exist since sin ˆ "x ‰ does not approach any single value as x approaches 0 xÄ! (b) lim c f(x) œ lim c 0 œ 0 xÄ!

(c)

xÄ!

lim f(x) does not exist because lim b f(x) does not exist xÄ! xÄ!

6. (a) Yes, lim b g(x) œ 0 by the sandwich theorem since Èx Ÿ g(x) Ÿ Èx when x  0 xÄ! (b) No, lim c g(x) does not exist since Èx is not defined for x  0 xÄ!

(c) No, lim g(x) does not exist since lim c g(x) does not exist xÄ! xÄ!

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.4 One-Sided Limits and Limits at Infinity 7. (aÑ

lim f(x) œ " œ lim b f(x) xÄ1 (c) Yes, lim f(x) œ 1 since the right-hand and left-hand (b)

x Ä 1c

xÄ1

limits exist and equal 1

8. (a)

(b)

lim f(x) œ 0 œ lim c f(x) xÄ1

x Ä 1b

(c) Yes, lim f(x) œ 0 since the right-hand and left-hand xÄ1

limits exist and equal 0

9. (a) domain: 0 Ÿ x Ÿ 2 range: 0  y Ÿ 1 and y œ 2 (b) xlim f(x) exists for c belonging to Äc (0ß 1)  ("ß #) (c) x œ 2 (d) x œ 0

10. (a) domain: _  x  _ range: " Ÿ y Ÿ 1 (b) xlim f(x) exists for c belonging to Äc (_ß 1)  ("ß ")  ("ß _) (c) none (d) none

11.

x Ä !Þ&c

lim

13.

x Ä #b

14.

x Ä 1c

15.

lim b

lim

lim

hÄ!

2 0.5  2 È3 É 3/2 É xx  É 1 œ 0.5  1 œ 1/2 œ

12.

lim

x Ä 1b

" 1 È0 œ ! É "1  É xx  # œ # œ

5‰ ˆ x x 1 ‰ ˆ 2x ˆ 2 ‰ 2(2)  5 ˆ"‰ x#  x œ #  " Š (#)#  (2) ‹ œ (2) # œ 1

ˆ x " 1 ‰ ˆ x x 6 ‰ ˆ 3 7 x ‰ œ ˆ 1 " 1 ‰ ˆ 1 1 6 ‰ ˆ 3 7 1 ‰ œ ˆ "# ‰ ˆ 71 ‰ ˆ 27 ‰ œ 1 Èh#  4h  5  È5 h

œ lim b hÄ!

œ lim b Š hÄ!

ah#  4h  5b  5 h ŠÈh#  4h  5  È5‹

Èh#  4h  5  È5 È # 4h  5  È5 ‹ Š Èhh#  ‹ h  4h  5  È5

œ lim b hÄ!

h(h  4) h ŠÈh#  4h  5  È5‹

œ

04 È5  È5

œ

2 È5

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

87

88 16.

Chapter 2 Limits and Continuity lim

h Ä !c

È6  È5h#  11h  6 h

6  a5h#  11h  6b

œ lim c hÄ! 17. (a)

19. (a)

) Ä $b

20. (a)

t Ä %b

(x2) (x#)

Ú) Û )

lim

akx  2k œ x  2 for x  2b

(x  3) ’ (x(x#2) ) “

lim

x Ä #c

akx  2k œ (x  2) for x  2b

(x  3)(1) œ (2  3) œ 1

È2x (x  1) (x  1)

akx  1k œ x  1 for x  1b

œ lim b È2x œ È2 xÄ1

œ lim c xÄ1

È2x (x  1) (x  1)

akx  1k œ (x  1) for x  1b

œ

œ1

3 3

lim at  ÚtÛb œ 4  4 œ 0 sin È2) È 2)

22. lim

sin kt t

23. lim

sin 3y 4y

)Ä!

tÄ!

yÄ!

œ

26. lim

2t

t Ä ! tan t

27. lim

xÄ!

)Ä!

3 sin 3y " 4 ylim 3y Ä!

sin 2x ‰ ˆ cos 2x x

œ lim

xÄ!

œ 2 lim

t

sin t t Ä ! ˆ cos t ‰

x csc 2x cos 5x

œ

œ

œ lim

tÄ!

" ‰ cos 5x

29. lim

x  x cos x

) Ä $c

(b)

t Ä %c

Ú) Û )

lim

œ

2 3

lim at  ÚtÛb œ 4  3 œ 1

t cos t sin t

œ lim ˆ sin xxcos x  xÄ!

œk†1œk

3 sin ) 4 )lim Ä! )

œ

" 3

Œ

œ

" lim

)Ä!c

(where ) œ kt) (where ) œ 3y)

3 4



sin ) )

"

œ Š lim

‹ Š lim x Ä ! cos 2x xÄ!

sin 2x

" 3

†1œ

2 sin 2x #x ‹

" 3

(where ) œ 3h)

œ1†2œ2

œ 2 Š lim cos t‹ Œ lim" sin t  œ 2 † " † " œ 2 tÄ!

œ Š #" lim

t

Ä!

t

"

‹ Š lim cos 5x ‹ x Ä ! sin 2x xÄ!

6x# cos x sin x sin 2x xÄ!

x Ä ! sin x cos x

œ

" " sin 3h 3 h lim Ä !c ˆ 3h ‰

28. lim 6x# (cot x)(csc 2x) œ lim xÄ!

)Ä!

x Ä ! x cos 2x

œ 2 lim

sin ) )

œ k lim

sin 3y 3 4 ylim Ä ! 3y

3h ‰ sin 3h

œ lim ˆ sinx2x † xÄ!

k sin ) )

œ lim

œ lim c ˆ "3 † hÄ!

h

tan 2x x

k sin kt kt

(b)

(where x œ È2))

œ1

sin x x

xÄ!

tÄ!

lim h Ä !c sin 3h

xÄ!

œ lim

œ lim

25. lim

œ  211 È6

œ lim c È2x œ È2 xÄ1

21. lim

24.

lim

(0  11) È6  È6

œ

(x  3) œ (2)  3 œ 1

lim

x Ä #b

x Ä #c

œ lim b xÄ1

È2x (x  1) kx  1 k

lim

x Ä 1c

œ

h(5h  11)

h ŠÈ6  È5h#  11h  6‹

(x  3)

lim

x Ä #b

œ

È2x (x  1) kx  1 k

lim

(b)

kx  2 k x2

(x  3)

lim

x Ä 1b

œ

œ

x Ä #c

18. (a)

kx 2 k x 2

(x  3)

lim

È5h#  11h  6 È6  È5h#  11h  6 È ‹ Š È66  ‹ h  È5h#  11h  6

œ lim c hÄ!

h ŠÈ6  È5h#  11h  6‹

x Ä #b

(b)

œ lim c Š hÄ!

2x

œ lim ˆ3 cos x † xÄ!

x cos x ‰ sin x cos x

œ lim ˆ sinx x † xÄ!

x sin x



" ‰ cos x

œ ˆ #" † 1‰ (1) œ

2x ‰ sin 2x

" #

œ3†"†1œ3

 lim

x

x Ä ! sin x

œ lim Š sin" x ‹ † lim ˆ cos" x ‰  lim Š sin" x ‹ œ (1)(1)  1 œ 2 xÄ!

30. lim

xÄ!

x

x#  x  sin x #x

xÄ!

œ lim ˆ #x  xÄ!

xÄ!

" #

x

 "# ˆ sinx x ‰‰ œ 0 

" #

 "# (1) œ 0

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.4 One-Sided Limits and Limits at Infinity 31. lim

sin(1  cos t) 1cos t

32. lim

sin (sin h) sin h

tÄ!

hÄ!

sin )

33. lim

) Ä ! sin 2)

34. lim

sin 5x

35. lim

tan 3x

œ

3 8 xlim Ä!

36. lim

yÄ!

œ

)Ä!

sin ) )

sin ) )

œ lim

)Ä!

œ 1 since ) œ 1  cos t Ä 0 as t Ä 0

œ 1 since ) œ sin h Ä 0 as h Ä 0

sin ) œ lim ˆ sin 2) †

2) ‰ #)

5x œ lim ˆ sin sin 4x †

4x 5x

sin 3x œ lim ˆ cos 3x †

" ‰ sin 8x

)Ä!

x Ä ! sin 4x

x Ä ! sin 8x

œ lim

xÄ!

xÄ!

" # )lim Ä!

œ

† 54 ‰ œ

œ lim

yÄ!

2) ‰ sin 2)

ˆ sin5x5x †

5 4 xlim Ä!

sin 3x œ lim ˆ cos 3x † 3 8

†1†1†1œ

4x ‰ sin 4x



8x 3x

†1†1œ œ

5 4

3 8

"

lim

xÄ „_

12 5

œ

12 5

œ 0 whenever

m n

 0. This result follows immediately from

ˆ xm"În ‰ œ

lim

xÄ „_

37. (a) 3

(b) 3

38. (a) 1

(b) 1

39. (a)

" #

(b)

" #

40. (a)

" 8

(b)

" 8

41. (a)  53

45.

lim

tÄ_

46. r Ä lim_

ˆ x" ‰mÎn œ Š

"

lim ‹ xÄ „_ x

mÎn

(b)  53

3 4

(b)

44.  3") Ÿ

5 4

† 83 ‰

œ1†1†1†1†

lim mÎn xÄ „_ x

Example 6 and the power rule in Theorem 8:

43.  "x Ÿ

†1†1œ

yÄ!

cos 5y ˆ 3†4 ‰ lim Š sin3y3y ‹ Š sin4y4y ‹ Š sin5y5y ‹ Š cos 4y ‹ 5 yÄ!

42. (a)

" #

sin 4y cos 5y 3†4†5y œ lim Š siny3y ‹ Š cos 4y ‹ Š sin 5y ‹ Š 3†4†5y ‹

sin 3y sin 4y cos 5y y cos 4y sin 5y

Note: In these exercises we use the result

" #

œ

" sin 8x

xÄ!

ˆ cos"3x ‰ ˆ sin3x3x ‰ ˆ sin8x8x ‰ œ

sin 3y cot 5y y cot 4y

ˆ sin) ) †

sin 2x x

Ÿ

" x

cos ) 3)

Ÿ

" 3)

2  t  sin t t  cos t

Ê x lim Ä_ Ê

47. (a) x lim Ä_

lim

) Ä _

œ lim

2 t

tÄ_

r  sin r 2r  7  5 sin r

2x  3 5x  7

$

sin 2x x

œrÄ lim_

œ x lim Ä_

œ 0 by the Sandwich Theorem

cos ) 3)

œ 0 by the Sandwich Theorem

 1  ˆ sint t ‰ 1  ˆ cost t ‰

œ

1  ˆ sinr r ‰ 2  7r  5 ˆ sinr r ‰ 2  3x 5  7x

2x  7 48. (a) x lim œ x lim Ä _ x$  x#  x  7 Ä_ (b) 2 (same process as part (a))

3 4

œ

010 10

œ 1

œrÄ lim_

2 5

2  Š x7$ ‹

1  "x  x"#  x7$

10 200

œ

(b)

" #

2 5

(same process as part (a))

œ2

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

œ 0mÎn œ 0.

89

90

Chapter 2 Limits and Continuity " x

 x"#

49. (a) x lim Ä_

x1 x#  3

œ x lim Ä_

1  x3#

50. (a) x lim Ä_

3x  7 x#  2

œ x lim Ä_

1  x2#

51. (a) x lim Ä_

7x$ x$  3x#  6x

52. (a) x lim Ä_

" x$  4x  1

&

3 x

 x7#

œ x lim Ä_

(b)

9 #

2x%

œ0

(b) 0 (same process as part (a))

" x$

œ x lim Ä_

10 x

œ x lim Ä_

œ(

 x"#  x31' 1

2

(b) 7 (same process as part (a))

œ!

1  x4#  x"$

%

9x%  x  5x#  x  6

(b) 0 (same process as part (a))

7 1  3x  x6#

10x  x  31 53. (a) x lim œ x lim x' Ä_ Ä_ (b) 0 (same process as part (a))

54. (a) x lim Ä_

œ0

(b) 0 (same process as part (a))

œ0

9  x"$

5 x#

 x"$  x6%

œ

9 #

(same process as part (a))

55. (a) x lim Ä_

2x$  2x  3 3x$  3x#  5x

œ x lim Ä_

2  x2#  x3$ 3  3x  x5#

œ  23

(b)  23 (same process as part (a)) %

x 56. (a) x lim œ x lim Ä _ x%  7x$  7x#  9 Ä_ (b) 1 (same process as part (a))

57. x lim Ä_

2Èx  x" 3x  7

59. x Ä lim _

œ x lim Ä_

$ & x È xÈ $ xÈ & x È

x"  x% x#  x$

61. x lim Ä_

2x&Î$  x"Î$  7 x)Î&  3x  Èx

62. x Ä lim _

2 Š "Î# ‹  Š x"# ‹ x 3  7x

œxÄ lim _

60. x lim Ä_

œ x lim Ä_

$ È x  5x  3 2x  x#Î$  4

" 1  7x  x7#  x9%

œ0

1  xÐ"Î&Ñ Ð"Î$Ñ 1  xÐ"Î&Ñ Ð"Î$Ñ

x  x"# 1  x"

œ x lim Ä_ œxÄ lim _

œ 1

58. x lim Ä_

œxÄ lim _

" ‹ 1  Š #Î"& x

" ‹ 1  Š #Î"&

2  Èx 2  Èx

œ x lim Ä_

2 Š "Î# ‹" x 2 Š "Î# ‹1 x

œ 1

œ1

x

œ_

"  7 2x"Î"&  "*Î"& x x)Î& " 3 1  $Î&  ""Î"! x

" x#Î$

2

 5  3x " x"Î$

œ_

x

 4x

œ  5#

63. Yes. If lim b f(x) œ L œ lim c f(x), then xlim f(x) œ L. If lim b f(x) Á lim c f(x), then xlim f(x) does not exist. Äa Äa xÄa xÄa xÄa xÄa 64. Since xlim f(x) œ L if and only if lim b f(x) œ L and lim c f(x) œ L, then xlim f(x) can be found by calculating Äc Äc xÄc xÄc lim b f(x). xÄc

65. If f is an odd function of x, then f(x) œ f(x). Given lim b f(x) œ 3, then lim c f(x) œ $. xÄ! xÄ!

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.4 One-Sided Limits and Limits at Infinity

91

66. If f is an even function of x, then f(x) œ f(x). Given lim c f(x) œ 7 then lim b f(x) œ 7. However, nothing xÄ# x Ä # can be said about 67. Yes. If x lim Ä_

lim

x Ä #c

f(x) g(x)

f(x) because we don't know lim b f(x). xÄ#

œ 2 then the ratio of the polynomials' leading coefficients is 2, so x Ä lim _

f(x) g(x)

œ 2 as well.

68. Yes, it can have a horizontal or oblique asymptote. 69. At most 1 horizontal asymptote: If x lim Ä_ f(x) lim x Ä _ g(x)

f(x) g(x)

œ L, then the ratio of the polynomials' leading coefficients is L, so

œ L as well.

Èx#  x  Èx#  x œ lim ’Èx#  x  Èx#  x“ † ’ Èx#  x  Èx#  x “ œ lim 70. x lim È x#  x  È x#  x Ä_ xÄ_ xÄ_ 2x 2 2 œ x lim œ lim œ œ 1 È # 1 1 " " Ä_ È # xÄ_ x x

x x

ax #  x b  a x #  x b È x#  x  È x#  x

É1  x  É1  x

71. For any %  0, take N œ 1. Then for all x  N we have that kf(x)  kk œ kk  kk œ 0  %. 72. For any %  0, take N œ 1. Then for all y  N we have that kf(x)  kk œ kk  kk œ 0  %. 73. I œ (5ß 5  $ ) Ê 5  x  &  $ . Also, Èx  5  % Ê x  5  %# Ê x  &  %# . Choose $ œ %# Ê lim Èx  5 œ 0. x Ä &b

74. I œ (%  $ ß %) Ê %  $  x  4. Also, È%  x  % Ê %  x  %# Ê x  %  %# . Choose $ œ %# Ê lim È%  x œ 0. x Ä %c

75. As x Ä 0 the number x is always negative. Thus, ¹ kxxk  (1)¹  % Ê ¸ xx  1¸  % Ê 0  % which is always true independent of the value of x. Hence we can choose any $  0 with $  x  ! Ê

x

lim x Ä ! c kx k

œ 1.

2 ¸ x 2 ¸ 76. Since x Ä # we have x  2 and kx  2k œ x  2. Then, ¹ kxx 2 k  " ¹ œ x  2  "  % Ê 0  %

which is always true so long as x  #. Hence we can choose any $  !, and thus #  x  #  $ 2 Ê ¹ kxx 2k  "¹  % . Thus,

77. (a)

lim

x Ä %!!b

x 2

lim x Ä #b kx2k

œ 1.

ÚxÛ œ 400. Just observe that if 400  x  401, then ÚxÛ œ 400. Thus if we choose $ œ ", we have for any

number %  ! that 400  x  400  $ Ê lÚxÛ  400l œ l400  400l œ !  %. (b) lim c ÚxÛ œ 399. Just observe that if 399  x  400 then ÚxÛ œ 399. Thus if we choose $ œ ", we have for any x Ä %!!

number %  ! that 400  $  x  400 Ê lÚxÛ  399l œ l399  399l œ !  %. (c) Since lim b ÚxÛ Á lim c ÚxÛ we conclude that lim ÚxÛ does not exist. x Ä %!!

78. (a)

x Ä %!!

x Ä %!!

lim f(x) œ lim b Èx œ È0 œ 0; ¸Èx  0¸  % Ê %  Èx  % Ê !  x  %# for x positive. Choose $ œ %# xÄ! Ê lim b f(x) œ 0.

x Ä !b

xÄ!

(b)

lim f(x) œ lim c x# sin ˆ x" ‰ œ 0 by the sandwich theorem since x# Ÿ x# sin ˆ x" ‰ Ÿ x# for all x Á 0. x Ä !c xÄ! Since kx#  0k œ kx#  0k œ x#  % whenever kxk  È%, we choose $ œ È% and obtain ¸x# sin ˆ "x ‰  0¸  % if $  x  0.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

92

Chapter 2 Limits and Continuity (c) The function f has limit 0 at x! œ 0 since both the right-hand and left-hand limits exist and equal 0.

79.

81.

82. 83. 84.

lim

" x

x sin

xÄ „_

3x  4 x Ä „ _ 2x  5

œ lim

œ

lim

"

)Ä0 )

sin ) œ 1, ˆ) œ x" ‰

3  4x 5 x Ä „ _ 2 x

lim

œ lim

3  4t

t Ä 0 2  5t

œ

80. 3 #

cos

lim

" x

x Ä _ 1  x"

œ lim c )Ä!

cos ) 1)

œ

" 1

œ 1, ˆ) œ x" ‰

, ˆt œ "x ‰

"Îx lim ˆ "x ‰ œ lim b zz œ 1, ˆz œ x" ‰ zÄ!

xÄ_

ˆ3  2x ‰ ˆcos "x ‰ œ lim (3  2))(cos )) œ (3)(1) œ 3, ˆ) œ x" ‰

lim

xÄ „_

)Ä0

lim ˆ x3#  cos x" ‰ ˆ1  sin x" ‰ œ lim b a3)#  cos )b (1  sin )) œ (0  1)(1  0) œ 1, ˆ) œ x" ‰ )Ä!

xÄ_

2.5 INFINITE LIMITS AND VERTICAL ASYMPTOTES "

œ_

1.

lim x Ä !b 3x

3.

lim x Ä #c x 2

5.

lim x Ä )b x8

7.

lim # x Ä ( (x7)

3

2x

4

œ _ œ _ œ_

lim "Î$ x Ä !b 3x

10. (a)

lim "Î& x Ä !b x 4

11. lim

#Î& xÄ! x

13.

œ lim

4

# x Ä ! ax"Î& b

œ_

Š positive positive ‹

lim x Ä !c 2x

positive Š negative ‹

4.

lim x Ä $b x  3

Š negative positive ‹

6.

lim x Ä &c 2x10

3x

œ_

positive Š positive ‹

8.

lim # x Ä ! x (x1)

œ _

(b)

lim "Î$ x Ä !c 3x

(b)

lim "Î& x Ä !c x

œ_

2

positive Š negative ‹

2.

œ_

2

9. (a)

œ _

Š positive positive ‹

œ_

5

"

"

2

2

12. lim

"

#Î$ xÄ! x

lim  tan x œ _

14.

x Ä ˆ 1# ‰

Š negative negative ‹ negative Š positive †positive ‹

œ _ œ _

œ lim

"

# x Ä ! ax"Î$ b

œ_

lim  sec x œ _

x Ä ˆ #1 ‰

lim (1  csc )) œ _

15.

) Ä !

16.

) Ä !b

lim (2  cot )) œ _ and lim c (2  cot )) œ _, so the limit does not exist )Ä!

"

œ lim b xÄ#

" (x2)(x2)

œ_

Š positive"†positive ‹

"

œ lim c xÄ#

" (x2)(x2)

œ _

Š positive†"negative ‹

17. (a)

lim # x Ä # b x 4

(b)

lim # x Ä # c x 4

(c)

lim # x Ä #b x 4

(d)

lim # x Ä #c x 4

"

œ

lim x Ä #b (x2)(x2)

"

œ _

Š positive†"negative ‹

"

œ

lim x Ä #c (x2)(x2)

"

œ_

Š negative"†negative ‹

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.5 Infinite Limits and Vertical Asymptotes x

œ lim b xÄ"

x (x1)(x1)

œ_

positive Š positive †positive ‹

x

œ lim c xÄ"

x (x1)(x1)

œ _

positive Š positive †negative ‹

18. (a)

lim # x Ä "b x 1

(b)

lim # x Ä "c x 1

(c)

lim # x Ä "b x 1

(d)

lim # x Ä "c x 1

x

œ

lim x Ä "b (x1)(x1)

x

œ_

negative Š positive †negative ‹

x

œ

lim x Ä "c (x1)(x1)

x

œ _

negative Š negative †negative ‹

19. (a)

lim x Ä !b #

x#



" x

œ 0  lim b xÄ!

" x

œ _

" Š negative ‹

(b)

lim x Ä !c #

x#



" x

œ 0  lim c xÄ!

" x

œ_

" Š positive ‹

(c)

lim # x Ä $È2

(d)

lim x Ä 1 #

20. (a)

x#

x#

lim x Ä #b

" x

 

" x

œ

x#  1 2x  4 x#  1

2#Î$ #

œ

" #

(d)

lim x Ä !c 2x  4

œ

(b) (c) (d) (e) 22. (a)

x#  3x  2 x$  2x#

lim b

x#  3x  2 x$  2x# #

x  3x  2 x$  2x#

lim

x Ä #c

lim

xÄ#

#

x  3x  2 x$  2x# #

x  3x  2 x$  2x#

lim

xÄ!

lim x Ä #b

(c)

x Ä 0c

œ lim b xÄ# œ lim c xÄ#

(d)

x Ä "b

(e)

lim x Ä !b x(x  #)

x#  1 2x  4

lim x Ä #c

œ _

positive Š negative ‹

œ0

(x  2)(x  1) x# (x  2)

œ _

(x  2)(x  1) x# (x  2)

œ lim b xÄ#

(x  2)(x  1) x# (x  2)

œ lim c xÄ#

œ lim

œ lim

(x  2)(x  1) x# (x  2)

œ _

xÄ!

x#  3x  2 x$  4x

lim

x#  3x  2 x$  4x x"

2†0 #4

(x  2)(x  1) x# (x  2)

xÄ#

lim

and

œ lim b xÄ!

œ lim b xÄ#

x#  3x  2 x$  4x

(b)

œ

œ lim

x#  3x  2 x$  4x

lim

x Ä #b

(x  1)(x  1) 2x  4

(b)

" 4

lim b

xÄ#

3 #

Š positive positive ‹

œ lim b xÄ"

xÄ!

œ 2"Î$  2"Î$ œ 0

œ_

lim x Ä "b 2x  4

21. (a)

" #"Î$

 ˆ "1 ‰ œ

(c)

x#  1



œ

xÄ#

(x  2)(x  ") x(x  #)(x  2)

(x  2)(x  ")

œ lim c xÄ! œ lim b xÄ"

(x  2)(x  ") x(x  #)(x  2) (x  2)(x  ") x(x  #)(x  2)

œ

x1 x#

œ

" 4

,xÁ2

x1 x#

œ

" 4

,xÁ2

x1 x#

œ

" 4

,xÁ2 †negative Š negative positive†negative ‹

œ lim b xÄ#

lim x Ä #b x(x  #)(x  2)

†negative Š negative positive†negative ‹

(x  1) x(x  #)

œ

(x  1)

lim x Ä #b x(x  #)

œ lim c xÄ! œ lim b xÄ"

œ_

(x  1) x(x  #)

œ

negative Š positive †positive ‹

x"

negative Š negative †positive ‹

œ_

œ

" 8

œ_

(x  1) x(x  #)

œ _

lim x Ä !c x(x  #)

" #(4)

0 (1)(3)

negative Š negative †positive ‹ negative Š negative †positive ‹

œ0

so the function has no limit as x Ä 0. lim 2 

23. (a)

t Ä !b

24. (a)

t Ä !b

25. (a)

x Ä !b

(c)

x Ä "b

3 ‘ t"Î$

œ _

" lim  t$Î&  7‘ œ _

lim

2 

lim



lim

"  ’ x#Î$

2 “ (x  1)#Î$

œ_

lim

"  ’ x#Î$

2 “ (x  1)#Î$

œ_

(b)

t Ä !c

(b)

t Ä !c

lim

"  ’ x#Î$

2 “ (x  1)#Î$

œ_

(b)

x Ä !c

lim

"  ’ x#Î$

2 “ (x  1)#Î$

œ_

(d)

x Ä "c

" t$Î&

3 ‘ t"Î$

œ_

 7‘ œ _

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

93

94

Chapter 2 Limits and Continuity

26. (a)

x Ä !b

(c)

x Ä "b

lim

"  ’ x"Î$

1 “ (x  1)%Î$

œ_

(b)

x Ä !c

lim

"  ’ x"Î$

1 “ (x  1)%Î$

œ _

lim

"  ’ x"Î$

1 “ (x  1)%Î$

œ _

(d)

x Ä "c

lim

"  ’ x"Î$

1 “ (x  1)%Î$

œ _

27. y œ

" x1

28. y œ

" x1

29. y œ

" #x  4

30. y œ

3 x3

31. y œ

x3 x2

32. y œ

2x x1

œ1

" x#

œ#

2 x1

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.5 Infinite Limits and Vertical Asymptotes 33. y œ

x# x"

35. y œ

x#  % x"

œx"

37. y œ

x#  1 x

œx

œx1

" x"

$ x"

" x

39. Here is one possibility.

34. y œ

x#  " x1

œx"

36. y œ

x2  " #x  %

œ #" x  " 

38. y œ

x$  1 x#

œx

# x1

$ #x  %

" x#

40. Here is one possibility.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

95

96

Chapter 2 Limits and Continuity

41. Here is one possibility.

42. Here is one possibility.

43. Here is one possibility.

44. Here is one possibility.

45. Here is one possibility.

46. Here is one possibility.

" x#

47. For every real number B  0, we must find a $  0 such that for all x, 0  kx  0k  $ Ê 

" x#

Ê

 B  ! Í " x#

" x#

#

B0 Í x 

" B

" ÈB

Í kxk 

. Choose $ œ

" ÈB

, then 0  kxk  $ Ê kxk 

xÄ!

" B.

 B  ! Í lxl 

" B.

Choose $ œ

Then !  kx  0k  $ Ê lxl 

" B

Ê

" lx l

" lx l

2 (x  3)#

 B  ! Í

2 (x  3)#

$ œ É B2 , then 0  kx  3k  $ Ê

B0 Í 2 (x  3)#

(x  3)# 2



" B

Í (x  3)# 

 B  0 so that lim

2

# x Ä $ (x  3)

2 B

 B. Now,

x Ä ! lx l 2 (x  3)#

Now,

#

 B  ! Í (x  5) 

Ê kx  5k 

" ÈB

Ê

" (x  5)#

" B

Í kx  5k 

 B so that lim

"

" ÈB

# x Ä & (x  5)

. Choose $ œ

œ _.

 B.

Í !  kB  $k  É B2 . Choose

œ _.

50. For every real number B  0, we must find a $  0 such that for all x, 0  kx  (5)k  $ Ê 1 (x  5)#

"

 B so that lim

49. For every real number B  0, we must find a $  0 such that for all x, 0  kx  3k  $ Ê Now,

" ÈB

 B so that lim  x"# œ _.

48. For every real number B  0, we must find a $  0 such that for all x, !  kx  0k  $ Ê " lx l

 B. Now,

" ÈB

1 (x  5)#

 B.

. Then 0  kx  (5)k  $

œ _.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.5 Infinite Limits and Vertical Asymptotes

97

51. (a) We say that f(x) approaches infinity as x approaches x! from the left, and write lim  f(x) œ _, if x Ä x!

for every positive number B, there exists a corresponding number $  0 such that for all x, x!  $  x  x! Ê f(x)  B. (b) We say that f(x) approaches minus infinity as x approaches x! from the right, and write lim  f(x) œ _, x Ä x!

if for every positive number B (or negative number B) there exists a corresponding number $  0 such that for all x, x!  x  x!  $ Ê f(x)  B. (c) We say that f(x) approaches minus infinity as x approaches x! from the left, and write lim  f(x) œ _, x Ä x!

if for every positive number B (or negative number B) there exists a corresponding number $  0 such that for all x, x!  $  x  x! Ê f(x)  B. 52. For B  0,

" x

 B  0 Í x  B" . Choose $ œ B" . Then !  x  $ Ê 0  x 

53. For B  0,

" x

 B  0 Í  x"  B  0 Í x 

Ê  B"  x Ê 54. For B  !,

" x#

" x

 B so that lim c xÄ!

" x

" B

Ê

" x#

" x#

Ê

" x#

" 1  x#

" x

œ _.

" B

Í x  2   B" Í x  2  B" . Choose $ œ B" . Then " x#

 B  0 so that lim c xÄ#

" x#

œ _.

œ _.

 B Í 1  x# 

" #B . Then "  $  x  " Ê " 1  x#  B for !  x  1 and " x

 B so that lim b xÄ!

 B Í !  x  2  B" . Choose $ œ B" . Then #  x  #  $ Ê !  x  #  $ Ê !  x  2 

 B  ! so that lim b xÄ#

57. y œ sec x 

" x

œ _.

 B Í  x " #  B Í (x  2) 

56. For B  0 and !  x  1, $

Ê

Í  B"  x. Choose $ œ B" . Then $  x  !

2  $  x  2 Ê $  x  2  ! Ê  B"  x  2  0 Ê 55. For B  0,

" B

" B

Í ("  x)("  x)  B" . Now

$  x  1  0 Ê "  x  $  x near 1 Ê

"

lim # x Ä "c "  x

" #B

1x #

 1 since x  1. Choose Ê ("  x)("  x)  B" ˆ 1 # x ‰  B"

œ _.

58. y œ sec x 

" x#

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

" B

98

Chapter 2 Limits and Continuity

59. y œ tan x 

61. y œ

" x#

x È 4  x#

63. y œ x#Î$ 

60. y œ

" x

62. y œ

" È 4  x#

 tan x

64. y œ sin ˆ x# 1 1 ‰

" x"Î$

2.6 CONTINUITY 1. No, discontinuous at x œ 2, not defined at x œ 2 2. No, discontinuous at x œ 3, " œ lim c g(x) Á g(3) œ 1.5 xÄ$

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.6 Continuity 3. Continuous on [1ß 3] 4. No, discontinuous at x œ 1, 1.5 œ lim c k(x) Á lim b k(x) œ ! xÄ" xÄ" 5. (a) Yes

(b) Yes,

(c) Yes

(d) Yes

6. (a) Yes, f(1) œ 1

lim

x Ä "b

f(x) œ 0

(b) Yes, lim f(x) œ 2 xÄ1

(c) No

(d) No

7. (a) No

(b) No

8. ["ß !)  (!ß ")  ("ß #)  (#ß $) 9. f(2) œ 0, since lim c f(x) œ 2(2)  4 œ 0 œ lim b f(x) xÄ# xÄ# 10. f(1) should be changed to 2 œ lim f(x) xÄ1

11. Nonremovable discontinuity at x œ 1 because lim f(x) fails to exist ( limc f(x) œ 1 and lim b f(x) œ 0). xÄ" xÄ1 xÄ"

Removable discontinuity at x œ 0 by assigning the number lim f(x) œ 0 to be the value of f(0) rather than xÄ!

f(0) œ 1.

12. Nonremovable discontinuity at x œ 1 because lim f(x) fails to exist ( lim c f(x) œ 2 and lim b f(x) œ 1). xÄ" xÄ1 xÄ" Removable discontinuity at x œ 2 by assigning the number lim f(x) œ 1 to be the value of f(2) rather than xÄ#

f(2) œ 2. 13. Discontinuous only when x  2 œ 0 Ê x œ 2

14. Discontinuous only when (x  2)# œ 0 Ê x œ 2

15. Discontinuous only when x#  %x  $ œ ! Ê (x  3)(x  1) œ 0 Ê x œ 3 or x œ 1 16. Discontinuous only when x#  3x  10 œ 0 Ê (x  5)(x  2) œ 0 Ê x œ 5 or x œ 2 17. Continuous everywhere. ( kx  1k  sin x defined for all x; limits exist and are equal to function values.) 18. Continuous everywhere. ( kxk  " Á 0 for all x; limits exist and are equal to function values.) 19. Discontinuous only at x œ 0 20. Discontinuous at odd integer multiples of 1# , i.e., x = (2n  ") 1# , n an integer, but continuous at all other x. 21. Discontinuous when 2x is an integer multiple of 1, i.e., 2x œ n1, n an integer Ê x œ

n1 # ,

n an integer, but

continuous at all other x. 22. Discontinuous when

1x #

is an odd integer multiple of 1# , i.e.,

1x #

œ (2n  1) 1# , n an integer Ê x œ 2n  1, n an

integer (i.e., x is an odd integer). Continuous everywhere else.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

99

100

Chapter 2 Limits and Continuity

23. Discontinuous at odd integer multiples of 1# , i.e., x = (2n  1) 1# , n an integer, but continuous at all other x. 24. Continuous everywhere since x%  1   1 and " Ÿ sin x Ÿ 1 Ê 0 Ÿ sin# x Ÿ 1 Ê 1  sin# x   1; limits exist and are equal to the function values. 25. Discontinuous when 2x  3  0 or x   3# Ê continuous on the interval  3# ß _‰ . 26. Discontinuous when 3x  1  0 or x 

" 3

Ê continuous on the interval  3" ß _‰ .

27. Continuous everywhere: (2x  1)"Î$ is defined for all x; limits exist and are equal to function values. 28. Continuous everywhere: (2  x)"Î& is defined for all x; limits exist and are equal to function values. 29. xlim sin (x  sin x) œ sin (1  sin 1) œ sin (1  0) œ sin 1 œ 0, and function continuous at x œ 1. Ä1 30. lim sin ˆ 1# cos (tan t)‰ œ sin ˆ 1# cos (tan (0))‰ œ sin ˆ 1# cos (0)‰ œ sin ˆ 1# ‰ œ 1, and function continuous at t œ !. tÄ!

31. lim sec ay sec# y  tan# y  1b œ lim sec ay sec# y  sec# yb œ lim sec a(y  1) sec# yb œ sec a("  ") sec# 1b yÄ1

yÄ1

yÄ1

œ sec 0 œ 1, , and function continuous at y œ ". 32. lim tan  14 cos ˆsin x"Î$ ‰‘ œ tan  14 cos (sin(0))‘ œ tan ˆ 14 cos (0)‰ œ tan ˆ 14 ‰ œ 1, and function continuous at x œ !. xÄ!

33. lim cos ’ È19 13 sec 2t “ œ cos ’ È19 13 sec 0 “ œ cos tÄ!

1 È16

œ cos

1 4

œ

È2 # ,

and function continuous at t œ !.

34. lim1 Écsc# x  5È3 tan x œ Écsc# ˆ 16 ‰  5È3 tan ˆ 16 ‰ œ Ê4  5È3 Š È"3 ‹ œ È9 œ 3, and function continuous at xÄ

'

x œ 1' . 35. g(x) œ

x#  9 x3

(x  3)(x  3) (x  3)

œ

36. h(t) œ

t#  3t  10 t#

37. f(s) œ

s$  " s#  1

38. g(x) œ

œ

œ

œ x  3, x Á 3 Ê g(3) œ lim (x  3) œ 6

(t  5)(t  2) t#

as#  s  1b (s  1) (s  1)(s  1)

x#  16 x#  3x  4

œ

xÄ$

œ t  5, t Á # Ê h(2) œ lim (t  5) œ 7 tÄ#

œ

(x  4)(x  4) (x  4)(x  1)

s#  s  " s1 ,

œ

x4 x1

s Á 1 Ê f(1) œ lim Š s sÄ1

#

s1 s1 ‹

4‰ , x Á 4 Ê g(4) œ lim ˆ xx  1 œ

xÄ%

œ

3 #

8 5

39. As defined, lim c f(x) œ (3)#  1 œ 8 and lim b (2a)(3) œ 6a. For f(x) to be continuous we must have xÄ$ xÄ$ 6a œ 8 Ê a œ 43 .

40. As defined,

lim

x Ä #c

g(x) œ 2 and

4b œ 2 Ê b œ  "# .

lim

x Ä #b

g(x) œ b(2)# œ 4b. For g(x) to be continuous we must have

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.6 Continuity 41. The function can be extended: f(0) ¸ 2.3.

42. The function cannot be extended to be continuous at x œ 0. If f(0) ¸ 2.3, it will be continuous from the right. Or if f(0) ¸ 2.3, it will be continuous from the left.

43. The function cannot be extended to be continuous at x œ 0. If f(0) œ 1, it will be continuous from the right. Or if f(0) œ 1, it will be continuous from the left.

44. The function can be extended: f(0) ¸ 7.39.

101

45. f(x) is continuous on [!ß "] and f(0)  0, f(1)  0 Ê by the Intermediate Value Theorem f(x) takes on every value between f(0) and f(1) Ê the equation f(x) œ 0 has at least one solution between x œ 0 and x œ 1.

46. cos x œ x Ê (cos x)  x œ 0. If x œ  1# , cos ˆ 1# ‰  ˆ 1# ‰  0. If x œ 1# , cos ˆ 1# ‰  for some x between 

1 #

and

1 #

1 #

 0. Thus cos x  x œ 0

according to the Intermediate Value Theorem.

47. Let f(x) œ x$  15x  1 which is continuous on [4ß 4]. Then f(4) œ 3, f(1) œ 15, f(1) œ 13, and f(4) œ 5. By the Intermediate Value Theorem, f(x) œ 0 for some x in each of the intervals %  x  1, "  x  1, and "  x  4. That is, x$  15x  1 œ 0 has three solutions in [%ß 4]. Since a polynomial of degree 3 can have at most 3 solutions, these are the only solutions. 48. Without loss of generality, assume that a  b. Then F(x) œ (x  a)# (x  b)#  x is continuous for all values of x, so it is continuous on the interval [aß b]. Moreover F(a) œ a and F(b) œ b. By the Intermediate Value Theorem, since a  a # b  b, there is a number c between a and b such that F(x) œ a # b .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

102

Chapter 2 Limits and Continuity

49. Answers may vary. Note that f is continuous for every value of x. (a) f(0) œ 10, f(1) œ 1$  8(1)  10 œ 3. Since $  1  10, by the Intermediate Value Theorem, there exists a c so that !  c  1 and f(c) œ 1. (b) f(0) œ 10, f(4) œ (4)$  8(4)  10 œ 22. Since 22  È3  10, by the Intermediate Value Theorem, there exists a c so that 4  c  0 and f(c) œ È3. (c) f(0) œ 10, f(1000) œ (1000)$  8(1000)  10 œ 999,992,010. Since 10  5,000,000  999,992,010, by the Intermediate Value Theorem, there exists a c so that !  c  1000 and f(c) œ 5,000,000. 50. All five statements ask for the same information because of the intermediate value property of continuous functions. (a) A root of f(x) œ x$  3x  1 is a point c where f(c) œ 0. (b) The points where y œ x$ crosses y œ 3x  1 have the same y-coordinate, or y œ x$ œ 3x  1 Ê f(x) œ x$  3x  1 œ 0. (c) x$  3x œ 1 Ê x$  3x  1 œ 0. The solutions to the equation are the roots of f(x) œ x$  3x  1. (d) The points where y œ x$  3x crosses y œ 1 have common y-coordinates, or y œ x$  3x œ 1 Ê f(x) œ x$  3x  1 œ !. (e) The solutions of x$  3x  1 œ 0 are those points where f(x) œ x$  3x  1 has value 0. 51. Answers may vary. For example, f(x) œ

sin (x  2) x2

is discontinuous at x œ 2 because it is not defined there.

However, the discontinuity can be removed because f has a limit (namely 1) as x Ä 2. 52. Answers may vary. For example, g(x) œ

" x1

has a discontinuity at x œ 1 because lim g(x) does not exist. x Ä "

Š lim c g(x) œ _ and lim b g(x) œ _.‹ x Ä " x Ä " 53. (a) Suppose x! is rational Ê f(x! ) œ 1. Choose % œ "# . For any $  0 there is an irrational number x (actually infinitely many) in the interval (x!  $ ß x!  $ ) Ê f(x) œ 0. Then 0  kx  x! k  $ but kf(x)  f(x! )k œ 1  "# œ %, so x lim f(x) fails to exist Ê f is discontinuous at x! rational. Äx !

On the other hand, x! irrational Ê f(x! ) œ 0 and there is a rational number x in (x!  $ ß x!  $ ) Ê f(x) œ 1. Again x lim f(x) fails to exist Ê f is discontinuous at x! irrational. That is, f is discontinuous at Äx !

every point. (b) f is neither right-continuous nor left-continuous at any point x! because in every interval (x!  $ ß x! ) or (x! ß x!  $ ) there exist both rational and irrational real numbers. Thus neither limits lim  f(x) and x Ä x!

lim  f(x) exist by the same arguments used in part (a).

x Ä x!

54. Yes. Both f(x) œ x and g(x) œ x  g ˆ "# ‰ œ 0 Ê

f(x) g(x)

" #

are continuous on [!ß "]. However

f(x) g(x)

is undefined at x œ

" #

since

is discontinuous at x œ "# .

55. No. For instance, if f(x) œ 0, g(x) œ ÜxÝ, then h(x) œ 0 aÜxÝb œ 0 is continuous at x œ 0 and g(x) is not. 56. Let f(x) œ œ

" x1

" (x  1)  1

œ

and g(x) œ x  1. Both functions are continuous at x œ 0. The composition f ‰ g œ f(g(x)) " x

is discontinuous at x œ 0, since it is not defined there. Theorem 10 requires that f(x) be

continuous at g(0), which is not the case here since g(0) œ 1 and f is undefined at 1. 57. Yes, because of the Intermediate Value Theorem. If f(a) and f(b) did have different signs then f would have to equal zero at some point between a and b since f is continuous on [aß b].

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.7 Tangents and Derivatives 58. Let f(x) be the new position of point x and let d(x) œ f(x)  x. The displacement function d is negative if x is the left-hand point of the rubber band and positive if x is the right-hand point of the rubber band. By the Intermediate Value Theorem, d(x) œ 0 for some point in between. That is, f(x) œ x for some point x, which is then in its original position. 59. If f(0) œ 0 or f(1) œ 1, we are done (i.e., c œ 0 or c œ 1 in those cases). Then let f(0) œ a  0 and f(1) œ b  1 because 0 Ÿ f(x) Ÿ 1. Define g(x) œ f(x)  x Ê g is continuous on [0ß 1]. Moreover, g(0) œ f(0)  0 œ a  0 and g(1) œ f(1)  1 œ b  1  0 Ê by the Intermediate Value Theorem there is a number c in (!ß ") such that g(c) œ 0 Ê f(c)  c œ 0 or f(c) œ c. 60. Let % œ

kf(c)k #

 0. Since f is continuous at x œ c there is a $  0 such that kx  ck  $ Ê kf(x)  f(c)k  %

Ê f(c)  %  f(x)  f(c)  %. If f(c)  0, then % œ "# f(c) Ê " #

" #

If f(c)  0, then % œ  f(c) Ê

f(c)  f(x)  3 #

3 #

f(c)  f(x) 

f(c) Ê f(x)  0 on the interval (c  $ ß c  $ ). " #

f(c) Ê f(x)  0 on the interval (c  $ ß c  $ ).

61. By Exercises 52 in Section 2.3, we have xlim faxb œ L Í lim fac  hb œ L. Äc hÄ0

Thus, faxb is continuous at x œ c Í xlim faxb œ facb Í lim fac  hb œ facb. Äc hÄ0

62. By Exercise 61, it suffices to show that lim sinac  hb œ sin c and lim cosac  hb œ cos c. hÄ0

hÄ0

Now lim sinac  hb œ lim asin cbacos hb  acos cbasin hb‘ œ asin cbŠ lim cos h‹  acos cbŠ lim sin h‹ hÄ0

hÄ0

hÄ0

hÄ0

By Example 6 Section 2.2, lim cos h œ " and lim sin h œ !. So lim sinac  hb œ sin c and thus faxb œ sin x is hÄ0

continuous at x œ c. Similarly,

hÄ0

hÄ0

lim cosac  hb œ lim acos cbacos hb  asin cbasin hb‘ œ acos cbŠ lim cos h‹  asin cbŠ lim sin h‹ œ cos c.

hÄ0

hÄ0

Thus, gaxb œ cos x is continuous at x œ c.

hÄ0

63. x ¸ 1.8794, 1.5321, 0.3473

64. x ¸ 1.4516, 0.8547, 0.4030

65. x ¸ 1.7549

66. x ¸ 1.5596

67. x ¸ 3.5156

68. x ¸ 3.9058, 3.8392, 0.0667

69. x ¸ 0.7391

70. x ¸ 1.8955, 0, 1.8955

hÄ0

2.7 TANGENTS AND DERIVATIVES 1. P" : m" œ 1, P# : m# œ 5

2. P" : m" œ 2, P# : m# œ 0

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

103

104

Chapter 2 Limits and Continuity

3. P" : m" œ 5# , P# : m# œ  "# 5. m œ lim

hÄ!

4. P" : m" œ 3, P# : m# œ 3

c4  ("  h)# d  a4  (1)# b h

 a1  2h  h# b1 h hÄ!

œ lim

œ lim

hÄ!

h(#  h) h

œ 2;

at ("ß $): y œ $  #(x  (1)) Ê y œ 2x  5, tangent line

6. m œ lim

hÄ!

c(1  h  1)#  1d  c("  ")#  1d h

h#

œ lim

hÄ! h

œ lim h œ 0; at ("ß "): y œ 1  0(x  1) Ê y œ 1, hÄ!

tangent line

È 2È 1  h  2È 1 œ lim 2 1 h h  2 h hÄ! hÄ! 4(1  h)  4 œ lim œ lim È1 2h  1 h Ä ! 2h ŠÈ1  h  1‹ hÄ!

7. m œ lim



2È 1  h  2 2È 1  h  #

œ 1;

at ("ß #): y œ 2  1(x  1) Ê y œ x  1, tangent line

8. m œ lim

hÄ!

"

(1  h)#

 ("" )#

h

 a2h  h# b # h Ä ! h(1  h)

œ lim

1  (1  h)# # h Ä ! h(1h) 2h lim # œ 2; h Ä ! (1  h)

œ lim œ

at ("ß "): y œ 1  2(x  (1)) Ê y œ 2x  3, tangent line

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.7 Tangents and Derivatives (2  h)$  (2)$ h

9. m œ lim

hÄ!

8  12h  6h#  h$  8 h

œ lim

hÄ!

œ lim a12  6h  h# b œ 12; hÄ!

at (2ß 8): y œ 8  12(x  (2)) Ê y œ 12x  16, tangent line

"

(#  h)$

10. m œ lim

h

hÄ!

œ

"2 8(8)

hÄ!

hÄ!

at ˆ#ß  "8 ‰ : y œ  8"  Ê yœ

11. m œ lim

hÄ!

x

" #,

12  6h  h# 8(2  h)$

œ lim

3 œ  16 ;

3 16

8  (#  h)$ 8h(#  h)$

œ lim

 a12h  6h#  h$ b 8h(#  h)$

œ lim

hÄ!

 (#" )$

3 16 (x

 (2))

tangent line

c(2  h)#  1d  5 h

œ lim

hÄ!

a5  4h  h# b  5 h

hÄ!

at (2ß 5): y  5 œ 4(x  2), tangent line 12. m œ lim

hÄ!

c("  h)  2(1  h)# d  (1) h

œ lim

hÄ!

h(4  h) h

œ lim

a1  h  2  4h  2h# b  1 h

hÄ!

3h (3  h)  2

3

h

œ lim

hÄ!

(3  h)  3(h  1) h(h  1)

h Ä ! h(h  1)

at ($ß $): y  3 œ 2(x  3), tangent line 14. m œ lim

hÄ!

8 (2  h)#

2

h

hÄ!

hÄ!

(2  h)$  8 h

œ lim

hÄ!

œ lim

a8  12h  6h#  h$ b  8 h

hÄ!

at (2ß )): y  8 œ 12(t  2), tangent line 16. m œ lim

hÄ!

c(1  h)$  3(1  h)d  4 h

a1  3h  3h#  h$  3  3hb  4 h

œ lim

hÄ!

at ("ß %): y  4 œ 6(t  1), tangent line È4  h  2 h hÄ!

17. m œ lim

È4  h  2 h hÄ!

œ lim

œ "4 ; at (%ß #): y  2 œ 18. m œ lim

hÄ!

œ

" È9  3

È(8  h)  1  3 h

" 4



È4  h  2 È4  h  2

œ lim

hÄ!

h a12  6h  h# b h

œ lim

œ 3;

œ 2;

8  2 a4  4h  h# b h(2  h)# hÄ!

8  2(2  h)# # h Ä ! h(2  h)

œ lim

at (2ß 2): y  2 œ 2(x  2) 15. m œ lim

2h

œ lim

h(3  2h) h

œ lim

at ("ß "): y  1 œ 3(x  1), tangent line 13. m œ lim

œ %;

œ lim

2h(4  h) h(2  h)#

œ

8 4

œ 2;

œ 12;

œ lim

hÄ!

(4  h)  4

h Ä ! h ŠÈ4  h  #‹

h a6  3h  h# b h

œ lim

œ 6;

h

h Ä ! h ŠÈ4  h  #‹

œ

" È4  #

(x  4), tangent line

œ lim

hÄ!

È9  h  3 h

œ 6" ; at (8ß 3): y  3 œ

19. At x œ 1, y œ 5 Ê m œ lim

hÄ!

" 6



È9  h  3 È9  h  3

œ lim

(9  h)  9

h Ä ! h ŠÈ9  h  3‹

œ lim

h

h Ä ! h ŠÈ9  h  3‹

(x  8), tangent line

5("  h)#  5 h

œ lim

hÄ!

5 a1  2h  h# b  5 h

œ lim

hÄ!

5h(2  h) h

œ 10, slope

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

105

106

Chapter 2 Limits and Continuity c1  (2  h)# d  (3) h

20. At x œ 2, y œ 3 Ê m œ lim

hÄ!

21. At x œ 3, y œ

" #

"

(3  h) 1

Ê m œ lim

 #"

22. At x œ 0, y œ 1 Ê m œ lim

hÄ!

h1 h1

hÄ!

hÄ!

 (1) h

a1 4 4h  h# b  3 h

2  (2  h) 2h(2  h)

œ lim

h

hÄ!

œ lim

hÄ!

hÄ!

h

œ lim

h Ä ! 2h(2  h)

(h  1)  (h  ") h(h  1)

œ lim

œ lim

œ lim

h(4  h) h

œ 4, slope

œ  "4 , slope 2h

h Ä ! h(h  1)

œ 2, slope

c(x  h)#  4(x  h)  1d  ax#  4x  1b h hÄ! a2xh  h#  4hb lim œ lim (2x  h  4) œ 2x h hÄ! hÄ!

23. At a horizontal tangent the slope m œ 0 Ê 0 œ m œ lim ax#  2xh  h#  4x  4h  1b  ax#  4x  1b h hÄ!

œ lim

œ

 4;

2x  4 œ 0 Ê x œ 2. Then f(2) œ 4  8  1 œ 5 Ê (2ß 5) is the point on the graph where there is a horizontal tangent. 24. 0 œ m œ lim

hÄ!

c(x  h)$  3(x  h)d  ax$  3xb h

3x# h  3xh#  h$  3h h

œ lim

hÄ!

œ lim

hÄ!

ax$  3x# h  3xh#  h$  3x  3hb  ax$  3xb h

œ lim a3x#  3xh  h#  3b œ 3x#  3; 3x#  3 œ 0 Ê x œ 1 or x œ 1. Then hÄ!

f(1) œ 2 and f(1) œ 2 Ê ("ß 2) and ("ß 2) are the points on the graph where a horizontal tangent exists. "

(x  h)  1

25. 1 œ m œ lim

 x " 1

h

hÄ!

(x  1)  (x  h  1) h(x  1)(x  h  1)

œ lim

hÄ!

h

œ lim

h Ä ! h(x  1)(x  h  1)

œ  (x " 1)#

Ê (x  1)# œ 1 Ê x#  2x œ 0 Ê x(x  2) œ 0 Ê x œ 0 or x œ 2. If x œ 0, then y œ 1 and m œ 1 Ê y œ 1  (x  0) œ (x  1). If x œ 2, then y œ 1 and m œ 1 Ê y œ 1  (x  2) œ (x  3). 26.

" 4

œ m œ lim

Èx  h  Èx

œ lim

h

y œ 2  "4 (x  4) œ

hÄ!

f(2  h)  f(2) h

x 4

Èx  h  Èx h

hÄ!

h Ä ! h ŠÈx  h  Èx‹

27. lim

œ lim

h

hÄ!

œ

" #È x

. Thus,

" 4

œ



Èx  h  Èx Èx  h  Èx

" #Èx

(x  h)  x

œ lim

h Ä ! h ŠÈx  h  Èx‹

Ê Èx œ 2 Ê x œ 4 Ê y œ 2. The tangent line is

 1.

œ lim

hÄ!

a100  4.9(#  h)# b  a100  4.9(2)# b h

4.9 a4  4h  h# b  4.9(4) h

œ lim

hÄ!

œ lim (19.6  4.9h) œ 19.6. The minus sign indicates the object is falling downward at a speed of hÄ!

19.6 m/sec. f(10  h)  f(10) h hÄ!

28. lim

3(10  h)#  3(10)# h hÄ!

œ lim

29. lim

f(3  h)  f(3) h

œ lim

30. lim

f(2  h)  f(2) h

œ lim

hÄ!

hÄ!

hÄ!

hÄ!

1(3  h)#  1(3)# h 41 3

œ lim

(2  h)$  431 (2)$ h

f(0  h)  f(0) h hÄ!

31. Slope at origin œ lim

3 a20h  h# b h hÄ!

œ lim

hÄ!

œ lim

1 c9  6h h#  9d h 41 3

hÄ!

h# sin ˆ "h ‰ h hÄ!

œ lim

œ 60 ft/sec. œ lim 1(6  h) œ 61

c12h  6h#  h$ d h

hÄ!

œ lim

hÄ!

41 3

c12  6h  h# d œ 161

œ lim h sin ˆ h" ‰ œ 0 Ê yes, f(x) does have a tangent at hÄ!

the origin with slope 0. 32. lim

hÄ!

g(0  h)  g(0) h

œ lim

hÄ!

h sin ˆ "h ‰ h

œ lim sin h" . Since lim sin hÄ!

hÄ!

" h

does not exist, f(x) has no tangent at

the origin.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.7 Tangents and Derivatives 33.

lim

h Ä !c

lim

hÄ!

34.

f(0  h)  f(0) h f(0  h)  f(0) h

œ lim c hÄ!

1  0 h

œ _, and lim b hÄ!

f(0  h)  f(0) h

10 h

œ lim b hÄ!

œ _ Ê yes, the graph of f has a vertical tangent at the origin.

œ _, and lim b U(0  h)h  U(0) œ lim b hÄ! hÄ! does not have a vertical tangent at (!ß ") because the limit does not exist. lim

h Ä !c

œ _. Therefore,

U(0  h)  U(0) h

œ lim c hÄ!

01 h

11 h

œ 0 Ê no, the graph of f

35. (a) The graph appears to have a cusp at x œ 0.

(b)

lim

h Ä !c

f(0  h)  f(0) h

œ lim c hÄ!

h#Î&  0 h

œ lim c hÄ!

" h$Î&

œ _ and lim b hÄ!

" h$Î&

œ _ Ê limit does not exist

Ê the graph of y œ x#Î& does not have a vertical tangent at x œ 0.

36. (a) The graph appears to have a cusp at x œ 0.

(b)

lim

h Ä !c

f(0  h)  f(0) h

œ lim c hÄ!

h%Î&  0 h

œ lim c hÄ!

" h"Î&

œ _ and lim b hÄ!

" h"Î&

œ _ Ê limit does not exist

Ê y œ x%Î& does not have a vertical tangent at x œ 0.

37. (a) The graph appears to have a vertical tangent at x œ !.

(b)

f(0  h)  f(0) h hÄ!

lim

h"Î&  0 h hÄ!

œ lim

œ lim

"

%Î& hÄ! h

œ _ Ê y œ x"Î& has a vertical tangent at x œ 0.

38. (a) The graph appears to have a vertical tangent at x œ 0.

(b)

lim

hÄ!

f(0  h)  f(0) h

at x œ 0.

œ lim

hÄ!

h$Î&  0 h

œ lim

"

#Î& hÄ! h

œ _ Ê the graph of y œ x$Î& has a vertical tangent

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

107

108

Chapter 2 Limits and Continuity

39. (a) The graph appears to have a cusp at x œ 0.

(b)

lim

h Ä !c

f(0  h)  f(0) h

œ lim c hÄ!

4h#Î&  2h h

œ lim c hÄ!

4 h$Î&

 2 œ _ and lim b hÄ!

4 h$Î&

#œ_

Ê limit does not exist Ê the graph of y œ 4x#Î&  2x does not have a vertical tangent at x œ 0.

40. (a) The graph appears to have a cusp at x œ 0.

(b)

lim

hÄ!

f(0  h)  f(0) h

œ lim

hÄ!

h&Î$  5h#Î$ h

œ lim h#Î$  hÄ!

5 h"Î$

œ 0  lim

5

"Î$ hÄ! h

y œ x&Î$  5x#Î$ does not have a vertical tangent at x œ !.

does not exist Ê the graph of

41. (a) The graph appears to have a vertical tangent at x œ 1 and a cusp at x œ 0.

(b) x œ 1:

(1  h)#Î$  (1  h  1)"Î$  " h hÄ! #Î$ "Î$

lim

Ê yœx

x œ 0:

 (x  1)

lim f(0  h)h  f(0) hÄ!

(1  h)#Î$  h"Î$  " h hÄ!

œ lim

has a vertical tangent at x œ 1;

h#Î$  (h  1)"Î$  (1)"Î$ h hÄ! #Î$ "Î$

œ lim

does not exist Ê y œ x

œ _

 (x  1)

" œ lim ’ h"Î$ 

hÄ!

(h  ")"Î$ h

 h" “

does not have a vertical tangent at x œ 0.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 2.7 Tangents and Derivatives 42. (a) The graph appears to have vertical tangents at x œ 0 and x œ 1.

(b) x œ 0:

h"Î$  (h  1)"Î$  (")"Î$ h hÄ!

f(0  h)  f(0) h hÄ!

œ lim

f(1  h)  f(1) h

œ lim

lim

œ _ Ê y œ x"Î$  (x  1)"Î$ has a

vertical tangent at x œ 0;

x œ 1:

lim

hÄ!

hÄ!

(1  h)"Î$  ("  h  1)"Î$  1 h

œ _ Ê y œ x"Î$  (x  1)"Î$ has a

vertical tangent at x œ ".

43. (a) The graph appears to have a vertical tangent at x œ 0.

(b)

lim

h Ä !b

f(0  h)  f(0) h

œ lim b xÄ!

Èh  0 h

œ lim

È kh k  0

f(0  h)  f(0) h

"

h Ä ! Èh

œ lim c œ lim c h hÄ! hÄ! Ê y has a vertical tangent at x œ 0. lim

h Ä !c

œ _; È kh k  kh k

œ lim c hÄ!

" È kh k

œ_

44. (a) The graph appears to have a cusp at x œ 4.

(b)

lim

f(4  h)  f(4) h

œ lim b hÄ!

Èk4  (4  h)k  0 h

lim

f(4  h)  f(4) h

œ lim c hÄ!

Èk4  (4  h)k h

h Ä !b h Ä !c

œ lim b hÄ!

œ lim c hÄ!

È kh k h

È kh k lhl

œ lim b hÄ!

œ lim c hÄ!

" Èh

" È kh k

œ _;

œ _

Ê y œ È%  x does not have a vertical tangent at x œ 4. 45-48. Example CAS commands: Maple: f := x -> x^3 + 2*x;x0 := 0; plot( f(x), x=x0-1/2..x0+3, color=black, # part (a) title="Section 2.7, #45(a)" ); q := unapply( (f(x0+h)-f(x0))/h, h ); # part (b) L := limit( q(h), h=0 ); # part (c) sec_lines := seq( f(x0)+q(h)*(x-x0), h=1..3 ); # part (d) tan_line := f(x0) + L*(x-x0); plot( [f(x),tan_line,sec_lines], x=x0-1/2..x0+3, color=black, Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

109

110

Chapter 2 Limits and Continuity

linestyle=[1,2,5,6,7], title="Section 2.7, #45(d)", legend=["y=f(x)","Tangent line at x=0","Secant line (h=1)", "Secant line (h=2)","Secant line (h=3)"] ); Mathematica: (function and value for x0 may change) Clear[f, m, x, h] x0 œ p; f[x_]: œ Cos[x]  4Sin[2x] Plot[f[x], {x, x0  1, x0  3}] dq[h_]: œ (f[x0+h]  f[x0])/h m œ Limit[dq[h], h Ä 0] ytan: œ f[x0]  m(x  x0) y1: œ f[x0]  dq[1](x  x0) y2: œ f[x0]  dq[2](x  x0) y3: œ f[x0]  dq[3](x  x0) Plot[{f[x], ytan, y1, y2, y3}, {x, x0  1, x0  3}] CHAPTER 2 PRACTICE EXERCISES 1. At x œ 1: Ê

lim

x Ä "c

f(x) œ

lim

x Ä "b

f(x) œ 1

lim f(x) œ 1 œ f(1)

x Ä 1

Ê f is continuous at x œ 1. At x œ 0: lim c f(x) œ lim b f(x) œ 0 Ê lim f(x) œ 0. xÄ!

xÄ!

xÄ!

But f(0) œ 1 Á lim f(x) xÄ!

Ê f is discontinuous at x œ 0. If we define fa!b œ !, then the discontinuity at x œ ! is removable. At x œ 1: lim c f(x) œ 1 and lim b f(x) œ 1 xÄ"

Ê lim f(x) does not exist

xÄ"

xÄ1

Ê f is discontinuous at x œ 1. 2. At x œ 1: Ê

lim

x Ä "c

f(x) œ 0 and

lim

x Ä "b

f(x) œ 1

lim f(x) does not exist

x Ä "

Ê f is discontinuous at x œ 1. At x œ 0: lim c f(x) œ _ and lim b f(x) œ _ xÄ!

Ê lim f(x) does not exist

xÄ!

xÄ!

Ê f is discontinuous at x œ 0. At x œ 1: lim c f(x) œ lim b f(x) œ 1 Ê lim f(x) œ 1. xÄ"

xÄ1

xÄ"

But f(1) œ 0 Á lim f(x) xÄ1

Ê f is discontinuous at x œ 1. If we define fa"b œ ", then the discontinuity at x œ " is removable. 3. (a) (b)

lim a3fatbb œ 3 lim fatb œ 3(7) œ 21

t Ä t!

t Ä t!

#

#

lim afatbb œ Š lim fatb‹ œ a(b# œ 49

t Ä t!

t Ä t!

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 2 Practice Exercises (c) (d) (e) (f)

111

lim afatb † gatbb œ lim fatb † lim gatb œ (7)(0) œ 0

t Ä t!

t Ä t!

lim fatb t Ä t! g(t)7

Ät

t Ä t!

lim fatb

œ

Ät

t

t

Ät

t

!

Ät

t

!

7 07

œ

lim gatb  lim 7

t

!

Ät

lim fatb

œ

!

lim agatb  7b

!

œ1

lim cos agatbb œ cos Š lim gatb‹ œ cos ! œ 1

t Ä t!

t Ä t!

lim kfatbk œ ¹ lim fatb¹ œ k7k œ 7

t Ä t!

t Ä t!

(g) lim afatb  gatbb œ lim fatb  lim gatb œ 7  0 œ 7 t Ä t!

(h)

4. (a) (b) (c) (d) (e) (f)

t Ä t!

lim Š " ‹ t Ä t! fatb

œ

" lim fatb

t

Ät

t Ä t!

" 7

œ

!

œ  71

lim g(x) œ  lim g(x) œ È2

xÄ!

xÄ!

lim ag(x) † f(x)b œ lim g(x) † lim f(x) œ ŠÈ2‹ ˆ "# ‰ œ

xÄ!

xÄ!

xÄ!

lim af(x)  g(x)b œ lim f(x)  lim g(x) œ

xÄ!

"

lim x Ä ! f(x)

œ

xÄ!

" lim f(x)

œ

xÄ!

" " #

xÄ!

œ2

" #

lim ax  f(x)b œ lim x  lim f(x) œ 0 

xÄ!

xÄ!

f(x)†cos x x 1 xÄ!

lim

xÄ!

lim f(x)† lim cos x

œ

xÄ!

xÄ!

lim x  lim 1

xÄ!

xÄ!

œ

ˆ "# ‰ (1) 01

" #

È2 #

 È2

œ

" #

œ  #"

5. Since lim x œ 0 we must have that lim (4  g(x)) œ 0. Otherwise, if lim (%  g(x)) is a finite positive xÄ!

xÄ!

xÄ!

’ 4xg(x) “

’ 4xg(x) “

œ _ and lim b œ _ so the limit could not equal 1 as xÄ! x Ä 0. Similar reasoning holds if lim (4  g(x)) is a finite negative number. We conclude that lim g(x) œ 4. number, we would have lim c xÄ!

xÄ!

6. 2 œ lim

x Ä %

xÄ!

’x lim g(x)“ œ lim x † lim xÄ!

x Ä %

x Ä %

’ lim g(x)“ œ 4 lim xÄ!

(since lim g(x) is a constant) Ê lim g(x) œ xÄ!

xÄ!

2 %

x Ä %

œ  #" .

’ lim g(x)“ œ 4 lim g(x) xÄ!

xÄ!

7. (a) xlim faxb œ xlim x"Î$ œ c"Î$ œ facb for every real number c Ê f is continuous on a_ß _b. Äc Äc (b) xlim gaxb œ xlim x$Î% œ c$Î% œ gacb for every nonnegative real number c Ê g is continuous on Ò!ß _Ñ. Äc Äc (c) xlim haxb œ xlim x#Î$ œ Äc Äc (d) xlim kaxb œ xlim x"Î' œ Äc Äc

" c#Î$ " c"Î'

œ hacb for every nonzero real number c Ê h is continuous on a_ß !b and a_ß _b. œ kacb for every positive real number c Ê k is continuous on a!ß _b

8. (a) - ˆˆn  "# ‰1ß ˆn  "# ‰1‰, where I œ the set of all integers. n−I (b) - an1ß an  1b1b, where I œ the set of all integers. n−I (c) a_ß 1b  a1ß _b (d) a_ß !b  a!ß _b 9.

(a)

(b) 10. (a)

(x  2)(x  2) x#  4x  4 $  5x#  14x œ lim x xÄ! x Ä ! x(x  7)(x  2) x2 x2 lim œ _ and lim b x(x  7) x Ä !c x(x  7)

œ lim

lim (x  2)(x  2) x Ä # x(x  7)(x  #)

œ lim

lim

#

x  4x  4

xÄ!

lim $ # x Ä # x  5x  14x x#  x

lim & % $ x Ä ! x  2x  x Now lim c xÄ!

œ

œ lim

x(x  1)

$ # x Ä ! x ax  2x  1b

1 x# (x  1)

œ _ and lim b xÄ!

x2

, x Á 2; the limit does not exist because

x2

, x Á 2, and lim

x Ä ! x(x  7)

œ _

x Ä # x(x  7)

œ lim

x1

# x Ä ! x (x  1)(x  1)

1 x# (x  1)

x2

x Ä # x(x  7)

œ lim

œ _ Ê lim

"

# x Ä 0 x (x  1) #

x x

& % $ x Ä ! x  2x  x

œ

0 2(9)

œ0

, x Á 0 and x Á 1.

œ _.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

112

Chapter 2 Limits and Continuity

(b)

x#  x

exist because

$ # x Ä " x ax  2x  1b

"

1  Èx 1x

œ lim

12. xlim Äa

x #  a# x %  a%

œ xlim Äa

13. lim

(x  h)#  x# h

œ lim

(x  h)#  x# h xÄ!

œ lim

hÄ!

"

15. lim

#x  #

16. lim

(#  x)$  8 x

xÄ!

xÄ!

17.

18.

xÄ!

xÄ!

lim

xÄ1

" x  g(x)

3x#  1 g(x)

œ2 Ê

xÄ!

"

x Ä ! 4  #x

xÄ!

xÄ1

5  x#

œ0 Ê

" #

lim 4 g(x) œ 8, since 2$ œ 8. Then lim b g(x) œ 2. xÄ!

x Ä !b

Ê È5  lim

x Ä È5

g(x) œ

" #

Ê

lim

x Ä È5

g(x) œ

 %x  ) $x $

x Ä #

#! &!

ˆ"  œxÄ lim _ $x

% $x#

"

#

#

# &

œ

" x# 24. x lim œ x lim œ Ä _ x #  (x  " Ä _ "  (x  x"#

#x  $ ##. x Ä lim œxÄ lim _ &x#  ( _ &  ) ‰ $x$



! "!!

$ x# ( x#

œ

#! &!

œ!!!œ!

œ!

#

%

x  (x x( 25. x Ä lim œxÄ lim œ _ _ x  1 _ "  "x

$

x x x" #'. x lim œxÄ lim œ_ Ä _ "#x$  "#) _ "#  "#) x$

lsin xl lsin xl " 27. x lim Ÿ x lim œ ! since int x Ä _ as x Ä _ Êx lim œ !. Ä _ gx h Ä _ gx h Ä _ gx h

lim

)Ä_

29. x lim Ä_

lcos )  "l )

Ÿ lim

"

l#l

)Ä_ )

x  sin x  #Èx x  sin x

#Î$

 È5

lim g(x) œ _ since lim a5  x# b œ 1

# $

28.

" #

xÄ1

x Ä #

#x  $ x 21. x lim œ x lim œ Ä _ &x  ( Ä _ &  (x #

œ2 Ê

œ _ Ê lim g(x) œ 0 since lim a3x#  1b œ 4

lim x Ä # Èg(x)

x 23. x Ä lim _

œ  "4

œ lim ax#  6x  12b œ 12

(x  g(x)) œ

lim

" #a#

œ lim (2x  h) œ h

œ lim

x Ä È&

œ

" #

hÄ!

"Î$

x Ä È&

œ

œ _.

œ lim (2x  h) œ 2x

ax$  6x#  12x  8b  8 x

œ lim

" x #  a#

œ xlim Äa

ax#  2hx  h# b  x# h

2  (2  x) 2x(#  x)

œ lim

"

lim [4 g(x)]"Î$ œ 2 Ê ’ lim b 4 g(x)“ x Ä !b xÄ!

19. lim 20.

x

ax #  a # b ax #  a # b a x #  a # b

"

lim # x Ä "b x (x  1)

x Ä 1 1  Èx

, x Á 0 and x Á 1. The limit does not

1

# x Ä " x (x  1)

œ lim

ax#  2hx  h# b  x# h xÄ!

14. lim

"

"  Èx

x Ä 1 ˆ1  È x ‰ ˆ 1  È x ‰

hÄ!

œ lim

œ _ and

lim # x Ä "c x (x  1)

11. lim

xÄ1

x(x  1)

œ lim

lim & % $ x Ä " x  2x  x

œ ! Ê lim

œ x lim Ä_

)Ä_

"  sinx x  È#x "  sinx x

&Î$

x x " x 30. x lim œ x lim #x  œ Ä _ x#Î$  cos# x Ä _Œ "  cos#Î$

lcos )  "l )

œ !.

"!! "!

œ"

œ

"! "!

œ"

x

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

œ

# &

Chapter 2 Practice Exercises 31. At x œ 1: œ

lim

x Ä "c

lim

x Ä "c

lim

x Ä "b

f(x) œ

x ax #  1 b x#  1

f(x) œ

œ

lim

x ax #  1 b kx #  1 k

lim

x Ä "c

lim

x Ä "c

x Ä "b

x œ 1, and

x ax #  1 b kx #  1 k

œ

x ax #  1 b

lim # x Ä "b  ax  "b

œ lim (x) œ (1) œ 1. Since x Ä 1

lim f(x) Á lim b f(x) x Ä "c x Ä " Ê

lim f(x) does not exist, the function f cannot be

x Ä 1

extended to a continuous function at x œ 1. At x œ 1:

lim f(x) œ lim c xÄ"

x Ä "c

#

x ax #  1 b kx #  1 k

œ lim c xÄ" #

x ax #  1 b  ax #  1 b

œ lim c (x) œ 1, and xÄ"

lim f(x) œ lim b xkaxx# 11k b œ lim b x axx# "1b œ lim b x œ 1. Again lim f(x) does not exist so f xÄ1 xÄ" xÄ" xÄ1 cannot be extended to a continuous function at x œ 1 either.

x Ä "b

32. The discontinuity at x œ 0 of f(x) œ sin ˆ "x ‰ is nonremovable because lim sin xÄ!

" x

does not exist.

33. Yes, f does have a continuous extension to a œ 1: " define f(1) œ lim xxÈ œ 43 . % x xÄ1

34. Yes, g does have a continuous extension to a œ 1# : ) 5 g ˆ 1# ‰ œ lim1 45)cos  #1 œ  4 . )Ä #

35. From the graph we see that lim h(t) Á lim h(t) tÄ! tÄ! so h cannot be extended to a continuous function at a œ 0.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

113

114

Chapter 2 Limits and Continuity

36. From the graph we see that lim c k(x) Á lim b k(x) xÄ! xÄ! so k cannot be extended to a continuous function at a œ 0.

37. (a) f(1) œ 1 and f(2) œ 5 Ê f has a root between 1 and 2 by the Intermediate Value Theorem. (b), (c) root is 1.32471795724 38. (a) f(2) œ 2 and f(0) œ 2 Ê f has a root between 2 and 0 by the Intermediate Value Theorem. (b), (c) root is 1.76929235424 CHAPTER 2 ADDITIONAL AND ADVANCED EXERCISES 1. (a)

x xx

0.1 0.7943

0.01 0.9550

0.001 0.9931

10

100

1000

0.3679

0.3679

0.3679

0.0001 0.9991

0.00001 0.9999

Apparently, lim b xx œ 1 xÄ! (b)

2. (a)

x ˆ "x ‰"ÎÐln xÑ Apparently,

"ÎÐln xÑ lim ˆ " ‰ xÄ_ x

œ 0.3678 œ

" e

(b)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 2 Additional and Advanced Exercises 115 3.

lim L œ lim c L! É"  vc# œ L! É1  vÄcc# œ L! É1  cc# œ 0 vÄc The left-hand limit was needed because the function L is undefined if v  c (the rocket cannot move faster than the speed of light). lim v#

#

v Ä cc

#

4. ¹

Èx #

 1¹  0.2 Ê 0.2 

Èx #

 1  0.2 Ê 0.8 

Èx #

 1.2 Ê 1.6  Èx  2.4 Ê 2.56  x  5.76.

¹

Èx #

 1¹  0.1 Ê 0.1 

Èx #

 1  0.1 Ê 0.9 

Èx #

 1.1 Ê 1.8  Èx  2.2 Ê 3.24  x  4.84.

5. k10  (t  70) ‚ 10%  10k  0.0005 Ê k(t  70) ‚ 10% k  0.0005 Ê 0.0005  (t  70) ‚ 10%  0.0005 Ê 5  t  70  5 Ê 65°  t  75° Ê Within 5° F. 6. We want to know in what interval to hold values of h to make V satisfy the inequality lV  "!!!l œ l$'1h  "!!!l Ÿ "!. To find out, we solve the inequality: **! l$'1h  "!!!l Ÿ "! Ê "! Ÿ $'1h  "!!! Ÿ "! Ê **! Ÿ $'1h Ÿ "!"! Ê $' 1 Ÿ hŸ

"!"! $'1

Ê )Þ) Ÿ h Ÿ )Þ*. where 8.8 was rounded up, to be safe, and 8.9 was rounded down, to be safe. The interval in which we should hold h is about )Þ*  )Þ) œ !Þ" cm wide (1 mm). With stripes 1 mm wide, we can expect to measure a liter of water with an accuracy of 1%, which is more than enough accuracy for cooking.

7. Show lim f(x) œ lim ax#  7b œ ' œ f(1). xÄ1

xÄ1

Step 1: kax#  7b  6k  % Ê %  x#  1  % Ê 1  %  x#  1  % Ê È1  %  x  È1  %. Step 2: kx  1k  $ Ê $  x  1  $ Ê $  "  x  $  ". Then $  " œ È1  % or $  " œ È1  %. Choose $ œ min š1  È1  %ß È1  %  1› , then 0  kx  1k  $ Ê kax#  (b  6k  % and lim f(x) œ 6. By the continuity test, f(x) is continuous at x œ 1. xÄ1

8. Show lim" g(x) œ lim" xÄ



%

" 2x

œ 2 œ g ˆ "4 ‰ .

%

Step 1: ¸ #"x  2¸  % Ê %  #"x  #  % Ê #  %  #"x  #  % Ê Step 2: ¸B  "4 ¸  $ Ê $  x  4"  $ Ê $  4"  x  $  4" . Then $  Choose $ œ

" 4

œ

" 4  #%

% 4(#%)

Ê $œ

" 4



" 4  #%

œ

% 4(2  %)

, or $ 

" 4

œ

, the smaller of the two values. Then 0  ¸x

By the continuity test, g(x) is continuous at x œ

" 4

" 4  #% Ê  4" ¸  $

" 4#%

x

" 4  #% ¸ #"x 

" 4#%

.

" 4

% 4(2  %)





œ

Ê

2¸  % and lim"

.



%

" #x

œ 2.

.

9. Show lim h(x) œ lim È2x  3 œ " œ h(2). xÄ#

xÄ#

Step 1: ¹È2x  3  1¹  % Ê %  È2x  3  "  % Ê "  %  È2x  3  "  % Ê

(1  %)#  $ #

x

("  %)#  3 . #

Step 2: kx  2k  $ Ê $  x  2  $ or $  #  x  $  #. ("  % )#  $ Ê $œ # ("  % Ñ #  $ ("  %Ñ#  " #œ # #

Then $  # œ

#

Ê $œ

œ%

# ("  %)#  $ œ "  (1# %) # #  %# . Choose $ œ %

œ% 

%# #,

%# #

, or $  # œ

("  %)#  $ #

the smaller of the two values . Then,

!  kx  2k  $ Ê ¹È2x  3  "¹  %, so lim È2x  3 œ 1. By the continuity test, h(x) is continuous at x œ 2. xÄ#

10. Show lim F(x) œ lim È9  x œ # œ F(5). xÄ&

xÄ&

Step 1: ¹È9  x  2¹  % Ê %  È9  x  #  % Ê 9  (2  %)#  x  *  (#  %)# . Step 2: 0  kx  5k  $ Ê $  x  &  $ Ê $  &  x  $  &. Then $  & œ *  (#  %)# Ê $ œ (#  %)#  % œ %#  #%, or $  & œ *  (#  %)# Ê $ œ %  (#  %)# œ %#  #%.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

116

Chapter 2 Limits and Continuity

Choose $ œ %#  #%, the smaller of the two values. Then, !  kx  5k  $ Ê ¹È9  x  #¹  %, so lim È9  x œ #. By the continuity test, F(x) is continuous at x œ 5.

xÄ&

11. Suppose L" and L# are two different limits. Without loss of generality assume L#  L" . Let % œ

" 3

(L#  L" ).

Since x lim f(x) œ L" there is a $"  0 such that 0  kx  x! k  $" Ê kf(x)  L" k  % Ê %  f(x)  L"  % Äx !

Ê  "3 (L#  L" )  L"  f(x) 

" 3

(L#  L" )  L" Ê 4L"  L#  3f(x)  2L"  L# . Likewise, x lim f(x) œ L# Ä x! so there is a $# such that 0  kx  x! k  $# Ê kf(x)  L# k  % Ê %  f(x)  L#  % Ê  "3 (L#  L" )  L#  f(x)  3" (L#  L" )  L# Ê 2L#  L"  3f(x)  4L#  L" Ê L"  4L#  3f(x)  2L#  L" . If $ œ min e$" ß $# f both inequalities must hold for 0  kx  x! k  $ : 4L"  L#  3f(x)  2L"  L# Ê 5(L"  L# )  0  L"  L# . That is, L"  L#  0 and L"  L#  0, L"  %L#  3f(x)  2L#  L"  a contradiction. 12. Suppose xlim f(x) œ L. If k œ !, then xlim kf(x) œ xlim 0 œ ! œ ! † xlim f(x) and we are done. Äc Äc Äc Äc % If k Á 0, then given any %  !, there is a $  ! so that !  lx  cl  $ Ê lfaxb  Ll  l5l Ê lkllfaxb  Ll  % Ê lkafaxb  Lb|  % Ê lakfaxbb  akLbl  %. Thus, xlim kf(x) œ kL œ kŠxlim f(x)‹. Äc Äc 13. (a) Since x Ä 0 , 0  x$  x  1 Ê ax$  xb Ä 0 Ê

lim f ax$  xb œ lim c f(y) œ B where y œ x$  x. yÄ!

x Ä !b

(b) Since x Ä 0 , 1  x  x$  0 Ê ax$  xb Ä 0 Ê

(c) Since x Ä 0 , 0  x%  x#  1 Ê ax#  x% b Ä 0 Ê

lim f ax$  xb œ lim b f(y) œ A where y œ x$  x. yÄ!

x Ä !c

lim f ax#  x% b œ lim b f(y) œ A where y œ x#  x% . yÄ!

x Ä !b

(d) Since x Ä 0 , 1  x  0 Ê !  x%  x#  1 Ê ax#  x% b Ä 0 Ê

lim f ax#  x% b œ A as in part (c).

x Ä !b

14. (a) True, because if xlim (f(x)  g(x)) exists then xlim (f(x)  g(x))  xlim f(x) œ xlim [(f(x)  g(x))  f(x)] Äa Äa Äa Äa œ xlim g(x) exists, contrary to assumption. Äa

(b) False; for example take f(x) œ

" x

and g(x) œ  x" . Then neither lim f(x) nor lim g(x) exists, but

lim (f(x)  g(x)) œ lim ˆ "x  x" ‰ œ lim 0 œ 0 exists.

xÄ!

xÄ!

xÄ!

xÄ!

xÄ!

(c) True, because g(x) œ kxk is continuous Ê g(f(x)) œ kf(x)k is continuous (it is the composite of continuous functions). 1, x Ÿ 0 Ê f(x) is discontinuous at x œ 0. However kf(x)k œ 1 is (d) False; for example let f(x) œ œ 1, x  0 continuous at x œ 0. 15. Show lim f(x) œ lim x Ä 1

x#  "

x Ä 1 x  1

œ lim

x Ä 1

(x  1)(x  ") (x  1)

Define the continuous extension of f(x) as F(x) œ œ

œ #, x Á 1.

x#  1 x1 ,

2

x Á " . We now prove the limit of f(x) as x Ä 1 , x œ 1

exists and has the correct value. #

Step 1: ¹ xx 1"  (#)¹  % Ê % 

(x  1)(x  ") (x  1)

 #  % Ê %  (x  1)  #  %, x Á " Ê %  "  x  %  ".

Step 2: kx  (1)k  $ Ê $  x  1  $ Ê $  "  x  $  ". Then $  " œ %  " Ê $ œ %, or $  " œ %  " Ê $ œ %. Choose $ œ %. Then !  kx  (1)k  $ #

Ê ¹ xx 1"  a#b¹  % Ê

lim F(x) œ 2. Since the conditions of the continuity test are met by F(x), then f(x) has a

x Ä 1

continuous extension to F(x) at x œ 1.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 2 Additional and Advanced Exercises 117 16. Show lim g(x) œ lim xÄ$

xÄ$

x#  2x  3 2x  6

œ lim

xÄ$

(x  3)(x  ") 2(x  3)

œ #, x Á 3. #

x  2x  3 2x  6 ,

Define the continuous extension of g(x) as G(x) œ œ

xÁ3 . We now prove the limit of g(x) as , xœ3

2

x Ä 3 exists and has the correct value. Step 1: ¹ x

#

 2x  3 #x  6

 2¹  % Ê % 

(x  3)(x  ") 2(x  3)

 #  % Ê % 

x" #

 #  % , x Á $ Ê $  #%  x  $  #% .

Step 2: kx  3k  $ Ê $  x  3  $ Ê $  $  x  $  $. Then, $  $ œ $  #% Ê $ œ #%, or $  $ œ $  #% Ê $ œ #%. Choose $ œ #%. Then !  kx  3k  $ Ê ¹x

#

 2x  3 2x  6

 2¹  % Ê lim

xÄ$

(x  3)(x  ") #(x  3)

œ 2. Since the conditions of the continuity test hold for G(x),

g(x) can be continuously extended to G(x) at B œ 3. 17. (a) Let %  ! be given. If x is rational, then f(x) œ x Ê kf(x)  0k œ kx  0k  % Í kx  0k  %; i.e., choose $ œ %. Then kx  0k  $ Ê kf(x)  0k  % for x rational. If x is irrational, then f(x) œ 0 Ê kf(x)  0k  % Í !  % which is true no matter how close irrational x is to 0, so again we can choose $ œ %. In either case, given %  ! there is a $ œ %  ! such that !  kx  0k  $ Ê kf(x)  0k  %. Therefore, f is continuous at x œ 0. (b) Choose x œ c  !. Then within any interval (c  $ ß c  $ ) there are both rational and irrational numbers. If c is rational, pick % œ #c . No matter how small we choose $  ! there is an irrational number x in (c  $ ß c  $ ) Ê kf(x)  f(c)k œ k0  ck œ c 

c #

œ %. That is, f is not continuous at any rational c  0. On

the other hand, suppose c is irrational Ê f(c) œ 0. Again pick % œ #c . No matter how small we choose $  ! there is a rational number x in (c  $ ß c  $ ) with kx  ck  œ kxk 

c #

œ% Í

œ % Ê f is not continuous at any irrational c  0.

If x œ c  0, repeat the argument picking % œ nonzero value x œ c. 18. (a) Let c œ

c #

kc k #

œ

c # .

x

c #

Then kf(x)  f(c)k œ kx  0k

3c #.

Therefore f fails to be continuous at any

m n

be a rational number in [0ß 1] reduced to lowest terms Ê f(c) œ "n . Pick % œ

" #n

œ %. Therefore f is discontinuous at x œ c, a rational number.

" #n .

No matter how small $  ! is taken, there is an irrational number x in the interval (c  $ ß c  $ ) Ê kf(x)  f(c)k œ ¸0  "n ¸ œ

" n



(b) Now suppose c is an irrational number Ê f(c) œ 0. Let %  0 be given. Notice that number reduced to lowest terms with denominator 2 and belonging to [0ß 1]; denominator 3 belonging to [0ß 1];

" 4

and

[0ß 1]; etc. In general, choose N so that

" N

3 4

with denominator 4 in [0ß 1];

" 3

and

" 2 3 5, 5, 5

2 3

and

" #

is the only rational

the only rationals with 4 5

with denominator 5 in

 % Ê there exist only finitely many rationals in [!ß "] having

denominator Ÿ N, say r" , r# , á , rp . Let $ œ min ekc  ri k : i œ 1ß á ß pf . Then the interval (c  $ ß c  $ ) contains no rational numbers with denominator Ÿ N. Thus, 0  kx  ck  $ Ê kf(x)  f(c)k œ kf(x)  0k œ kf(x)k Ÿ N"  % Ê f is continuous at x œ c irrational.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

118

Chapter 2 Limits and Continuity

(c) The graph looks like the markings on a typical ruler when the points (xß f(x)) on the graph of f(x) are connected to the x-axis with vertical lines.

19. Yes. Let R be the radius of the equator (earth) and suppose at a fixed instant of time we label noon as the zero point, 0, on the equator Ê 0  1R represents the midnight point (at the same exact time). Suppose x" is a point on the equator “just after" noon Ê x"  1R is simultaneously “just after" midnight. It seems reasonable that the temperature T at a point just after noon is hotter than it would be at the diametrically opposite point just after midnight: That is, T(x" )  T(x"  1R)  0. At exactly the same moment in time pick x# to be a point just before midnight Ê x#  1R is just before noon. Then T(x# )  T(x#  1R)  0. Assuming the temperature function T is continuous along the equator (which is reasonable), the Intermediate Value Theorem says there is a point c between 0 (noon) and 1R (simultaneously midnight) such that T(c)  T(c  1R) œ 0; i.e., there is always a pair of antipodal points on the earth's equator where the temperatures are the same. #

#

# # " 20. xlim f(x)g(x) œ xlim af(x)  g(x)b‹  Šxlim af(x)  g(x)b‹ “ ’af(x)  g(x)b  af(x)  g(x)b “ œ "% ’Šxlim Äc Äc % Äc Äc œ "% ˆ$#  a"b# ‰ œ #.

21. (a) At x œ 0: lim r (a) œ lim aÄ!

œ lim

1  ("  a)

aÄ!

a Ä ! a ˆ"  È1  a‰

At x œ 1: (b) At x œ 0:

lim

a Ä "b

œ

r (a) œ

"  È1  a a 1 "  È1  0

œ lim c aÄ!

1  ("  a) a ˆ"  È1  a‰

œ

" #

aÄ!

1  (1  a)

lim

a Ä "b a ˆ1  È1  a‰

lim r (a) œ lim c aÄ!

a Ä !c

È1  a

œ lim Š "  a

"  È1  a a

œ lim c aÄ!

"  È1  a

‹ Š "  È1  a ‹ a

œ lim

a Ä 1 a ˆ"  È1  a‰ È1  a

œ lim c Š "  a aÄ!

a a ˆ 1  È 1  a ‰

œ lim c aÄ!

œ

" "  È0

œ1

"  È1  a

‹ Š "  È1  a ‹

" œ _ (because the "  È1  a " œ _ (because the "  È1  a

denominator is always negative); lim b r (a) œ lim b aÄ! aÄ! is always positive). Therefore, lim r (a) does not exist. aÄ!

At x œ 1:

lim r (a) œ lim b a Ä "b a Ä "

1  È 1  a a

œ

lim

"

a Ä 1b "  È1  a

œ1

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

denominator

Chapter 2 Additional and Advanced Exercises 119 (c)

(d)

22. f(x) œ x  2 cos x Ê f(0) œ 0  2 cos 0 œ 2  0 and f(1) œ 1  2 cos (1) œ 1  #  0. Since f(x) is continuous on [1ß !], by the Intermediate Value Theorem, f(x) must take on every value between [1  #ß #]. Thus there is some number c in [1ß !] such that f(c) œ 0; i.e., c is a solution to x  2 cos x œ 0. 23. (a) The function f is bounded on D if f(x)   M and f(x) Ÿ N for all x in D. This means M Ÿ f(x) Ÿ N for all x in D. Choose B to be max ekMk ß kNkf . Then kf(x)k Ÿ B. On the other hand, if kf(x)k Ÿ B, then B Ÿ f(x) Ÿ B Ê f(x)   B and f(x) Ÿ B Ê f(x) is bounded on D with N œ B an upper bound and M œ B a lower bound. (b) Assume f(x) Ÿ N for all x and that L  N. Let % œ L # N . Since x lim f(x) œ L there is a $  ! such that Äx !

0  kx  x! k  $ Ê kf(x)  Lk  % Í L  %  f(x)  L  % Í L  Í

LN #

 f(x) 

3L  N # .

But L  N Ê

LN #

Ê L

 f(x)  L 

ML #

Í

3L  M #

 f(x)

ML # . As in part (b), 0  kx  L  M  M, a contradiction. #

24. (a) If a   b, then a  b   0 Ê ka  bk œ a  b Ê max (aß b) œ

ab #



ka  b k #

If a Ÿ b, then a  b Ÿ 0 Ê ka  bk œ (a  b) œ b  a Ê max (aß b) œ œ

2b #

 f(x)  L 

x! k  $

ab ab 2a #  # œ # œ a. ka  b k ab œ a # b  b # a #  #

œ

œ b.

(b) Let min (aß b) œ

ab #



ka  b k #

LN #

 N Ê N  f(x) contrary to the boundedness assumption

f(x) Ÿ N. This contradiction proves L Ÿ N. (c) Assume M Ÿ f(x) for all x and that L  M. Let % œ ML #

LN #

.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

120

Chapter 2 Limits and Continuity

25. lim œ xÄ0

sina"  cos xb x

œ lim

œ lim

xÄ0



sin x

xÄ0 x

26.

lim

sin x

x Ä 0b sin Èx

œ

sina"  cos xb "  cos x

sin x "  cos x

sin x

lim x Ä 0b B





"  cos x x

Èx sin Èx





œ lim

x Èx

œ lim

sinasin xb sin x

28. lim

sinax#  xb x

œ lim

sinax#  xb x#  x

† ax  "b œ lim

sinax#  %b x Ä 2 x2

œ lim

sinax#  %b # x Ä 2 x %

† ax  2b œ lim

xÄ0

29. lim

xÄ0

sinˆÈx  $‰ x9 xÄ9

30. lim

sin x x

xÄ0

sinasin xb sin x



sina"  cos xb "  cos x

† lim

"  cos# x

x Ä 0 xa"  cos xb

" Èx  $

† lim

sin x

xÄ0 x

œ " † lim

œ " † " œ ".

sinax#  xb x#  x

† lim ax  "b œ " † " œ "

sinax#  %b # x Ä 2 x %

† lim ax  2b œ " † % œ %

xÄ0

sinˆÈx  $‰ x Ä 9 Èx  $

œ lim

xÄ0

œ " † lim b sin"Èx † lim b Èx œ " † ! † ! œ !. x Ä 0 Š Èx ‹ x Ä 0

sinasin xb x

xÄ0

œ lim

œ " † ˆ #! ‰ œ !.

27. lim

xÄ0

"  cos x "  cos x



xÄ0

xÄ2

sinˆÈx  $‰ x Ä 9 Èx  $

œ lim

† lim

"

x Ä 9 Èx  $

œ"†

" '

œ

" '

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

sin# x

x Ä 0 xa"  cos xb

CHAPTER 3 DIFFERENTIATION 3.1 THE DERIVATIVE OF A FUNCTION 1. Step 1: f(x) œ 4  x# and f(x  h) œ 4  (x  h)# f(x  h)  f(x) h

Step 2:

œ

c4  (x  h)# d  a4  x# b h

œ

a4  x#  2xh  h# b  4  x# h

œ

2xh  h# h

œ

h(2x  h) h

œ 2x  h Step 3: f w (x) œ lim (2x  h) œ 2x; f w ($) œ 6, f w (0) œ 0, f w (1) œ 2 hÄ!

c(x  h  1)#  1d  c(x  1)#  1d h hÄ! 2xh  h#  2h lim œ lim (2x  h  2) h hÄ! hÄ!

2. F(x) œ (x  1)#  1 and F(x  h) œ (x  h  1)#  " Ê Fw (x) œ lim ax#  2xh  h#  2x  2h  1  1b  ax#  2x  1  1b h

œ lim

hÄ!

œ

œ 2(x  1); Fw (1) œ 4, Fw (0) œ 2, Fw (2) œ 2 3. Step 1: g(t) œ

" t#

and g(t  h) œ "

"

# # g(t  h)  g(t) œ (t  h)h t h 2t  h) 2t  h œ h( (t  h)# t# h œ (t  h)# t#

Step 2:

2t  h

Step 3: gw (t) œ lim

1 z #z

4. k(z) œ

and k(z  h) œ

Œ

œ

œ

# # h Ä ! (t  h) t

" (t  h)#

h

2t t# †t#

1  (z  h) 2(z  h)

œ

 ("  z)(z  h) lim (1  z  h)z #(z  h)zh hÄ!

œ

" 2z#

œ

t#  (t  h)# (t  h)# †t# 

œ

2 t$

t#  at#  2th  h# b (t  h)# †t# †h

œ

œ

2th  h# (t  h)# t# h

2 ; gw (1) œ 2, gw (2) œ  "4 , gw ŠÈ3‹ œ  3È 3

Ê kw (z) œ lim

Š

"  (z  h)  "  z ‹ #(z  h) #z h

hÄ!

#  z  h  z#  zh lim z  z  zh 2(z  h)zh hÄ!

h

œ lim

h Ä ! 2(z  h)zh

œ lim

"

h Ä ! #(z  h)z

; kw (") œ  "# , kw (1) œ  "# , kw ŠÈ2‹ œ  "4

5. Step 1: p()) œ È3) and p()  h) œ È3()  h) Step 2:

p()  h)  p()) h

œ

œ

È3()  h)  È3) h

3h h ŠÈ3)  3h  È3)‹

Step 3: pw ()) œ lim

œ

ŠÈ3)  3h  È3)‹

œ

3 È3)  3h  È3)

3

œ

h Ä ! È3)  3h  È3)



h

3 È 3)  È 3)

œ

3 2È 3 )

ŠÈ3)  3h  È3)‹ ŠÈ3)  3h  È3)‹

; pw (1) œ

6. r(s) œ È2s  1 and r(s  h) œ È2(s  h)  1 Ê rw (s) œ lim

hÄ!

œ lim

hÄ!

œ lim

ŠÈ2s  h  1  È2s  1‹ h



2h

h Ä ! h ŠÈ2s  2h  1  È2s  1‹

œ

" È2s  1

; rw (0) œ 1, rw (1) œ

ŠÈ2s  2h  1  È2s  1‹ ŠÈ2s  2h  1  È2s  1‹

œ lim

" È3

6x# h  6xh#  2h$ h hÄ!

3 #È2

È2s  2h  1  È2s  1 h

œ

2 È2s  1  È2s  1

œ

2 2È2s  1

" È2

dy dx

h a6x#  6xh  2h# b h hÄ!

œ lim

, pw (3) œ "# , pw ˆ 32 ‰ œ

h Ä ! h ŠÈ2s  2h  1  È2s  1‹

2

7. y œ f(x) œ 2x$ and f(x  h) œ 2(x  h)$ Ê œ lim

(3)  3h)  3) h ŠÈ3)  3h  È3)‹

(2s  2h  1)  (2s  1)

œ lim

h Ä ! È2s  2h  1  È2s  1

, rw ˆ #" ‰ œ

3 2È 3

œ

2(x  h)$  2x$ h hÄ!

œ lim

2 ax$  3x# h  3xh#  h$ b  2x$ h hÄ!

œ lim

œ lim a6x#  6xh  2h# b œ 6x# hÄ!

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

122

Chapter 3 Differentiation

8. r œ œ

s$ #

1 Ê



œ lim

dr ds

(s  h)$

#

t 2t1

Š

œ lim

(t b h)(2t b 1) c t(2t b 2h b 1) ‹ (2t b 2h b 1)(2t b 1)

h

œ

2t#  t  2ht  h  2t#  2ht  t (2t  2h  1)(2t  1)h hÄ! " " (2t  1)(2t  1) œ (2t  1)#

dv dt

œ lim

œ

"

th“ 

ˆt  "t ‰

# # th lim ht h(th h)t hÄ!

" Èq  1

11. p œ f(q) œ

œ

œ lim

h

" " t

h

th

œ

t#  1 t#

" È(q  h)  1

Ê

h Ä ! (2t  2h  1)(2t  1)

Š

h(t  h)t  t  (t  h) ‹ (t  h)t

h

hÄ!

œ1

" t#

Š È(q "h)  1 ‹  Š Èq" 1 ‹

œ lim

dp dq

"

œ lim

œ lim

h

hÄ!

h

hÄ!

Èq  1  Èq  h  1

œ lim

h Ä ! hÈ q  h  1 È q  1

h

hÄ!

3 # # s

h

hÄ!

h Ä ! (2t  2h  1)(2t  1)h

and f(q  h) œ

 3sh  h# b œ

t ‰ Š 2(t bt bh)hb 1 ‹  ˆ 2t b 1

œ lim

ds dt

œ lim

# 1 lim t (thth)t hÄ!

Èq b 1 c Èq b h b 1 Œ Èq b h b 1 Èq b 1 

œ

(t  h)(2t  1)  t(2t  2h  1) (2t  2h  1)(2t  1)h

hÄ!

œ lim

h

hÄ!

Ê

œ lim

œ lim

’(t  h) 

œ

th 2(th)1

and r(t  h) œ

hÄ!

c(s  h)$  2d  cs$  2d " h # hlim Ä! h c3s#  3sh  h# d " " œ # lim a3s# # hlim h Ä! hÄ!

h

hÄ!

" s$  3s# h  3sh#  h$  2  s$  2 # hlim h Ä!

9. s œ r(t) œ

10.

$

 1•  ’ s#  1“

œ

ˆÈ q  1  È q  h  1 ‰ ˆ È q  1  È q  h  1 ‰ 1)  (q  h  1) † ˆÈq  1  Èq  h  1‰ œ lim hÈq  h  1(qÈq  1 ˆÈ q  1  È q  h  1 ‰ h Ä ! h Èq  h  1 Èq  1 hÄ! h " lim œ lim Èq  h  1 Èq  1 ˆÈq  1  Èq  h  1‰ h Ä ! h È q  h  1 È q  1 ˆÈ q  1  È q  h  1 ‰ hÄ! " " œ È q  1 È q  1 ˆÈ q  1  È q  1 ‰ 2(q  1) Èq  1

dz dw

œ lim

œ lim œ

12.

"  Š È3(w  h)  2 h

hÄ!

"

È3w  2 ‹

ŠÈ3w  2  È3w  3h  2‹

œ lim

hÈ3w  3h  2 È3w  2

hÄ!

È3w  2  È3w  3h  2

œ lim

h Ä ! hÈ3w  3h  2 È3w  2



ŠÈ3w2È3w3h2‹ ŠÈ3w  2  È3w  3h  2‹

œ lim

(3w  2)  (3w  3h  2)

œ lim

3

h Ä ! hÈ3w  3h  2 È3w  2 ŠÈ3w  2  È3w  3h  2‹ h Ä ! È3w  3h  2 È3w  2 ŠÈ3w  2  È3w  3h  2‹

œ

9 x

and f(x  h) œ (x  h) 

œ

x(x  h)#  9x  x# (x  h)  9(x  h) x(x  h)h

œ

h(x#  xh  9) x(x  h)h

14. k(x) œ

" #x

œ lim

hÄ!

œ lim

(#  x)  (2  x  h) h(2  x)(2  x  h)

hÄ!

œ lim

hÄ!

œ

x#  xh  9 x(x  h)

œ

w

œ

9 (x  h)

Ê

f(x  h)  f(x) h

œ

’(x  h) 

x$  2x# h  xh#  9x  x$  x# h  9x  9h x(x  h)h

; f (x) œ

and k(x  h) œ

" kw (2) œ  16

ds dt

3 È3w  2 È3w  2 ŠÈ3w  2  È3w  2‹

3 2(3w  2) È3w  2

13. f(x) œ x 

15.

œ

# lim x  xh  9 h Ä ! x(x  h)

œ

x#  9 x#

9 9 (x b h) “  ’x  x “

h

œ

œ1

x# h  xh#  9h x(x  h)h 9 x#

; m œ f w (3) œ 0

Š #  "x  h  k(x  h)  k(x) œ lim h h hÄ! hÄ! h " " lim œ lim (2  x)(#  x  h) œ (2  x)# ; h Ä ! h(2  x)(2  x  h) hÄ! " 2  (x  h)

c(t  h)$  (t  h)# d  at$  t# b h

3t# h  3th#  h$  2th  h# h

Ê kw (x) œ lim

œ lim

hÄ!

œ lim

hÄ!

" #x‹

at$  3t# h  3th#  h$ b  at#  2th  h# b  t$  t# h

h a3t#  3th  h#  2t  hb h

œ lim a3t#  3th  h#  2t  hb hÄ!

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 3.1 The Derivative of a Function œ 3t#  2t; m œ 16.

dy dx

ds ¸ dt tœ"

œ5

(x  h  1)$  (x  1)$ h

œ lim

hÄ!

(x  1)$  3(x  ")# h  3(x  1)h#  h$ (x  1)$ h

œ lim

hÄ!

œ lim c3(x  1)#  3(x  1)h  h# d œ 3(x  1)# ; m œ hÄ!

17. f(x) œ œ

8 Èx  2

and f(x  h) œ

8 ŠÈx  2  Èx  h  2‹ hÈ x  h  2 È x  2



8 È(x  h)  2

f(x  h)  f(x) h

Ê

ŠÈx  2  Èx  h  2‹

œ

ŠÈx  2  Èx  h  2‹

œ

8h hÈx  h  2 Èx  2 ŠÈx  2  Èx  h  2‹

œ

8 Èx  2 Èx  2 ŠÈx  2  Èx  2‹

œ

œ3

dy dx ¹ x=#

È(x b h) c 2  Èx c 2 8

œ

8

h

8[(x  2)  (x  h  2)] hÈx  h  2 Èx  2 ŠÈx  2  Èx  h  2‹ 8

Ê f w (x) œ lim

h Ä ! Èx  h  2 Èx  2 ŠÈx  2  Èx  h  2‹

4 (x  2)Èx  2

; m œ f w (6) œ

4 4È 4

œ  "# Ê the equation of the tangent

line at (6ß 4) is y  4 œ  "# (x  6) Ê y œ  "# x  $  % Ê y œ  "# x  (. 18. gw (z) œ lim

ˆ1  È4  (z  h)‰  Š1  È4  z‹ h

hÄ!

œ

h lim h Ä ! h ŠÈ4  z  h  È4  z‹

œ



h

hÄ!

(4  z  h)  (4  z) lim h Ä ! h ŠÈ4  z  h  È4  z‹ " œ  "# 2È 4  3  "# z  $#  # Ê w

ŠÈ4  z  h  È4  z‹

œ lim

ŠÈ4  z  h  È4  z‹ ŠÈ4  z  h  È4  z‹ "

œ lim

h Ä ! ŠÈ4  z  h  È4  z‹

œ

" 2È 4  z

m œ gw (3) œ

Ê the equation of the tangent line at ($ß #) is w  2 œ  "# (z  3)

Êwœ

œ  "# z  (# .

19. s œ f(t) œ 1  3t# and f(t  h) œ 1  3(t  h)# œ 1  3t#  6th  3h# Ê a1  3t#  6th  3h# b  a1  3t# b h hÄ!

œ lim

20. y œ f(x) œ "  œ lim

hÄ!

h h Ä ! x(x  h)h

hÄ!

2È 4  )  2È 4  )  h hÈ 4  ) È 4  )  h

œ

œ

" xh

Ê

" lim h Ä ! x(x  h)

2 È4  ()  h)

4(%  ))  4(%  )  h)

œ lim

h Ä ! 2hÈ4  ) È4  )  h ŠÈ4  )  È4  )  h‹

œ

2 (4  )) Š2È4  )‹

œ

dy dx

œ

œ lim

" x#

" 3

Ê

" (4  ))È4  )

Ê

Šz  h  Èz  h‹  ˆz  Èz‰

hÄ!

h

œ 1  lim

(z  h)  z

h Ä ! h ŠÈz  h  Èz‹

hÄ!

Š1 

dr ¸ d) )œ!

Ê

dr d)

È œ

È4 c ) c h  È4 c ) 2

2

h

2

h Ä ! È4  ) È4  )  h ŠÈ4  )  È%  )  h‹

œ

" 8

h  Èz  h  Èz h hÄ!

œ lim

œ 1  lim

"

h

œ lim

œ lim

"

x  h ‹  Š1  x ‹

hÄ!

dy dx ¹x= 3

f(t  h)  f(t) h

œ6

f(x  h)  f(x) h hÄ!

œ lim

22. w œ f(z) œ z  Èz and f(z  h) œ (z  h)  Èz  h Ê œ lim

ds ¸ dt t="

œ lim

f()  h)  f()) œ lim h hÄ! hÄ! È È 2È4  )  #È%  )  h Š2 %  )  2 4  )  h‹ lim † È Š2 4  )  #È4  )  h‹ h Ä ! hÈ 4  ) È 4  )  h

and f()  h) œ

2 È4  )

hÄ!

and f(x  h) œ 1 

" " x xh œ lim h

21. r œ f()) œ œ lim

" x

œ lim (6t  3h) œ 6t Ê

ds dt

;

"

h Ä ! Èz  h  Èz

dw dz

œ lim

hÄ!

œ lim –1  hÄ!

œ"

" 2È z

Ê

f(z  h)  f(z) h Èz  h  Èz

dw ¸ dz zœ4

h

œ



ŠÈz  h  Èz‹ ŠÈz  h  Èz‹ —

5 4

"  "

fazb  faxb a x  #b  a z  # b xz " z# x# 23. f w axb œ zlim œ zlim œ zlim œ zlim œ zlim Äx zx Ä x zx Ä x az  xbaz  #bax  #b Ä x az  xbaz  #bax  #b Ä x az  #bax  #b œ ax "  #b#

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

123

124

Chapter 3 Differentiation "

"

#

#

#

#

Òax  "b  az  "bÓÒax  "b  az  "bÓ ax  "b  az"b fazb  faxb az"b ax"b 24. f w axb œ zlim œ zlim œ zlim œ zlim zx Ä x zx Äx Ä x az  xbaz  "b# ax  "b# Äx az  xbaz  "b# ax  "b# ax  zbax  z  2b "ax  z  2b œ zlim œ zlim œ Ä x az  xbaz  "b# ax  "b# Ä x a z  " b # a x  "b# z



"a#x  #b a x  "b %

œ

#ax  "b a x  "b %

œ

# a x  "b $

x

gazb  gaxb z a x  "b  x a z  " b z  x " zc" x" 25. gw axb œ zlim œ zlim œ zlim œ zlim œ zlim Äx zx Äx zx Ä x az  xbaz  "bax  "b Ä x az  xbaz  "bax  "b Ä x az  "bax  "b œ ax "  "b# gazb  gaxb 26. gw axb œ zlim œ zlim Äx zx Äx " " œ zlim œ #È x Ä x Èz  Èx

ˆ"  Èz‰ˆ"  Èx‰ zx

œ zlim Äx

Èz  Èx zx



Èz  Èx Èz  Èx

zx œ zlim Ä x az  x bˆÈ z  È x ‰

27. Note that as x increases, the slope of the tangent line to the curve is first negative, then zero (when x œ 0), then positive Ê the slope is always increasing which matches (b). 28. Note that the slope of the tangent line is never negative. For x negative, f#w (x) is positive but decreasing as x increases. When x œ 0, the slope of the tangent line to x is 0. For x  0, f#w (x) is positive and increasing. This graph matches (a). 29. f$ (x) is an oscillating function like the cosine. Everywhere that the graph of f$ has a horizontal tangent we expect f$w to be zero, and (d) matches this condition. 30. The graph matches with (c). 31. (a) f w is not defined at x œ 0, 1, 4. At these points, the left-hand and right-hand derivatives do not agree. For example, lim c xÄ!

f(x)  f(0) x0

œ slope of line joining (%ß 0) and (!ß #) œ

" #

but lim b xÄ!

line joining (0ß 2) and ("ß 2) œ 4. Since these values are not equal, f w (0) œ lim

xÄ!

f(x)  f(0) x0

f(x)  f(0) x0

(b)

32. (a)

(b) Shift the graph in (a) down 3 units

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

œ slope of

does not exist.

Section 3.1 The Derivative of a Function 33.

(b) The fastest is between the 20th and 30th days; slowest is between the 40th and 50th days.

34. (a)

35. Left-hand derivative: For h  0, f(0  h) œ f(h) œ h# (using y œ x# curve) Ê œ lim c hÄ!

h#  0 h

œ lim c h œ 0; hÄ!

Right-hand derivative: For h  0, f(0  h) œ f(h) œ h (using y œ x curve) Ê œ lim b hÄ! Then lim c hÄ!

h0 h

lim

h Ä !c

œ lim b 1 œ 1; hÄ!

f(0  h)  f(0) h

Á lim b hÄ!

f(0  h)  f(0) h

lim

h Ä !b

œ lim c 0 œ 0; hÄ!

f(1  h)  f(1) h

lim

h Ä !c

Right-hand derivative: When h  !, 1  h  1 Ê f(1  h) œ 2(1  h) œ 2  2h Ê

Then lim c hÄ!

(2  2h)2 h

œ lim b hÄ!

f(1  h)  f(1) h

2h h

È1  h  " h

œ lim c hÄ!

lim

h Ä !b

ŠÈ1  h  "‹ h



ŠÈ1  h  "‹ ŠÈ1  h  1‹

œ lim c hÄ!

lim

h Ä !c

Then lim c hÄ!

(2h  1)  " h f(1  h)  f(1) h

38. Left-hand derivative:

lim

h Ä !c

Right-hand derivative: œ lim b hÄ! Then lim c hÄ!

h h(1  h)

œ lim b 2 œ 2; hÄ! Á lim b hÄ!

lim b

hÄ!

œ lim b hÄ!

f(1  h)  f(1) h

f(1  h)  f(1) h

f(1  h)  f(") h

(1  h)  " h ŠÈ1  h  "‹

œ lim c hÄ!

Á lim b hÄ!

" È1  h  1

lim

h Ä !b

Ê the derivative f w (1) does not exist.

œ lim c

f(1  h)  f(") h " 1h

f(1  h)  f(1) h

f("  h)  f(1) h

Right-hand derivative: When h  0, 1  h  1 Ê f(1  h) œ 2(1  h)  1 œ 2h  1 Ê œ lim b hÄ!

22 h

Ê the derivative f w (1) does not exist.

37. Left-hand derivative: When h  0, 1  h  1 Ê f(1  h) œ È1  h Ê œ lim c hÄ!

œ lim c hÄ!

œ lim b 2 œ 2; hÄ!

f(1  h)  f(1) h

Á lim b hÄ!

f(0  h)  f(0) h

Ê the derivative f w (0) does not exist.

36. Left-hand derivative: When h  !, 1  h  1 Ê f(1  h) œ 2 Ê

œ lim b hÄ!

f(0  h)  f(0) h

hÄ!

œ lim b hÄ!

(1  h)  " h

œ lim c 1 œ 1;

"  "‹ Š1 h h

hÄ!

œ lim b hÄ!

Š

1  (1  h) 1h ‹

h

œ 1; f(1  h)  f(1) h

Ê the derivative f w (1) does not exist.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

œ #" ;

f("h)f(1) h

125

126

Chapter 3 Differentiation

39. (a) The function is differentiable on its domain $ Ÿ x Ÿ 2 (it is smooth) (b) none (c) none 40. (a) The function is differentiable on its domain # Ÿ x Ÿ 3 (it is smooth) (b) none (c) none 41. (a) The function is differentiable on $ Ÿ x  0 and !  x Ÿ 3 (b) none (c) The function is neither continuous nor differentiable at x œ 0 since lim c f(x) Á lim b f(x) xÄ! xÄ! 42. (a) f is differentiable on # Ÿ x  1, "  x  0, 0  x  2, and 2  x Ÿ 3 (b) f is continuous but not differentiable at x œ 1: lim f(x) œ 0 exists but there is a corner at x œ 1 since x Ä 1

œ 3 and lim b f("  h)h  f(1) œ 3 Ê f w (1) does not exist hÄ! hÄ! (c) f is neither continuous nor differentiable at x œ 0 and x œ 2: at x œ 0, lim c f(x) œ 3 but lim b f(x) œ 0 Ê lim f(x) does not exist; lim c

f(1  h)  f(") h

xÄ!

xÄ0

xÄ!

at x œ 2, lim f(x) exists but lim f(x) Á f(2) xÄ#

xÄ#

43. (a) f is differentiable on " Ÿ x  0 and 0  x Ÿ 2 (b) f is continuous but not differentiable at x œ 0: lim f(x) œ 0 exists but there is a cusp at x œ 0, so f(0  h)  f(0) h hÄ!

f w (0) œ lim

xÄ!

does not exist

(c) none 44. (a) f is differentiable on $ Ÿ x  2, 2  x  2, and 2  x Ÿ 3 (b) f is continuous but not differentiable at x œ 2 and x œ 2: there are corners at those points (c) none 45. (a) f w (x) œ lim

hÄ!

f(x  h)  f(x) h

œ lim

hÄ!

(x  h)#  ax# b h

œ lim

hÄ!

x#  2xh  h#  x# h

œ lim (2x  h) œ 2x hÄ!

(b)

(c) yw œ 2x is positive for x  0, yw is zero when x œ 0, yw is negative when x  0 (d) y œ x# is increasing for _  x  0 and decreasing for !  x  _; the function is increasing on intervals where yw  0 and decreasing on intervals where yw  0 f(x  h)  f(x) h hÄ!

46. (a) f w (x) œ lim

œ lim

hÄ!

Š xc" h  h

1 ‹ x

œ lim

hÄ!

x  (x  h) x(x  h)h

œ lim

"

h Ä ! x(x  h)

œ

" x#

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 3.1 The Derivative of a Function (b)

(c) yw is positive for all x Á 0, yw is never 0, yw is never negative (d) y œ  "x is increasing for _  x  0 and !  x  _ w

47. (a) Using the alternate formula for calculating derivatives: f (x) œ œ

$ $ lim z  x z Ä x 3(z  x)

œ

az#  zx  x# b lim (z  x)3(z  x) zÄx

œ

# # lim z  zx3  x zÄx

f(x) lim f(z)z  x zÄx # w

$

Š z3 

œ zlim Äx

x$ 3 ‹

zx

œ x Ê f (x) œ x#

(b)

(c) yw is positive for all x Á 0, and yw œ 0 when x œ 0; yw is never negative (d) y œ

x$ 3

is increasing for all x Á 0 (the graph is horizontal at x œ 0) because y is increasing where yw  0; y is

never decreasing %

48. (a) Using the alternate œ zlim Äx

z%  x% 4(z  x)

œ

%

z x Œ4  4 f(z)  f(x) form for calculating derivatives: f (x) œ zlim œ lim zx zx Äx zÄx (z  x) az$  xz#  x# z x$ b z$  xz#  x# z  x$ $ w lim œ zlim œ x Ê f (x) œ x$ 4(z  x) 4 zÄx Äx

w

(b)

(c) yw is positive for x  0, yw is zero for x œ 0, yw is negative for x  0 (d) y œ

x% 4

is increasing on 0  x  _ and decreasing on _  x  0 #

#

(xc) ax  xc  c b f(x)  f(c) x c 49. yw œ xlim œ xlim œ xlim œ xlim ax#  xc  c# b œ 3c# . xc xc Äc Ä c xc Äc Äc The slope of the curve y œ x$ at x œ c is yw œ 3c# . Notice that 3c#   0 for all c Ê y œ x$ never has a negative slope. $

$

50. Horizontal tangents occur where yw œ 0. Thus, yw œ lim

hÄ!

œ lim

hÄ!

2 ŠÈx  h  Èx‹ h



ŠÈx  h  Èx‹ ŠÈx  h  Èx‹

œ lim

2È x  h  2È x h

2((x  h)  x))

h Ä ! h ŠÈx  h  Èx‹

œ lim

2

h Ä ! Èx  h  Èx

œ

" Èx

.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

127

128

Chapter 3 Differentiation

Then yw œ 0 when 51. yw œ lim

hÄ!

œ lim

hÄ!

" Èx

œ 0 which is never true Ê the curve has no horizontal tangents.

a2(x  h)#  13(x  h)  5b  a2x#  13x  5b h

4xh  2h#  13h h

œ lim

hÄ!

2x#  4xh  2h#  13x  13h  5  2x#  13x  5 h

œ lim (4x  2h  13) œ 4x  13, slope at x. The slope is 1 when 4x  13 œ " hÄ!

Ê 4x œ 12 Ê x œ 3 Ê y œ 2 † 3#  13 † 3  5 œ 16. Thus the tangent line is y  16 œ (1)(x  3) Ê y œ x  "$ and the point of tangency is (3ß 16). 52. For the curve y œ Èx, we have yw œ lim

ŠÈx  h  Èx‹

hÄ!

"

œ lim

h Ä ! Èx  h  Èx

œ

" #Èx

h



ŠÈx  h  Èx‹ ŠÈx  h  Èx‹

h Ä ! ŠÈx  h  Èx‹ h

. Suppose ˆ+ß Èa‰ is the point of tangency of such a line and ("ß !) is the point

on the line where it crosses the x-axis. Then the slope of the line is " ; 2È a

(x  h)  x

œ lim

using the derivative formula at x œ a Ê

exist: its point of tangency is ("ß "), its slope is

Èa a1

œ

" #È a

œ

Èa  0 a  (1)

œ

Èa a1

which must also equal

" Ê 2a œ a  1 Ê a œ 1. #Èa " # ; and an equation of the line is

Thus such a line does y1œ

" #

(x  1)

Ê y œ "# x  "# . 53. No. Derivatives of functions have the intermediate value property. The function f(x) œ ÚxÛ satisfies f(0) œ 0 and f(1) œ 1 but does not take on the value "# anywhere in [!ß "] Ê f does not have the intermediate value

property. Thus f cannot be the derivative of any function on [!ß "] Ê f cannot be the derivative of any function on (_ß _).

54. The graphs are the same. So we know that for f(x) œ kxk , we have f w (x) œ

kx k x

.

55. Yes; the derivative of f is f w so that f w (x! ) exists Ê f w (x! ) exists as well. 56. Yes; the derivative of 3g is 3gw so that gw (7) exists Ê 3gw (7) exists as well. 57. Yes, lim

g(t)

t Ä ! h(t)

can exist but it need not equal zero. For example, let g(t) œ mt and h(t) œ t. Then g(0) œ h(0)

œ 0, but lim

g(t)

t Ä ! h(t)

œ lim

tÄ!

mt t

œ lim m œ m, which need not be zero. tÄ!

58. (a) Suppose kf(x)k Ÿ x# for " Ÿ x Ÿ 1. Then kf(0)k Ÿ 0# Ê f(0) œ 0. Then f w (0) œ lim œ lim

hÄ!

f(h)  0 h

œ lim

hÄ!

f(h) h .

For khk Ÿ 1, h# Ÿ f(h) Ÿ h# Ê h Ÿ

hÄ!

f(h) h

f(0  h)  f(0) h

Ÿ h Ê f w (0) œ lim

hÄ!

f(h) h

œ0

by the Sandwich Theorem for limits. (b) Note that for x Á 0, kf(x)k œ ¸x# sin "x ¸ œ kx# k ksin xk Ÿ kx# k † 1 œ x# (since " Ÿ sin x Ÿ 1). By part (a), f is differentiable at x œ 0 and f w (0) œ 0.

59. The graphs are shown below for h œ 1, 0.5, 0.1. The function y œ y œ Èx so that

" #È x

œ lim

hÄ!

Èx  h  Èx h

" 2È x

. The graphs reveal that y œ

is the derivative of the function

Èx  h  Èx h

gets closer to y œ

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

" #È x

Section 3.1 The Derivative of a Function as h gets smaller and smaller.

60. The graphs are shown below for h œ 2, 1, 0.5. The function y œ 3x# is the derivative of the function y œ x$ so that 3x# œ lim

hÄ!

(xh)$ x$ h

. The graphs reveal that y œ

(xh)$ x$ h

gets closer to y œ 3x# as h

gets smaller and smaller.

61. Weierstrass's nowhere differentiable continuous function.

62-67. Example CAS commands: Maple: f := x -> x^3 + x^2 - x;

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

129

130

Chapter 3 Differentiation

x0 := 1; plot( f(x), x=x0-5..x0+2, color=black, title="Section 3_1, #62(a)" ); q := unapply( (f(x+h)-f(x))/h, (x,h) ); # (b) L := limit( q(x,h), h=0 ); # (c) m := eval( L, x=x0 ); tan_line := f(x0) + m*(x-x0); plot( [f(x),tan_line], x=x0-2..x0+3, color=black, linestyle=[1,7], title="Section 3.1 #62(d)", legend=["y=f(x)","Tangent line at x=1"] ); Xvals := sort( [ x0+2^(-k) $ k=0..5, x0-2^(-k) $ k=0..5 ] ): # (e) Yvals := map( f, Xvals ): evalf[4](< convert(Xvals,Matrix) , convert(Yvals,Matrix) >); plot( L, x=x0-5..x0+3, color=black, title="Section 3.1 #62(f)" ); Mathematica: (functions and x0 may vary) (see section 2.5 re. RealOnly ): 0.78540 - 0.63662*cos(2*t) - 0.07074*cos(6*t) - 0.02546*cos(10*t) - 0.01299*cos(14*t); g := t -> piecewise( t cos(x)^2 + sin(x); ic := [x=Pi,y=1]; F := unapply( int( f(x), x ) + C, x ); eq := eval( y=F(x), ic ); solnC := solve( eq, {C} ); Y := unapply( eval( F(x), solnC ), x ); DEplot( diff(y(x),x) = f(x), y(x), x=0..2*Pi, [[y(Pi)=1]], color=black, linecolor=black, stepsize=0.05, title="Section 4.8 #103" ); Mathematica: (functions and values may vary) The following commands use the definite integral and the Fundamental Theorem of calculus to construct the solution of the initial value problems for exercises 103 - 105. Clear[x, y, yprime] yprime[x_] = Cos[x]2  Sin[x]; initxvalue = 1; inityvalue = 1; y[x_] = Integrate[yprime[t], {t, initxvalue, x}]  inityvalue If the solution satisfies the differential equation and initial condition, the following yield True yprime[x]==D[y[x], x] //Simplify y[initxvalue]==inityvalue Since exercise 106 is a second order differential equation, two integrations will be required. Clear[x, y, yprime] y2prime[x_] = 3 Exp[x/2]  1; initxval = 0; inityval = 4; inityprimeval = 1; yprime[x_] = Integrate[y2prime[t],{t, initxval, x}]  inityprimeval y[x_] = Integrate[yprime[t], {t, initxval, x}]  inityval Verify that y[x] solves the differential equation and initial condition and plot the solution (red) and its derivative (blue). y2prime[x]==D[y[x], {x, 2}]//Simplify y[initxval]==inityval yprime[initxval]==inityprimeval Plot[{y[x], yprime[x]}, {x, initxval  3, initxval  3}, PlotStyle Ä {RGBColor[1,0,0], RGBColor[0,0,1]}] CHAPTER 4 PRACTICE EXERCISES 1. No, since f(x) œ x$  2x  tan x Ê f w (x) œ 3x#  2  sec# x  0 Ê f(x) is always increasing on its domain cos x 2. No, since g(x) œ csc x  2 cot x Ê gw (x) œ csc x cot x  2 csc# x œ  sin #x 

2 sin# x

œ  sin"# x (cos x  2)  0

Ê g(x) is always decreasing on its domain 3. No absolute minimum because x lim (7  x)(11  3x)"Î$ œ _. Next f w (x) œ Ä_ (11  3x)"Î$  (7  x)(11  3x)#Î$ œ w

(11  3x)  (7  x) (11  3x)#Î$

œ

4(1  x) (11  3x)#Î$

Ê x œ 1 and x œ

11 3

are critical points.

w

Since f  0 if x  1 and f  0 if x  1, f(1) œ 16 is the absolute maximum. 4. f(x) œ

ax  b x#  1

Ê f w (x) œ

We require also that f(3) w

#a$x  "bax  $b ax #  1 b #

# a ax#  1b  2x(ax  b)  ab œ aaxax#2bx 1 b# ax #  1 b# œ 1. Thus " œ 3a8b Ê 3a  b œ w

" ; f w (3) œ 0 Ê  '% (*a  'b  a) œ ! Ê &a  $b œ !.

). Solving both equations yields a œ 6 and b œ 10. Now,

so that f œ  ±  ±  ±  ± . Thus f w changes sign at x œ $ from 1 1 3 1/3 positive to negative so there is a local maximum at x œ $ which has a value f(3) œ 1. f (x) œ

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 4 Practice Exercises

275

5. Yes, because at each point of [!ß "Ñ except x œ 0, the function's value is a local minimum value as well as a local maximum value. At x œ 0 the function's value, 0, is not a local minimum value because each open interval around x œ 0 on the x-axis contains points to the left of 0 where f equals 1. 6. (a) The first derivative of the function f(x) œ x$ is zero at x œ 0 even though f has no local extreme value at x œ 0. (b) Theorem 2 says only that if f is differentiable and f has a local extreme at x œ c then f w (c) œ 0. It does not assert the (false) reverse implication f w (c) œ 0 Ê f has a local extreme at x œ c. 7. No, because the interval 0  x  1 fails to be closed. The Extreme Value Theorem says that if the function is continuous throughout a finite closed interval a Ÿ x Ÿ b then the existence of absolute extrema is guaranteed on that interval. 8. The absolute maximum is k1k œ 1 and the absolute minimum is k0k œ 0. This is not inconsistent with the Extreme Value Theorem for continuous functions, which says a continuous function on a closed interval attains its extreme values on that interval. The theorem says nothing about the behavior of a continuous function on an interval which is half open and half closed, such as Ò"ß "Ñ, so there is nothing to contradict. 9. (a) There appear to be local minima at x œ 1.75 and 1.8. Points of inflection are indicated at approximately x œ 0 and x œ „ 1.

(b) f w (x) œ x(  3x&  5x%  15x# œ x# ax#  3b ax$  5b. The pattern yw œ  ±  ±  ±  ±  $È ! È$ È $ & $È indicates a local maximum at x œ 5 and local minima at x œ „ È3 . (c)

10. (a) The graph does not indicate any local extremum. Points of inflection are indicated at approximately x œ  $% and x œ ".

(b) f w (x) œ x(  2x%  5 

10 x$

œ x$ ax$  2b ax(  5b . The pattern f w œ  )(  ±  ±  indicates (È $È ! & #

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

276

Chapter 4 Applications of Derivatives a local maximum at x œ (È5 and a local minimum at x œ $È2 .

(c)

11. (a) g(t) œ sin# t  3t Ê gw (t) œ 2 sin t cos t  3 œ sin (2t)  3 Ê gw  0 Ê g(t) is always falling and hence must decrease on every interval in its domain. (b) One, since sin# t  3t  5 œ 0 and sin# t  3t œ 5 have the same solutions: f(t) œ sin# t  3t  5 has the same derivative as g(t) in part (a) and is always decreasing with f(3)  0 and f(0)  0. The Intermediate Value Theorem guarantees the continuous function f has a root in [$ß 0]. 12. (a) y œ tan ) Ê

dy d)

œ sec# )  0 Ê y œ tan ) is always rising on its domain Ê y œ tan ) increases on every

interval in its domain (b) The interval  14 ß 1‘ is not in the tangent's domain because tan ) is undefined at ) œ

1 #

. Thus the tangent

need not increase on this interval. 13. (a) f(x) œ x%  2x#  2 Ê f w (x) œ 4x$  4x. Since f(0) œ 2  0, f(1) œ 1  0 and f w (x)   0 for 0 Ÿ x Ÿ 1, we may conclude from the Intermediate Value Theorem that f(x) has exactly one solution when 0 Ÿ x Ÿ 1. È (b) x# œ 2 „ 4  8  0 Ê x# œ È3  1 and x   0 Ê x ¸ È.7320508076 ¸ .8555996772 #

14. (a) y œ

x x1

Ê yw œ

" (x  1)#

 0, for all x in the domain of

x x1

Ê yœ

x x1

is increasing in every interval in

its domain (b) y œ x$  2x Ê yw œ 3x#  2  0 for all x Ê the graph of y œ x$  2x is always increasing and can never have a local maximum or minimum 15. Let V(t) represent the volume of the water in the reservoir at time t, in minutes, let V(0) œ a! be the initial amount and V(1440) œ a!  (1400)(43,560)(7.48) gallons be the amount of water contained in the reservoir after the rain, where 24 hr œ 1440 min. Assume that V(t) is continuous on [!ß 1440] and differentiable on (!ß 1440). The Mean Value Theorem says that for some t! in (!ß 1440) we have Vw (t! ) œ œ

a!  (1400)(43,560)(7.48)  a! 1440

œ

456,160,320 gal 1440 min

V(1440)  V(0) 1440  0

œ 316,778 gal/min. Therefore at t! the reservoir's volume

was increasing at a rate in excess of 225,000 gal/min. 16. Yes, all differentiable functions g(x) having 3 as a derivative differ by only a constant. Consequently, the d difference 3x  g(x) is a constant K because gw (x) œ 3 œ dx (3x). Thus g(x) œ 3x  K, the same form as F(x). x 1 x 1 x  1 œ 1  x  1 Ê x  1 differs from x  1 (x  1)  x(1) d ˆ x ‰ d ˆ " ‰ œ (x " 1)# œ dx dx x  1 œ (x  1)# x1 .

17. No,

18. f w (x) œ gw (x) œ

2x ax #  1 b #

by the constant 1. Both functions have the same derivative

Ê f(x)  g(x) œ C for some constant C Ê the graphs differ by a vertical shift.

19. The global minimum value of

" #

occurs at x œ #.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 4 Practice Exercises

277

20. (a) The function is increasing on the intervals Ò$ß #Ó and Ò"ß #Ó. (b) The function is decreasing on the intervals Ò#ß !Ñ and Ð!ß "Ó. (c) The local maximum values occur only at x œ #, and at x œ #; local minimum values occur at x œ $ and at x œ " provided f is continuous at x œ !. 21. (a) t œ 0, 6, 12

(b) t œ 3, 9

(c) 6  t  12

(d) 0  t  6, 12  t  14

22. (a) t œ 4

(b) at no time

(c) 0  t  4

(d) 4  t  8

23.

24.

25.

26.

27.

28.

29.

30.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

278

Chapter 4 Applications of Derivatives

31.

32.

33. (a) yw œ 16  x# Ê yw œ  ±  ±  Ê the curve is rising on (%ß %), falling on (_ß 4) and (%ß _) % % Ê a local maximum at x œ 4 and a local minimum at x œ 4; yww œ 2x Ê yww œ  ±  Ê the curve ! is concave up on (_ß !), concave down on (!ß _) Ê a point of inflection at x œ 0 (b)

34. (a) yw œ x#  x  6 œ (x  $)(x  2) Ê yw œ  ±  ±  Ê the curve is rising on (_ß 2) and ($ß _), # $ falling on (#ß $) Ê local maximum at x œ 2 and a local minimum at x œ 3; yww œ 2x  1 Ê yww œ  ±  Ê concave up on ˆ "# ß _‰ , concave down on ˆ_ß "# ‰ Ê a point of inflection at x œ "# "Î# (b)

35. (a) yw œ 6x(x  1)(x  2) œ 6x$  6x#  12x Ê yw œ  ±  ±  ±  Ê the graph is rising on ("ß !) " ! # and (#ß _), falling on (_ß 1) and (!ß #) Ê a local maximum at x œ 0, local minima at x œ 1 and x œ 2; yww œ 18x#  12x  12 œ 6 a3x#  2x  2b œ 6 Šx  yww œ  ± on

 ±

"È( $ È È Š 1 3 7 ß 1 3 7 ‹

"È( $

1  È7 3 ‹ Šx

 Ê the curve is concave up on Š_ß

Ê points of inflection at x œ



1  È7 3 ‹

1  È7 3 ‹

Ê È7

and Š 1 3

1 „ È7 3

(b)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

ß _‹ , concave down

Chapter 4 Practice Exercises

279

36. (a) yw œ x# (6  4x) œ 6x#  4x$ Ê yw œ  ±  ±  Ê the curve is rising on ˆ_ß #3 ‰, falling on ˆ #3 ß _‰ ! $Î# 3 ww Ê a local maximum at x œ # ; y œ 12x  12x# œ 12x("  x) Ê yww œ  ±  ±  Ê concave up on ! " (!ß "), concave down on (_ß !) and ("ß _) Ê points of inflection at x œ 0 and x œ 1 (b)

37. (a) yw œ x%  2x# œ x# ax#  2b Ê yw œ  ±  ±  ±  Ê the curve is rising on Š_ß È2‹ and ! È# È # ŠÈ2ß _‹ , falling on ŠÈ2ß È2‹ Ê a local maximum at x œ È2 and a local minimum at x œ È2 ; yww œ 4x$  4x œ 4x(x  1)(x  1) Ê yww œ  ±  ±  ±  Ê concave up on ("ß 0) and ("ß _), " ! " concave down on (_ß 1) and (0ß 1) Ê points of inflection at x œ 0 and x œ „ 1 (b)

38. (a) yw œ 4x#  x% œ x# a4  x# b Ê yw œ  ±  ±  ±  Ê the curve is rising on (2ß 0) and (0ß 2), # ! # falling on (_ß 2) and (#ß _) Ê a local maximum at x œ 2, a local minimum at x œ 2; yww œ 8x  4x$ œ 4x a2  x# b Ê yww œ  ±  ±  ±  Ê concave up on Š_ß È2‹ and Š0ß È2‹ , concave ! È# È # down on ŠÈ2ß 0‹ and ŠÈ2ß _‹ Ê points of inflection at x œ 0 and x œ „ È2 (b)

39. The values of the first derivative indicate that the curve is rising on (!ß _) and falling on (_ß 0). The slope of the curve approaches _ as x Ä ! , and approaches _ as x Ä 0 and x Ä 1. The curve should therefore have a cusp and local minimum at x œ 0, and a vertical tangent at x œ 1.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

280

Chapter 4 Applications of Derivatives

40. The values of the first derivative indicate that the curve is rising on ˆ!ß "# ‰ and ("ß _), and falling on (_ß !) and ˆ "# ß "‰ . The derivative changes from positive to negative at x œ "# , indicating a local maximum there. The slope of the curve approaches _ as x Ä 0 and x Ä 1 , and approaches _ as x Ä 0 and as x Ä 1 , indicating cusps and local minima at both x œ 0 and x œ 1.

41. The values of the first derivative indicate that the curve is always rising. The slope of the curve approaches _ as x Ä 0 and as x Ä 1, indicating vertical tangents at both x œ 0 and x œ 1.

È33

42. The graph of the first derivative indicates that the curve is rising on Š!ß 17 16 on (_ß !) and xœ

17  È33 16

È È Š 17 16 33 ß 17 16 33 ‹

Ê a local maximum at x œ

17  È33 16

È33

‹ and Š 17 16

ß _‹ , falling

, a local minimum at

. The derivative approaches _ as x Ä 0 and x Ä 1, and approaches _ as x Ä 0 ,

indicating a cusp and local minimum at x œ 0 and a vertical tangent at x œ 1.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 4 Practice Exercises

43. y œ

x1 x3

45. y œ

x#  1 x

œ1

œx

4 x3

" x

44. y œ

2x x5

œ2

46. y œ

x#  x  1 x

10 x5

œx1

" x

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

281

282

Chapter 4 Applications of Derivatives

47. y œ

x$  2 #x

œ

49. y œ

x#  4 x#  3

œ1

51. lim

xÄ"

52. lim

54. lim

tan x x

œ

tan x

sin# x

sinamxb

x Ä 1Î#c

58.

xÄ"

axa" b" x Ä " bx

x Ä ! sinanxb

57. lim

œ lim

œ lim

# x Ä ! tanax b

56. lim

" x

" x#  3

xa "

x Ä ! x  sin x

55. lim



x #  $x  % x"

b x Ä " x "

53. xlim Ä1

x# #

tan 1 1

#x  $ "

œ

x%  1 x#

œ x# 

50. y œ

x# x#  4

œ1

" x#

4 x#  4

œ&

a b

œ!

œ lim

sec# x

x Ä ! "  cos x

œ lim

#sin x†cos x

# # x Ä ! #x sec ax b

œ lim

xÄ!

m cosamxb n cosanxb

œ

" ""

œ

" # sina#xb

œ lim

# # x Ä ! #x sec ax b

œ

cosa$xb

x Ä 1Î#c cosa(xb Èx cos x

59. lim acsc x  cot xb œ lim

xÄ!

#cosa#xb

œ lim

# # # # # x Ä ! #x a#sec ax btanax b†#xb  #sec ax b

œ

# !  #†"

œ"

m n

seca(xbcosa$xb œ lim

lim Èx sec x œ lim b x Ä !b xÄ! xÄ!

48. y œ

œ

! "

$sina$xb

œ lim

x Ä 1Î#c (sina(xb

œ

$ (

œ!

"  cos x sin x

œ lim

sin x

x Ä ! cos x

œ

! "

œ!

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 4 Practice Exercises 60. lim ˆ x"%  xÄ!

61.

#

œ lim Š " x%x ‹ œ lim a"  x# b † xÄ!

xÄ!

" x%

œ lim a"  x# b œ lim

ŠÈx#  x  "  Èx#  x‹ œ lim ŠÈx#  x  "  Èx#  x‹ † xÄ_ œ lim È # #x  " È # xÄ_ x x" x x Notice that x œ Èx# for x  ! so this is equivalent to lim

#x  " x # x x   " É x #  x É # x x# $

œ lim xÄ_

$

lim Š x#x "  x#x " ‹ œ lim xÄ_ xÄ_ "# " œ lim #% œ lim œ! x xÄ_ x Ä _ #x

"

% xÄ! x

xÄ!

xÄ_

œ lim xÄ_

62.

"‰ x#

œ"†_œ_

Èx#  x  "Èx#  x È x#  x  "  È x#  x

#  x" œ È"# È" œ " " É"  x  x"#  É"  x"

x $ a x #  "b  x $ a x #  " b ax#  "bax#  "b

œ lim xÄ_

#x $ x%  "

œ lim xÄ_

'x# %x $

œ lim xÄ_

"#x "#x#

63. (a) Maximize f(x) œ Èx  È36  x œ x"Î#  (36  x)"Î# where 0 Ÿ x Ÿ 36 Ê f w (x) œ

" #

x"Î#  "# (36  x)"Î# (1) œ

È36  x  Èx #Èx È36  x

Ê derivative fails to exist at 0 and 36; f(0) œ 6,

and f(36) œ 6 Ê the numbers are 0 and 36 (b) Maximize g(x) œ Èx  È36  x œ x"Î#  (36  x)"Î# where 0 Ÿ x Ÿ 36 Ê gw (x) œ

" #

x"Î#  "# (36  x)"Î# (1) œ

È36  x  Èx #Èx È36  x

Ê critical points at 0, 18 and 36; g(0) œ 6,

g(18) œ 2È18 œ 6È2 and g(36) œ 6 Ê the numbers are 18 and 18 64. (a) Maximize f(x) œ Èx (20  x) œ 20x"Î#  x$Î# where 0 Ÿ x Ÿ 20 Ê f w (x) œ 10x"Î#  3# x"Î# œ

20  3x #È x

œ 0 Ê x œ 0 and x œ

œ

40È20 3È 3

Ê the numbers are

20 3

20 3

‰ É 20 ˆ are critical points; f(0) œ f(20) œ 0 and f ˆ 20 3 œ 3 20 

and

40 3

.

(b) Maximize g(x) œ x  È20  x œ x  (20  x)"Î# where 0 Ÿ x Ÿ 20 Ê gw (x) œ Ê È20  x œ

" #

Ê xœ

the numbers must be 65. A(x) œ

" #

79 4

and

79 4 . " 4 .

The critical points are x œ

79 4

2È20  x  1 #È20  x

‰ and x œ 20. Since g ˆ 79 4 œ

(2x) a27  x# b for 0 Ÿ x Ÿ È27

Ê Aw (x) œ 3(3  x)(3  x) and Aw w (x) œ 6x. The critical points are 3 and 3, but 3 is not in the domain. Since Aw w (3) œ 18  0 and A ŠÈ27‹ œ 0, the maximum occurs at x œ 3 Ê the largest area is A(3) œ 54 sq units. 66. The volume is V œ x# h œ 32 Ê h œ 32 x# . The 32 ‰ # ˆ surface area is S(x) œ x  4x x# œ x#  128 x , where x  0 Ê Sw (x) œ

20 ‰ 3

2(x  4) ax#  4x  16b x#

Ê the critical points are 0 and 4, but 0 is not in the domain. Now Sw w (4) œ 2  256 4$  0 Ê at x œ 4 there is a minimum. The dimensions 4 ft by 4 ft by 2 ft minimize the surface area.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

81 4

œ0 and g(20) œ 20,

283

284

Chapter 4 Applications of Derivatives #

67. From the diagram we have ˆ h# ‰  r# œ ŠÈ3‹ Ê r# œ

12h# 4

#

. The volume of the cylinder is #

V œ 1r# h œ 1 Š 12 4 h ‹ h œ

1 4

0 Ÿ h Ÿ 2È3 . Then Vw (h) œ

a12h  h$ b , where 31 4

(2  h)(2  h)

Ê the critical points are 2 and 2, but 2 is not in the domain. At h œ 2 there is a maximum since Vw w (2) œ 31  0. The dimensions of the largest cylinder are radius œ È2 and height œ 2. 68. From the diagram we have x œ radius and y œ height œ 12  2x and V(x) œ "3 1x# (12  2x), where

0 Ÿ x Ÿ 6 Ê Vw (x) œ 21x(4  x) and Vw w (4) œ 81. The critical points are 0 and 4; V(0) œ V(6) œ 0 Ê x œ 4 gives the maximum. Thus the values of r œ 4 and h œ 4 yield the largest volume for the smaller cone.

‰ , where p is the profit on grade B tires and 0 Ÿ x Ÿ 4. Thus 69. The profit P œ 2px  py œ 2px  p ˆ 40510x x Pw (x) œ

2p (5  x)#

ax#  10x  20b Ê the critical points are Š5  È5‹, 5, and Š5  È5‹ , but only Š5  È5‹ is in

the domain. Now Pw (x)  0 for 0  x  Š5  È5‹ and Pw (x)  0 for Š5  È5‹  x  4 Ê at x œ Š5  È5‹ there is a local maximum. Also P(0) œ 8p, P Š5  È5‹ œ 4p Š5  È5‹ ¸ 11p, and P(4) œ 8p Ê at x œ Š5  È5‹ there is an absolute maximum. The maximum occurs when x œ Š5  È5‹ and y œ 2 Š5  È5‹ , the units are hundreds of tires, i.e., x ¸ 276 tires and y ¸ 553 tires. 70. (a) The distance between the particles is lfatbl where fatb œ cos t  cosˆt  1% ‰. Then, f w atb œ sin t  sinˆt  1% ‰. Solving f w atb œ ! graphically, we obtain t ¸ "Þ"(), t ¸ %Þ$#!, and so on.

Alternatively, f w atb œ ! may be solved analytically as follows. f w atb œ sin’ˆt  1) ‰  1) “  sin’ˆt  1) ‰  1) “ œ ’sinˆt  1) ‰cos 1)  cosˆt  1) ‰sin 1) “  ’sinˆt  1) ‰cos 1)  cosˆt  1) ‰sin 1) “ œ #sin 1) cosˆt  1) ‰ so the critical points occur when cosˆt  1) ‰ œ !, or t œ

$1 )

 k1. At each of these values, fatb œ „ cos $)1

¸ „ !Þ('& units, so the maximum distance between the particles is !Þ('& units.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 4 Practice Exercises

285

(b) Solving cos t œ cos ˆt  1% ‰ graphically, we obtain t ¸ #Þ(%*, t ¸ &Þ)*!, and so on.

Alternatively, this problem can be solved analytically as follows. cos t œ cos ˆt  1% ‰ cos’ˆt  1) ‰  1) “ œ cos’ˆt  1) ‰  1) “ cosˆt  1) ‰cos 1)  sinˆt  1) ‰sin 1) œ cosˆt  1) ‰cos 1)  sinˆt  1) ‰sin 1) #sin ˆt  1) ‰sin 1) œ ! sin ˆt  1) ‰ œ ! tœ The particles collide when t œ

(1 )

(1 )

 k1

¸ #Þ(%*. (plus multiples of 1 if they keep going.)

71. The dimensions will be x in. by "!  #x in. by "'  #x in., so Vaxb œ xa"!  #xba"'  #xb œ %x$  &#x#  "'!x for !  x  &. Then Vw axb œ "#x#  "!%x  "'! œ %ax  #ba$x  #!b , so the critical point in the correct domain is x œ #. This critical point corresponds to the maximum possible volume because Vw axb  ! for !  x  # and Vw axb  ! for 2  x  &. The box of largest volume has a height of 2 in. and a base measuring 6 in. by 12 in., and its volume is 144 in.$ Graphical support:

72. The length of the ladder is d"  d# œ 8 sec )  6 csc ). We wish to maximize I()) œ 8 sec )  6 csc ) Ê Iw ()) œ 8 sec ) tan )  6 csc ) cot ). Then Iw ()) œ 0 Ê 8 sin$ )  6 cos$ ) œ 0 Ê tan ) œ

$ È 6

#

Ê

d" œ 4 É4  $È36 and d# œ $È36 É4  $È36 Ê the length of the ladder is about Š4  $È36‹ É4  $È36 œ Š4  $È36‹

$Î#

¸ "*Þ( ft.

73. g(x) œ 3x  x$  4 Ê g(2) œ 2  0 and g(3) œ 14  0 Ê g(x) œ 0 in the interval [#ß 3] by the Intermediate Value Theorem. Then gw (x) œ 3  3x# Ê xnb1 œ xn 

3xn  x$n  4 33xn#

; x! œ 2 Ê x" œ 2.22 Ê x# œ 2.196215, and

so forth to x& œ 2.195823345.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

286

Chapter 4 Applications of Derivatives

74. g(x) œ x%  x$  75 Ê g(3) œ 21  0 and g(4) œ 117  0 Ê g(x) œ 0 in the interval [$ß %] by the Intermediate Value Theorem. Then gw (x) œ 4x$  3x# Ê xnb1 œ xn 

x%n  x$n  75 4xn$  3xn#

; x! œ 3 Ê x" œ 3.259259

Ê x# œ 3.229050, and so forth to x& œ 3.22857729. 75.

' ax$  5x  7b dx œ

76.

' Š8t$  t#  t‹ dt œ 8t4%  t6$  t##  C œ 2t%  t6$  t##  C

77.

' ˆ3Èt  t4# ‰ dt œ ' ˆ3t"Î#  4t# ‰ dt œ 3t$Î#  4t"1  C œ 2t$Î#  4t  C

78.

' Š #È" t  t3% ‹ dt œ ' ˆ #" t"Î#  3t% ‰ dt œ #" Œ t"Î#   (3t$3)  C œ Èt  t"$  C

x% 4



5x# #

 7x  C

#

Š 3# ‹

" #

79. Let u œ r  5 Ê du œ dr

' ar dr5b

œ'

#

du u#

u" 1

œ ' u# du œ

 C œ u"  C œ  ar " 5b  C

80. Let u œ r  È2 Ê du œ dr

'

6 dr

$

Šr  È2‹

œ 6'

dr

$

Šr  È2‹

œ 6'

du u$

81. Let u œ )#  1 Ê du œ 2) d) Ê

'

" #

3)È)#  1 d) œ ' Èu ˆ #3 du‰ œ

82. Let u œ 7  )2 Ê du œ 2) d) Ê

'È)

d) œ '

7 ) 2

" Èu

ˆ #" du‰ œ

" #

x$ a 1  x % b

"Î%

#

C

du œ ) d) 3 #

" #

3

ŠrÈ2‹

$Î# $Î# ' u"Î# du œ 3# Œ u$Î#  C œ a ) #  1b  C 3  C œ u #

du œ ) d)

"Î# ' u"Î# du œ #" Œ u"Î#  C œ È7  )2  C "  C œ u #

83. Let u œ 1  x% Ê du œ 4x$ dx Ê

'

#

œ 6' u$ du œ 6 Š u# ‹  C œ 3u#  C œ 

" 4

du œ x$ dx

dx œ ' u"Î% ˆ "4 du‰ œ

" 4

$Î% " $Î% ' u"Î% du œ 4" Œ u$Î%  C œ 3" a1  x% b  C 3  C œ 3 u 4

84. Let u œ 2  x Ê du œ  dx Ê  du œ dx

' (2  x)$Î& dx œ ' u$Î& ( du) œ  ' u$Î& du œ  u

)Î&

Š 85 ‹

85. Let u œ

'

s 10

sec# 10s

Ê du œ

" 10

 C œ  58 u)Î&  C œ  58 (2  x))Î&  C

ds Ê 10 du œ ds

ds œ ' asec# ub (10 du) œ 10 ' sec# u du œ 10 tan u  C œ 10 tan

86. Let u œ 1s Ê du œ 1 ds Ê

" 1

s 10

C

du œ ds

' csc# 1s ds œ ' acsc# ub ˆ 1" du‰ œ 1" ' csc# u du œ  1" cot u  C œ  1" cot 1s  C

87. Let u œ È2 ) Ê du œ È2 d) Ê

' csc È2) cot È2) d) œ '

" È2

du œ d)

(csc u cot u) Š È"2 du‹ œ

" È2

(csc u)  C œ  È"2 csc È2)  C

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 4 Additional and Advanced Exercises ) 3

88. Let u œ

'

sec

) 3

tan

89. Let u œ

'

Ê du œ

x 4

) 3

" 3

d) Ê 3 du œ d)

d) œ ' (sec u tan u)(3 du) œ 3 sec u  C œ 3 sec

Ê du œ

" 4

) 3

C

dx Ê 4 du œ dx

2u ‰ dx œ ' asin# ub (4 du) œ ' 4 ˆ 1  cos du œ 2' (1  cos 2u) du œ 2 ˆu  # œ 2u  sin 2u  C œ 2 ˆ x4 ‰  sin 2 ˆ x4 ‰  C œ x#  sin x#  C

sin#

x 4

90. Let u œ

'

cos#

œ

x #



91. y œ '

x # x # " #

Ê du œ

" #

2u ‰ dx œ ' acos# ub (2 du) œ ' 2 ˆ 1  cos du œ ' (1  cos 2u) du œ u  #

x#  " x#

dx œ ' a1  x# b dx œ x  x"  C œ x 

y œ 1 when x œ 1 Ê

" x

œ ' Š15Èt 

3 Èt ‹

" 3

2

1 1

"‰ x#

Ê

" x

 C; y œ 1 when x œ 1 Ê 1 

dx œ ' ax#  2  x# b dx œ

 C œ 1 Ê C œ  3" Ê y œ

$

x 3

x$ 3

 2x  x"  C œ

 2x 

dt œ ' ˆ15t"Î#  3t"Î# ‰ dt œ 10t$Î#  6t"Î#  C; dr dt œ &Î#

œ 4t&Î#  4t$Î#  8t  C; r œ 0 when t œ 1 Ê 4(1) r œ 4t&Î#  4t$Î#  8t d# r dt#

C

dr dt

" x



 C œ 1

x$ 3

 2x 

" x

 C;

" 3

œ 8 when t œ 1

10t$Î#  6t"Î#  8 Ê r œ ' ˆ10t$Î#  6t"Î#  8‰ dt

 4(1)$Î#  8(1)  C" œ 0 Ê C" œ 0. Therefore,

œ ' cos t dt œ sin t  C; rw w œ 0 when t œ 0 Ê sin 0  C œ 0 Ê C œ 0. Thus, dr dt

1 1

1

Ê 10(1)$Î#  6(1)"Î#  C œ 8 Ê C œ 8. Thus

94.

sin 2u #

sin x  C

# 92. y œ ' ˆx  x" ‰ dx œ ' ˆx#  2 

dr dt

C

dx Ê 2 du œ dx

Ê C œ 1 Ê y œ x 

93.

sin 2u ‰ #

œ ' sin t dt œ cos t  C" ; rw œ 0 when t œ 0 Ê 1  C" œ 0 Ê C" œ 1. Then

d# r dt# œ sin t dr dt œ cos t 

1

Ê r œ ' (cos t  1) dt œ sin t  t  C# ; r œ 1 when t œ 0 Ê 0  0  C# œ 1 Ê C# œ 1. Therefore, r œ sin t  t  1 CHAPTER 4 ADDITIONAL AND ADVANCED EXERCISES 1. If M and m are the maximum and minimum values, respectively, then m Ÿ f(x) Ÿ M for all x − I. If m œ M then f is constant on I. 3x  6, 2 Ÿ x  0 has an absolute minimum value of 0 at x œ 2 and an absolute 9  x# , 0 Ÿ x Ÿ 2 maximum value of 9 at x œ 0, but it is discontinuous at x œ 0.

2. No, the function f(x) œ œ

3. On an open interval the extreme values of a continuous function (if any) must occur at an interior critical point. On a half-open interval the extreme values of a continuous function may be at a critical point or at the closed endpoint. Extreme values occur only where f w œ 0, f w does not exist, or at the endpoints of the interval. Thus the extreme points will not be at the ends of an open interval. 4. The pattern f w œ  ±  ±  ±  ±  indicates a local maximum at x œ 1 and a local " # $ % minimum at x œ 3.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

287

288

Chapter 4 Applications of Derivatives

5. (a) If yw œ 6(x  1)(x  2)# , then yw  0 for x  1 and yw  0 for x  1. The sign pattern is f w œ  ±  ±  Ê f has a local minimum at x œ 1. Also yww œ 6(x  2)#  12(x  1)(x  2) " # œ 6(x  2)(3x) Ê yw w  0 for x  0 or x  2, while yww  0 for 0  x  2. Therefore f has points of inflection at x œ 0 and x œ 2. There is no local maximum. (b) If yw œ 6x(x  1)(x  2), then yw  0 for x  1 and 0  x  2; yw  0 for "  x  0 and x  2. The sign sign pattern is yw œ  ±  ±  ±  . Therefore f has a local maximum at x œ 0 and " ! # È7

local minima at x œ 1 and x œ 2. Also, yww œ ") ’x  Š 1 $ 1 È 7 $

x

1 È 7 $

È7

‹“ ’x  Š 1 $

‹“ , so yww  0 for

and yww  0 for all other x Ê f has points of inflection at x œ

6. The Mean Value Theorem indicates that

f(6)  f(0) 60

1 „È 7 $

.

œ f w (c) Ÿ 2 for some c in (0ß 6). Then f(6)  f(0) Ÿ 12

indicates the most that f can increase is 12. 7. If f is continuous on [aß c) and f w (x) Ÿ 0 on [aß c), then by the Mean Value Theorem for all x − [aß c) we have f(c)  f(x) cx

Ÿ 0 Ê f(c)  f(x) Ÿ 0 Ê f(x)   f(c). Also if f is continuous on (cß b] and f w (x)   0 on (cß b], then for f(x)  f(c) xc

all x − (cß b] we have

  0 Ê f(x)  f(c)   0 Ê f(x)   f(c). Therefore f(x)   f(c) for all x − [aß b].

8. (a) For all x, (x  1)# Ÿ 0 Ÿ (x  1)# Ê  a1  x# b Ÿ 2x Ÿ a1  x# b Ê  "# Ÿ (b) There exists c − (aß b) such that Ê kf(b)  f(a)k Ÿ

" #

c 1  c#

œ

f(b)  f(a) ba

 f(a) ¸ c ¸ Ê ¹ f(b)b  a ¹ œ 1  c# Ÿ

" #

x 1  x#

Ÿ

" #

.

, from part (a)

kb  ak .

9. No. Corollary 1 requires that f w (x) œ 0 for all x in some interval I, not f w (x) œ 0 at a single point in I. 10. (a) h(x) œ f(x)g(x) Ê hw (x) œ f w (x)g(x)  f(x)gw (x) which changes signs at x œ a since f w (x), gw (x)  0 when x  a, f w (x), gw (x)  0 when x  a and f(x), g(x)  0 for all x. Therefore h(x) does have a local maximum at x œ a. (b) No, let f(x) œ g(x) œ x$ which have points of inflection at x œ 0, but h(x) œ x' has no point of inflection (it has a local minimum at x œ 0). 11. From (ii), f(1) œ lim

xÄ „_

f(x) œ

12.

dy dx

œ 0 Ê a œ 1; from (iii), either 1 œ x lim f(x) or 1 œ x Ä lim f(x). In either case, Ä_ _

x" # x Ä „ _ bx  cx  #

1  "x x  c  2x xÄ „_

lim

"  a bc#

œ ! and if c œ 0,

œ 3x#  2kx  3 œ 0 Ê x œ

1  "x bx  c  2x xÄ „_ 1  x" then lim bx  2x xÄ „_

œ

lim

lim

2k „ È4k#  36 6

œ " Ê b œ 0 and c œ ". For if b œ ", then œ

lim

xÄ „_

1  x" 2 x

œ „ _. Thus a œ 1, b œ 0, and c œ 1.

Ê x has only one value when 4k#  36 œ 0 Ê k# œ 9 or

k œ „ 3. 13. The area of the ?ABC is A(x) œ w

where 0 Ÿ x Ÿ 1. Thus A (x) œ

" #

(2) È1  x# œ a1  x# b

x È 1  x#

"Î#

,

Ê 0 and „ 1 are

critical points. Also A a „ 1b œ 0 so A(0) œ 1 is the maximum. When x œ 0 the ?ABC is isosceles since AC œ BC œ È2 .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 4 Additional and Advanced Exercises f (c  h)  f (c) œ f ww (c) Ê for % œ "# kf ww (c)k  0 h hÄ0 Ê ¹ f (ch)h f (c)  f ww (c)¹  "# kf ww (c)k . Then f w (c) œ w

14. lim

w

w

w

3 #

f ww (c) 

0 Ê  "# kf ww (c)k 

f (c  h)  f ww (c)  "# kf ww (c)k . If f ww (c)  0, then h f (c  h)  "# f ww (c)  0; likewise if f ww (c)  0, then 0  "# h w

Ê f ww (c)  "# kf ww (c)k  Ê

there exists a $  0 such that 0  khk  $

w

w

f (c  h) h

" #

 f ww (c) 

w

kf ww (c)k

kf ww (c)k œ f ww (c) f ww (c) 

f (c  h) h w



3 #

f ww (c).

(a) If f ww (c)  0, then $  h  0 Ê f (c  h)  0 and 0  h  $ Ê f w (c  h)  0. Therefore, f(c) is a local maximum. (b) If f ww (c)  0, then $  h  0 Ê f w (c  h)  0 and 0  h  $ Ê f w (c  h)  0. Therefore, f(c) is a local minimum. 15. The time it would take the water to hit the ground from height y is É 2y g , where g is the acceleration of gravity. The product of time and exit velocity (rate) yields the distance the water travels: È64(h  y) œ 8 É 2 ahy  y# b D(y) œ É 2y g g are critical points. Now D(0) œ 0,

D ˆ h# ‰

16. From the figure in the text, tan ("  )) œ give

ba h

œ

tan "  1  ha tan " a h

œ

h tan "  a h  a tan "

œ

"Î#

, 0 Ÿ y Ÿ h Ê Dw (y) œ 4 É g2 ahy  y# b

8h Èg

ba h ;

"Î#

(h  2y) Ê 0,

and D(h) œ 0 Ê the best place to drill the hole is at y œ

tan ("  )) œ

tan "  tan ) 1  tan " tan )

. Solving for tan " gives tan " œ

; and tan ) œ

bh h#  a(b  a)

a h

h #

h #

and h

.

. These equations

or

#

ah  a(b  a)b tan " œ bh. Differentiating both sides with respect to h gives 2h tan "  ah#  a(b  a)b sec# "

d" dh

œ b. Then

d" dh

bh œ 0 Ê 2h tan " œ b Ê 2h Š h#  a(b  a) ‹ œ b

Ê 2bh# œ bh#  ab(b  a) Ê h# œ a(b  a) Ê h œ Èa(a  b) . 17. The surface area of the cylinder is S œ 21r#  21rh. From the diagram we have Rr œ H H h Ê h œ RH R rH and S(r) œ 21r(r  h) œ 21r ˆr  H  r HR ‰ œ 21 ˆ1  HR ‰ r#  21Hr, where 0 Ÿ r Ÿ R.

Case 1: H  R Ê S(r) is a quadratic equation containing the origin and concave upward Ê S(r) is maximum at r œ R. Case 2: H œ R Ê S(r) is a linear equation containing the origin with a positive slope Ê S(r) is maximum at r œ R. Case 3: H  R Ê S(r) is a quadratic equation containing the origin and concave downward. Then dS H‰ dS H‰ RH ˆ ˆ dr œ 41 1  R r  21H and dr œ 0 Ê 41 1  R r  21H œ 0 Ê r œ 2(H  R) . For simplification we let r‡ œ

RH 2(H  R)

.

(a) If R  H  2R, then 0  H  2R Ê H  2(H  R) Ê (b) If H œ 2R, then r‡ œ

#

2R 2R

RH 2(H  R)

 R which is impossible.

œ R Ê S(r) is maximum at r œ R.

(c) If H  2R, then 2R  H  2H Ê H  2(H  R) Ê S(r) is a maximum at r œ r‡ œ

RH 2(H  R)

H 2(H  R)

1 Ê

RH 2(H  R)

 R Ê r‡  R. Therefore,

.

Conclusion: If H − (0ß R] or H œ 2R, then the maximum surface area is at r œ R. If H − (Rß 2R), then r  R which is not possible. If H − (2Rß _), then the maximum is at r œ r‡ œ 2(HRH  R) . 18. f(x) œ mx  1 

" x

Ê f w (x) œ m 

" x#

and f w w (x) œ

2 x$

 0 when x  0. Then f w (x) œ 0 Ê x œ

minimum. If f Š È"m ‹   0, then Èm  1  Èm œ 2Èm  1   0 Ê m  

" 4

" Èm

yields a

. Thus the smallest acceptable value

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

289

290

Chapter 4 Applications of Derivatives

for m is 19. (a) (b) (c)

" 4

.

lim

xÄ!

#sina&xb $x

œ lim

xÄ!

x x Ä ! sin# È#x

lim

x Ä 1/2

"

xÄ!

(g) (h)

cos$ x #

sinax# b

lim x Ä ! xsin x lim

xÄ!

x$  )

20. (a) x lim Ä_ (b) x lim Ä_

"! $

$sina&xbsina$xb  &cosa&xbcosa$xb $cosa$xb

xÄ!

È #x

" œ lim #sinÈ#x cosÈ#x xÄ! È#x

xÄ!

sinŠ#È#x‹

œ

& $ "

È#x

œ lim

x Ä ! cosŠ#È#x‹ È# #x

"sin x cos x

lim "  cos#x x Ä ! "  sec x

œ

cos x

œ lim

œ !Þ

x Ä 1/2 sin x

lim "  cos# x x Ä ! tan x

œ

lim cos x# " x Ä ! tan x

œ lim

sin x

# x Ä ! # tan x sec x

œ lim

sin x

xÄ!

# sin x cos$ x

œ

œ  #" #x cosax# b

œ lim

x Ä ! xcos xsin x

sec x  " x#

lim # x Ä # x %

†"œ

" #

œ

x Ä 1/2

œ

"! $

œ

œ lim

œ lim

asec x  tan xb œ lim

lim x  sin x x Ä ! x  tan x œ lim

(f)

sina&xbcosa$xb sina$xb

lim x csc# È#x œ lim x Ä ! cosŠ#È#x‹†#

(e)

xÄ! $

xÄ!

xÄ!

"! sina&xb a&xb

œ lim

lim sina&xbcota$xb œ lim

xÄ!

œ lim (d)

#sina&xb $ & a &x b

œ lim

xÄ!

œ lim

xÄ#

sec x tan x #x

xÄ!

ax  #bax#  #x  %b ax  #bax  #b

œ x lim Ä_

#

sec x  tan x sec x #

xÄ!

x #  #x  % x#

œ lim

xÄ#

œ x lim œ x lim Ä _ Èx  & Ä_

#x x  (È x

$

œ lim

Èx  & Èx Èx

Èx  & Èx  &

a#x# bsinax# b  #cosax# b xsin x#cos x

œ lim

É"  x& "  È&x

#x x x( x x

È œ x lim Ä_

œ

# "  (É x"

œ œ

" "

œ"

œ

# "!

œ

"! #

# #

œ"

œ

%%% %

" #

œ$

œ#

21. (a) The profit function is Paxb œ ac  exbx  aa  bxb œ ex#  ac  bbx  a. Pw axb œ #ex  c  b œ ! Ê x œ c#eb . Pww axb œ #e  ! if e  ! so that the profit function is maximized at x œ c #e b . (b) The price therefore that corresponds to a production level yeilding a maximum profit is p¹

xœ c#eb

œ c  eˆ c #e b ‰ œ

c b #

dollars. #

(c) The weekly profit at this production level is Paxb œ eˆ c #e b ‰  ac  bbˆ c #e b ‰  a œ

ac  b b #  %e #

a.

(d) The tax increases cost to the new profit function is Faxb œ ac  exbx  aa  bx  txb œ ex  ac  b  tbx  a. bc cbt ww Now Fw axb œ #ex  c  b  t œ ! when x œ t # e œ #e . Since F axb œ #e  ! if e  !, F is maximized when x œ c #be t units per week. Thus the price per unit is p œ c  eˆ c #be t ‰ œ c  #b  t dollars. Thus, such a tax increases the cost per unit by

cbt #

The x-intercept occurs when

" x



cb #

œ

t #

dollars if units are priced to maximize profit.

22. (a)

$œ!Ê

(b) By Newton's method, xn" œ xn  œ xn  xn 

$x#n

œ #xn 

$xn#

faxn b f ax n b . w

" x

œ $ Ê x œ $" .

Here f w axn b œ x# n œ

" x#n .

" $

So xn" œ xn  xn" œ xn  Š x"n  $‹x#n x# n

œ xn a#  $xn b.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 4 Additional and Advanced Exercises 23. x" œ x!  and

a q" x!

fax! b f w ax ! b

q

qx!q  xq!  a qxq!"

x a œ x!  ! q" œ qx

!

with weights m! œ

In the case where x! œ

a xq!"

q" q

q

x aq  "b  a œ ! q" œ x! Š q q " ‹ 

a Š"‹ xq!" q

qx!

and m" œ "q .

we have xq! œ a and x" œ

q" a a " q" Š q ‹  q" Š q ‹ x! x!

œ

291

so that x" is a weighted average of x!

q" a q" Š q x!

 q" ‹ œ

a q" . x! #

dy d y 24. We have that ax  hb#  ay  hb# œ r# and so #ax  hb  #ay  hb dy dx œ ! and #  # dx  #ay  hb dx# œ ! hold. dy x  y dx dy . "  dx

dy Thus #x  #y dy dx œ #h  #h dx , by the former. Solving for h, we obtain h œ #

d y equation yields #  # dy dx  #y dx#  #Œ

dy x  y dx dy  "  dx

œ !. Dividing by 2 results in " 

Substituting this into the second

dy dx

#

 y ddxy#  Œ

dy x  y dx dy  "  dx

œ !.

25. (a) aatb œ sww atb œ k ak  !b Ê sw atb œ kt  C" , where sw a!b œ )) Ê C" œ )) Ê sw atb œ kt  )). So satb œ kt# #

kt# #

 ))t  C# where sa!b œ ! Ê C# œ ! so satb œ

 ))t œ "!!. Solving for t we obtain t œ

kŠ )) 

È))#  #!!k ‹ k ))# #!!

so that k œ

 )) œ ! or kŠ )) 

)) „ È))#  #!!k . k

È))#  #!!k ‹ k

kt# #

 ))t. Now satb œ "!! when

At such t we want sw atb œ !, thus

 )) œ !. In either case we obtain ))#  #!!k œ !

¸ $)Þ(# ft/sec# .

(b) The initial condition that sw a!b œ %% ft/sec implies that sw atb œ kt  %% and satb œ w

The car is stopped at a time t such that s atb œ kt  %% œ ! Ê t œ ‰ sˆ %% k

œ

k ˆ %% ‰# # k



‰ %%ˆ %% k

œ

%%# #k

œ

*') k

œ

‰ *')ˆ #!! ))#

%% k .

kt# #

 %%t where k is as above.

At this time the car has traveled a distance

œ #& feet. Thus halving the initial velocity quarters

stopping distance. 26. haxb œ f # axb  g# axb Ê hw axb œ #faxbf w axb  #gaxbgw axb œ #faxbf w axb  gaxbgw axb‘ œ #faxbgaxb  gaxbafaxbb‘ œ # † ! œ !. Thus haxb œ c, a constant. Since ha!b œ &, haxb œ & for all x in the domain of h. Thus ha"!b œ &. 27. Yes. The curve y œ x satisfies all three conditions since

dy dx

œ " everywhere, when x œ !, y œ !, and

d# y dx#

œ ! everywhere.

28. yw œ $x#  # for all x Ê y œ x$  #x  C where  " œ "$  # † "  C Ê C œ % Ê y œ x$  #x  %. 29. sww atb œ a œ t# Ê v œ sw atb œ maximum for this t‡ . Since satb t‡ œ a$Cb"Î$ . So ÊCœ

a%bb$Î% $ .

a$Cb"Î$ ‘% 12

t$ w ‡ ‡ $  C. We seek v! œ s a!b œ C. We know that sat b œ b for some t and s is at a % % œ 12t  Ct  k and sa!b œ ! we have that satb œ 12t  Ct and also sw at‡ b œ ! so that

 Ca$Cb"Î$ œ b Ê a$Cb"Î$ ˆC 

Thus v! œ sw a!b œ

a%bb$Î% $

œ

#È# $Î% . $ b

$C ‰ "#

œ b Ê a$Cb"Î$ ˆ $%C ‰ œ b Ê $"Î$ C%Î$ œ

30. (a) sww atb œ t"Î#  t"Î# Ê vatb œ sw atb œ #$ t$Î#  #t"Î#  k where va!b œ k œ (b) satb œ

% &Î# "& t

%  %$ t$Î#  %$ t  k# where sa!b œ k# œ  "& . Thus satb œ

% # $Î#  #t"Î# $ Ê vatb œ $ t % &Î# %  %$ t$Î#  %$ t  "& . "& t

%b $

 %$ Þ

31. The graph of faxb œ ax#  bx  c with a  ! is a parabola opening upwards. Thus faxb   ! for all x if faxb œ ! for at most one real value of x. The solutions to faxb œ ! are, by the quadratic equation #

#b „ Éa#bb#  %ac . #a

Thus we require

#

a#bb  %ac Ÿ ! Ê b  ac Ÿ !. 32. (a) Clearly faxb œ aa" x  b" b#  Þ Þ Þ  aan x  bn b#   ! for all x. Expanding we see faxb œ aa#" x#  #a" b" x  b"# b  Þ Þ Þ  aan# x#  #an bn x  bn# b œ aa#"  a##  Þ Þ Þ  an# bx#  #aa" b"  a# b#  Þ Þ Þ  an bn bx  ab"#  b##  Þ Þ Þ  bn# b   !.

Thus aa" b"  a# b#  Þ Þ Þ  an bn b#  aa#"  a##  Þ Þ Þ  an# bab"#  b##  Þ Þ Þ  bn# b Ÿ ! by Exercise 31. Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

292

Chapter 4 Applications of Derivatives

Thus aa" b"  a# b#  Þ Þ Þ  an bn b# Ÿ aa#"  a##  Þ Þ Þ  an# bab"#  b##  Þ Þ Þ  bn# b. (b) Referring to Exercise 31: It is clear that faxb œ ! for some real x Í b#  %ac œ !, by quadratic formula. Now notice that this implies that faxb œ aa" x  b" b#  Þ Þ Þ  aan x  bn b# œ aa#"  a##  Þ Þ Þ  an# bx#  #aa" b"  a# b#  Þ Þ Þ  an bn bx  ab"#  b##  Þ Þ Þ  bn# b œ ! Í aa" b"  a# b#  Þ Þ Þ  an bn b#  aa#"  a##  Þ Þ Þ  an# bab"#  b##  Þ Þ Þ  bn# b œ !

Í aa" b"  a# b#  Þ Þ Þ  an bn b# œ aa#"  a##  Þ Þ Þ  an# bab"#  b##  Þ Þ Þ  bn# b But now faxb œ ! Í ai x  bi œ ! for all i œ "ß #ß Þ Þ Þ ß n Í ai x œ bi œ ! for all i œ "ß #ß Þ Þ Þ ß n.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

CHAPTER 5 INTEGRATION 5.1 ESTIMATING WITH FINITE SUMS 1. faxb œ x#

Since f is increasing on Ò!ß "Ó, we use left endpoints to obtain lower sums and right endpoints to obtain upper sums.

"

#

iœ! $

" #

œ "# Š!#  ˆ "# ‰ ‹ œ

#

" 4

œ 4" Š!#  ˆ 4" ‰  ˆ #" ‰  ˆ 4$ ‰ ‹ œ

(a) ˜x œ

"! #

œ

" #

and xi œ i˜x œ

i #

Ê a lower sum is !ˆ #i ‰ †

(b) ˜x œ

"! %

œ

" %

and xi œ i˜x œ

i %

Ê a lower sum is !ˆ 4i ‰ †

(c) ˜x œ

"! #

œ

" #

and xi œ i˜x œ

i #

Ê an upper sum is !ˆ #i ‰ †

(d) ˜x œ

"! %

œ

" %

and xi œ i˜x œ

i %

Ê an upper sum is !ˆ 4i ‰ †

2. faxb œ x$

iœ! 2

iœ1 %

#

" )

#

#

#

#

" #

# œ "# Šˆ "# ‰ +1# ‹ œ

#

" 4

# # # œ 4" Šˆ 4" ‰  ˆ #" ‰  ˆ 4$ ‰ +1# ‹ œ

iœ"

" %



( )

" %

$! ‰ † ˆ "' œ

œ

( $#

& ) "& $#

Since f is increasing on Ò!ß "Ó, we use left endpoints to obtain lower sums and right endpoints to obtain upper sums.

"

$

iœ! $

" #

œ "# Š!$  ˆ "# ‰ ‹ œ

$

" 4

œ 4" Š!$  ˆ 4" ‰  ˆ #" ‰  ˆ 4$ ‰ ‹ œ

(a) ˜x œ

"! #

œ

" #

and xi œ i˜x œ

i #

Ê a lower sum is !ˆ #i ‰ †

(b) ˜x œ

"! %

œ

" %

and xi œ i˜x œ

i %

Ê a lower sum is !ˆ 4i ‰ †

(c) ˜x œ

"! #

œ

" #

and xi œ i˜x œ

i #

Ê an upper sum is !ˆ #i ‰ †

(d) ˜x œ

"! %

œ

" %

and xi œ i˜x œ

i %

Ê an upper sum is !ˆ 4i ‰ †

iœ! 2

iœ1 %

iœ"

$

" "'

$

$

$

$' #&'

$

" #

$ œ "# Šˆ "# ‰ +1$ ‹ œ

$

" 4

$ $ $ œ 4" Šˆ 4" ‰  ˆ #" ‰  ˆ 4$ ‰ +1$ ‹ œ œ

" #



* )

œ

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

œ

* '%

"!! #&'

œ

* "' #& '%

294

Chapter 5 Integration

3. faxb œ

" x

Since f is decreasing on Ò!ß "Ó, we use left endpoints to obtain upper sums and right endpoints to obtain lower sums.

#

(a) ˜x œ

&" #

œ # and xi œ "  i˜x œ "  #i Ê a lower sum is ! x"i † # œ #ˆ $"  &" ‰ œ

(b) ˜x œ

&" %

œ 1 and xi œ "  i˜x œ "  i Ê a lower sum is

(c) ˜x œ

&" #

œ # and xi œ "  i˜x œ "  #i Ê an upper sum is ! x"i † # œ #ˆ"  $" ‰ œ

(d) ˜x œ

&" %

œ 1 and xi œ "  i˜x œ "  i Ê an upper sum is

4. faxb œ %  x#

iœ" % !" xi iœ" "

† " œ "ˆ #" 

iœ! $ !" xi iœ!

" $

† " œ "ˆ" 



" #

" %



"' "&

 &" ‰ œ

" $

(( '!

) $

 "% ‰ œ

#& "#

Since f is increasing on Ò#ß !Ó and decreasing on Ò!ß #Ó, we use left endpoints on Ò#ß !Ó and right endpoints on Ò!ß #Ó to obtain lower sums and use right endpoints on Ò#ß !Ó and left endpoints on Ò!ß #Ó to obtain upper sums.

(a) ˜x œ

#  a#b #

œ # and xi œ #  i˜x œ #  #i Ê a lower sum is # † ˆ%  a#b# ‰  # † a%  ## b œ !

(b) ˜x œ

#  a#b %

œ " and xi œ #  i˜x œ #  i Ê a lower sum is !ˆ%  axi b# ‰ † "  !ˆ%  axi b# ‰ † "

"

%

iœ!

iœ$

œ "ˆˆ%  a#b# ‰  ˆ%  a"b# ‰  a%  "# b  a%  ## b‰ œ ' (c) ˜x œ

#  a#b #

œ # and xi œ #  i˜x œ #  #i Ê a upper sum is # † ˆ%  a!b# ‰  # † a%  !# b œ "'

(d) ˜x œ

#  a#b %

œ " and xi œ #  i˜x œ #  i Ê a upper sum is !ˆ%  axi b# ‰ † "  !ˆ%  axi b# ‰ † "

#

$

iœ"

iœ#

œ "ˆˆ%  a"b# ‰  a%  !# b  a%  !# b  a%  "# b‰ œ "% 5. faxb œ x#

œ

" #

Using 4 rectangles Ê ˜x œ " % ! œ Ê "% ˆfˆ ") ‰  fˆ $) ‰  fˆ &) ‰  fˆ () ‰‰

" %

Using 2 rectangles Ê ˜x œ #

#

œ "# Šˆ "% ‰  ˆ $% ‰ ‹ œ

#

#

"! $#

#

œ

"! #

Ê "# ˆfˆ "% ‰  fˆ $% ‰‰

& "'

#

œ "% Šˆ ") ‰  ˆ $) ‰  ˆ &) ‰  ˆ () ‰ ‹ œ

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

#" '%

Section 5.1 Estimating with Finite Sums 6. faxb œ x$

œ

" #

Using 4 rectangles Ê ˜x œ " % ! œ Ê "% ˆfˆ ") ‰  fˆ $) ‰  fˆ &) ‰  fˆ () ‰‰

" %

$

$

œ "# Šˆ "% ‰  ˆ $% ‰ ‹ œ

$

$

$

$

( œ "% Š " $ )& ‹œ $

7. faxb œ

" x

"! #

Using 2 rectangles Ê ˜x œ #) # † '%

%*' % † )$

œ

œ

Using 2 rectangles Ê ˜x œ œ #ˆ "#  "% ‰ œ $#

Ê "# ˆfˆ "% ‰  fˆ $% ‰‰

( $#

"#% )$

&" #

œ

$" "#)

œ # Ê #afa#b  fa%bb

Using 4 rectangles Ê ˜x œ & % " œ " Ê "ˆfˆ $# ‰  fˆ &# ‰  fˆ (# ‰  fˆ *# ‰‰ œ "ˆ #$ 

8. faxb œ %  x#

# &



# (

 #* ‰ œ

"%)) $†&†(†*

Using 2 rectangles Ê ˜x œ œ #a$  $b œ "#

295

œ

#  a#b #

%*' &†(†*

œ

%*' $"&

œ # Ê #afa"b  fa"bb

Using 4 rectangles Ê ˜x œ #  %a#b œ " Ê "ˆfˆ $# ‰  fˆ "# ‰  fˆ "# ‰  fˆ $# ‰‰ # # # # œ "ŠŠ%  ˆ $# ‰ ‹  Š%  ˆ "# ‰ ‹  Š%  ˆ "# ‰ ‹  Š%  ˆ $# ‰ ‹‹ œ "'  ˆ *% † #  "% † #‰ œ "'  "! # œ ""

9. (a) D ¸ (0)(1)  (12)(1)  (22)(1)  (10)(1)  (5)(1)  (13)(1)  (11)(1)  (6)(1)  (2)(1)  (6)(1) œ 87 inches (b) D ¸ (12)(1)  (22)(1)  (10)(1)  (5)(1)  (13)(1)  (11)(1)  (6)(1)  (2)(1)  (6)(1)  (0)(1) œ 87 inches 10. (a) D ¸ (1)(300)  (1.2)(300)  (1.7)(300)  (2.0)(300)  (1.8)(300)  (1.6)(300)  (1.4)(300)  (1.2)(300)  (1.0)(300)  (1.8)(300)  (1.5)(300)  (1.2)(300) œ 5220 meters (NOTE: 5 minutes œ 300 seconds) (b) D ¸ (1.2)(300)  (1.7)(300)  (2.0)(300)  (1.8)(300)  (1.6)(300)  (1.4)(300)  (1.2)(300)  (1.0)(300)  (1.8)(300)  (1.5)(300)  (1.2)(300)  (0)(300) œ 4920 meters (NOTE: 5 minutes œ 300 seconds) 11. (a) D ¸ (0)(10)  (44)(10)  (15)(10)  (35)(10)  (30)(10)  (44)(10)  (35)(10)  (15)(10)  (22)(10)  (35)(10)  (44)(10)  (30)(10) œ 3490 feet ¸ 0.66 miles (b) D ¸ (44)(10)  (15)(10)  (35)(10)  (30)(10)  (44)(10)  (35)(10)  (15)(10)  (22)(10)  (35)(10)  (44)(10)  (30)(10)  (35)(10) œ 3840 feet ¸ 0.73 miles 12. (a) The distance traveled will be the area under the curve. We will use the approximate velocities at the midpoints of each time interval to approximate this area using rectangles. Thus, D ¸ (20)(0.001)  (50)(0.001)  (72)(0.001)  (90)(0.001)  (102)(0.001)  (112)(0.001)  (120)(0.001)  (128)(0.001)  (134)(0.001)  (139)(0.001) ¸ 0.967 miles (b) Roughly, after 0.0063 hours, the car would have gone 0.484 miles, where 0.0060 hours œ 22.7 sec. At 22.7 sec, the velocity was approximately 120 mi/hr.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

296

Chapter 5 Integration

13. (a) Because the acceleration is decreasing, an upper estimate is obtained using left end-points in summing acceleration † ?t. Thus, ?t œ 1 and speed ¸ [32.00  19.41  11.77  7.14  4.33](1) œ 74.65 ft/sec (b) Using right end-points we obtain a lower estimate: speed ¸ [19.41  11.77  7.14  4.33  2.63](1) œ 45.28 ft/sec (c) Upper estimates for the speed at each second are: t 0 1 2 3 4 5 v 0 32.00 51.41 63.18 70.32 74.65 Thus, the distance fallen when t œ 3 seconds is s ¸ [32.00  51.41  63.18](1) œ 146.59 ft. 14. (a) The speed is a decreasing function of time Ê right end-points give an lower estimate for the height (distance) attained. Also t 0 1 2 3 4 5 v 400 368 336 304 272 240 gives the time-velocity table by subtracting the constant g œ 32 from the speed at each time increment ?t œ 1 sec. Thus, the speed ¸ 240 ft/sec after 5 seconds. (b) A lower estimate for height attained is h ¸ [368  336  304  272  240](1) œ 1520 ft. 15. Partition [!ß #] into the four subintervals [0ß 0.5], [0.5ß 1], [1ß 1.5], and [1.5ß 2]. The midpoints of these subintervals are m" œ 0.25, m# œ 0.75, m$ œ 1.25, and m% œ 1.75. The heights of the four approximating 1 125 343 $ $ rectangles are f(m" ) œ (0.25)$ œ 64 , f(m# ) œ (0.75)$ œ 27 64 , f(m$ ) œ (1.25) œ 64 , and f(m% ) œ (1.75) œ 64 Notice that the average value is approximated by œ

" length of [!ß#]

†”

" #

$ $ $ $ ’ˆ 4" ‰ ˆ #" ‰  ˆ 34 ‰ ˆ #" ‰  ˆ 54 ‰ ˆ #" ‰  ˆ 74 ‰ ˆ #" ‰“ œ

$" "'

approximate area under • . We use this observation in solving the next several exercises. curve f(x) œ x$

16. Partition [1ß 9] into the four subintervals ["ß $], [3ß &], [&ß (], and [(ß *]. The midpoints of these subintervals are m" œ 2, m# œ 4, m$ œ 6, and m% œ 8. The heights of the four approximating rectangles are f(m" ) œ "# , f(m# ) œ "4 , f(m$ ) œ 6" , and f(m% ) œ 8" . The width of each rectangle is ?x œ 2. Thus, Area ¸ 2 ˆ "# ‰  2 ˆ 4" ‰  2 ˆ 6" ‰  2 ˆ 8" ‰ œ

Ê average value ¸

25 1#

area length of ["ß*]

œ

ˆ 25 ‰ 12 8

œ

25 96 .

17. Partition [0ß 2] into the four subintervals [0ß 0.5], [0.5ß 1], [1ß 1.5], and [1.5ß 2]. The midpoints of the subintervals are m" œ 0.25, m# œ 0.75, m$ œ 1.25, and m% œ 1.75. The heights of the four approximating rectangles are " #

f(m" ) œ œ

" #



" #

 sin#

1 4

œ

" #



" #

œ 1, and f(m% ) œ

œ 1, f(m# ) œ

" 2

 sin#

71 4

œ

 sin#

" #

 Š È"2 ‹ œ 1. The width of each rectangle is ?x œ #" . Thus,

31 4

œ

" #



" #

œ 1, f(m$ ) œ

" 2

 sin#

51 4

œ

" #

 Š È"2 ‹

#

" 2

#

Area ¸ (1  1  1  1) ˆ "# ‰ œ 2 Ê average value ¸

area length of [0ß2]

œ

2 #

œ 1.

18. Partition [0ß 4] into the four subintervals [0ß 1], [1ß 2ß ], [2ß 3], and [3ß 4]. The midpoints of the subintervals are m" œ "# , m# œ #3 , m$ œ 5# , and m% œ 7# . The heights of the four approximating rectangles are f(m" ) œ 1  Šcos Š

% 1 ˆ "# ‰ 4 ‹‹

œ 1  ˆcos ˆ 18 ‰‰ œ 0.27145 (to 5 decimal places),

f(m# ) œ 1  Šcos Š

% 1 ˆ 3# ‰ 4 ‹‹

œ 1  ˆcos ˆ 381 ‰‰ œ 0.97855, f(m3 ) œ 1  Šcos Š

%

œ 0.97855, and f(m% ) œ 1  Šcos Š

%

% 1 ˆ 7# ‰ 4 ‹‹

% 1 ˆ #5 ‰ 4 ‹‹

œ 1  ˆcos ˆ 581 ‰‰

%

%

œ 1  ˆcos ˆ 781 ‰‰ œ 0.27145. The width of each rectangle is

?x œ ". Thus, Area ¸ (0.27145)(1)  (0.97855)(1)  (0.97855)(1)  (0.27145)(1) œ 2.5 Ê average 2.5 5 value ¸ lengtharea of [0ß4] œ 4 œ 8 .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 5.1 Estimating with Finite Sums

297

19. Since the leakage is increasing, an upper estimate uses right endpoints and a lower estimate uses left endpoints: (a) upper estimate œ (70)(1)  (97)(1)  (136)(1)  (190)(1)  (265)(1) œ 758 gal, lower estimate œ (50)(1)  (70)(1)  (97)(1)  (136)(1)  (190)(1) œ 543 gal. (b) upper estimate œ (70  97  136  190  265  369  516  720) œ 2363 gal, lower estimate œ (50  70  97  136  190  265  369  516) œ 1693 gal. (c) worst case: 2363  720t œ 25,000 Ê t ¸ 31.4 hrs; best case: 1693  720t œ 25,000 Ê t ¸ 32.4 hrs 20. Since the pollutant release increases over time, an upper estimate uses right endpoints and a lower estimate uses left endpoints: (a) upper estimate œ (0.2)(30)  (0.25)(30)  (0.27)(30)  (0.34)(30)  (0.45)(30)  (0.52)(30) œ 60.9 tons lower estimate œ (0.05)(30)  (0.2)(30)  (0.25)(30)  (0.27)(30)  (0.34)(30)  (0.45)(30) œ 46.8 tons (b) Using the lower (best case) estimate: 46.8  (0.52)(30)  (0.63)(30)  (0.70)(30)  (0.81)(30) œ 126.6 tons, so near the end of September 125 tons of pollutants will have been released. #

21. (a) The diagonal of the square has length 2, so the side length is È#. Area œ ŠÈ#‹ œ # (b) Think of the octagon as a collection of 16 right triangles with a hypotenuse of length 1 and an acute angle measuring #1 1 "' œ ) . Area œ "'ˆ " ‰ˆsin 1 ‰ˆcos 1 ‰ œ % sin 1 œ #È# ¸ #Þ)#) #

)

)

%

(c) Think of the 16-gon as a collection of 32 right triangles with a hypotenuse of length 1 and an acute angle measuring #1 1 $# œ "' . Area œ $#ˆ " ‰ˆsin 1 ‰ˆcos 1 ‰ œ ) sin 1 œ #È# ¸ $Þ!'" #

"'

"'

)

(d) Each area is less than the area of the circle, 1. As n increases, the area approaches 1. 22. (a) Each of the isosceles triangles is made up of two right triangles having hypotenuse 1 and an acute angle measuring #1 1 1 ‰ˆ ˆ " ‰ˆ cos 1n ‰ œ "# sin #n1 . #n œ n . The area of each isosceles triangle is AT œ # # sin n (b) The area of the polygon is AP œ nAT œ

n #

sin

#1 n ,

n nÄ_ #

so lim

sin

#1 n

œ lim 1 † nÄ_

sin #n1 ˆ #n1 ‰

œ1

(c) Multiply each area by r# . AT œ "# r# sin #n1 AP œ n# r# sin lim AP œ 1r

#

#1 n

nÄ_

23-26. Example CAS commands: Maple: with( Student[Calculus1] ); f := x -> sin(x); a := 0; b := Pi; plot( f(x), x=a..b, title="#23(a) (Section 5.1)" ); N := [ 100, 200, 1000 ]; # (b) for n in N do Xlist := [ a+1.*(b-a)/n*i $ i=0..n ]; Ylist := map( f, Xlist ); end do: for n in N do # (c) Avg[n] := evalf(add(y,y=Ylist)/nops(Ylist)); Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

298

Chapter 5 Integration

end do; avg := FunctionAverage( f(x), x=a..b, output=value ); evalf( avg ); FunctionAverage(f(x),x=a..b,output=plot); # (d) fsolve( f(x)=avg, x=0.5 ); fsolve( f(x)=avg, x=2.5 ); fsolve( f(x)=Avg[1000], x=0.5 ); fsolve( f(x)=Avg[1000], x=2.5 ); Mathematica: (assigned function and values for a and b may vary): Symbols for 1, Ä , powers, roots, fractions, etc. are available in Palettes (under File). Never insert a space between the name of a function and its argument. Clear[x] f[x_]:=x Sin[1/x] {a,b}={1/4, 1} Plot[f[x],{x, a, b}] The following code computes the value of the function for each interval midpoint and then finds the average. Each sequence of commands for a different value of n (number of subdivisions) should be placed in a separate cell. n =100; dx = (b  a) /n; values = Table[N[f[x]], {x, a  dx/2, b, dx}] average=Sum[values[[i]],{i, 1, Length[values]}] / n n =200; dx = (b  a) /n; values = Table[N[f[x]],{x, a + dx/2, b, dx}] average=Sum[values[[i]],{i, 1, Length[values]}] / n n =1000; dx = (b  a) /n; values = Table[N[f[x]],{x, a  dx/2, b, dx}] average=Sum[values[[i]],{i, 1, Length[values]}] / n FindRoot[f[x] == average,{x, a}] 5.2 SIGMA NOTATION AND LIMITS OF FINITE SUMS 2

1. ! kœ1

3

2. ! kœ1

6k k1

œ

6(1) 11



6(2) 21

œ

6 2



k1 k

œ

11 1



21 2



31 3

12 3

œ7

œ0

1 2



2 3

œ

7 6

4

3. ! cos k1 œ cos (11)  cos (21)  cos (31)  cos (41) œ 1  1  1  1 œ 0 kœ1

5

4. ! sin k1 œ sin (11)  sin (21)  sin (31)  sin (41)  sin (51) œ 0  0  0  0  0 œ 0 kœ1

3

5. ! (1)kb1 sin kœ1

1 k

œ (1)"" sin

1 1

 (1)#" sin

1 #

 (")$" sin

1 3

œ 01

È3 #

œ

È3  2 #

4

6. ! (1)k cos k1 œ (1)" cos (11)  (1)# cos (21)  (1)$ cos (31)  (1)% cos (41) kœ1

œ (1)  1  (1)  1 œ 4

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 5.2 Sigma Notation and Limits of Finite Sums 6

7. (a) ! 2kc1 œ 2""  2#"  2$"  2%"  2&"  2'" œ 1  2  4  8  16  32 kœ1 5

(b) ! 2k œ 2!  2"  2#  2$  2%  2& œ 1  2  4  8  16  32 kœ0 4

(c) ! 2k1 œ 2""  2!"  2""  2#"  2$"  2%" œ 1  2  4  8  16  32 kœ"

All of them represent 1  2  4  8  16  32 6

8. (a) ! (2)k1 œ (2)""  (2)#"  (2)$"  (2)%"  (2)&"  (2)'" œ 1  2  4  8  16  32 kœ1 5

(b) ! (1)k 2k œ (1)! 2!  Ð")" 2"  (1)# 2#  (1)$ 2$  (1)% 2%  (1)& 2& œ 1  2  4  8  16  32 kœ0 3

(c) ! (1)k1 2k2 œ Ð")#" 2##  (")"" 2"#  (")!" 2!#  (1)"" 2"#  (")#" 2## kœ2

 (1)$" 2$# œ 1  2  4  8  16  32; (a) and (b) represent 1  2  4  8  16  32; (c) is not equivalent to the other two 4

9. (a) ! kœ2 2

(b) ! kœ0 1

(c) !

kœ"

(")k" k1

(1)#" 21

œ

(")k k1

œ

(1)! 01

(")k k2

œ

(1)" 1  2





(")$" 31

(")" 11





(")! 02



(")# 21



(")%" 41

œ 1 

œ1

(")" 12

" #



œ 1 

" #

" #



" 3

" 3



" 3

(a) and (c) are equivalent; (b) is not equivalent to the other two. 4

10. (a) ! (k  1)# œ (1  1)#  (2  1)#  (3  1)#  (4  1)# œ 0  1  4  9 kœ1 3

(b) ! (k  1)# œ (1  1)#  (0  1)#  (1  1)#  (2  1)#  (3  1)# œ 0  1  4  9  16 kœ1

"

(c) ! k# œ (3)#  (2)#  (1)# œ 9  4  1 kœ3

(a) and (c) are equivalent to each other; (b) is not equivalent to the other two. 6

4

4

12. ! k#

11. ! k kœ1

13. !

kœ1

5

5

15. ! (1)k1

14. ! 2k kœ1

kœ1

n

kœ1

" k

5

16. ! (1)k kœ1

n

17. (a) ! 3ak œ 3 ! ak œ 3(5) œ 15 kœ1 n

(b) ! kœ1 n

bk 6

œ

" 6

kœ1 n

! bk œ kœ1

" 6

(6) œ 1

n

n

kœ1 n

kœ1 n

kœ1 n

kœ1 n

kœ1 n

kœ1

(c) ! (ak  bk ) œ ! ak  ! bk œ 5  6 œ 1 (d) ! (ak  bk ) œ ! ak  ! bk œ 5  6 œ 11 n

(e) ! (bk  2ak ) œ ! bk  2 ! ak œ 6  2(5) œ 16 kœ1

kœ1

" #k

kœ1

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

k 5

299

300

Chapter 5 Integration n

n

kœ1 n

kœ1

n

18. (a) ! 8ak œ 8 ! ak œ 8(0) œ 0 n

n

kœ1

kœ1

(c) ! (ak  1) œ ! ak  ! 1 œ 0  n œ n kœ1

10

19. (a) ! k œ kœ1

10(10  1) #

n

(b) ! 250bk œ 250 ! bk œ 250(1) œ 250 kœ1 n

n

kœ1

n

kœ1

kœ1

kœ1

(d) ! (bk  1) œ ! bk  ! 1 œ "  n 10

(b) ! k# œ

œ 55

kœ1

10(10  1)(2(10)  1) 6

œ 385

13(13  1)(2(13)  1) 6

œ 819

#

10

(c) ! k$ œ ’ 10(10#  1) “ œ 55# œ 3025 kœ1

13

20. (a) ! k œ kœ1

13(13  1) #

13

(b) ! k# œ

œ 91

kœ1

#

13

(c) ! k$ œ ’ 13(13#  1) “ œ 91# œ 8281 kœ1

7

7

kœ1

kœ1

6

6

6

kœ1

kœ1

kœ1

6

6

6

kœ1

kœ1

kœ1

5

21. ! 2k œ 2 ! k œ 2 Š 7(7 # ") ‹ œ 56

23. ! a3  k# b œ ! 3  ! k# œ 3(6) 

24. ! ak#  5b œ ! k#  ! 5 œ

22. ! kœ1

6(6  ")(2(6)  1) 6

6(6  ")(2(6)  1) 6

1k 15

œ

1 15

5

!kœ kœ1

1 15

Š 5(5 # 1) ‹ œ 1

œ 73

 5(6) œ 61

5

5

5

5

kœ1

kœ1

kœ1

kœ1

7

7

7

7

kœ1

kœ1

kœ1

kœ1

 1) 25. ! k(3k  5) œ ! a3k#  5kb œ 3 ! k#  5 ! k œ 3 Š 5(5  1)(2(5) ‹  5 Š 5(5 # 1) ‹ œ 240 6

 1) 26. ! k(2k  1) œ ! a2k#  kb œ 2 ! k#  ! k œ 2 Š 7(7  1)(2(7) ‹ 6

5

k$ 225

27. ! kœ1

7

kœ1

#

7

28. Œ! k  ! kœ1

29. (a)

$

5

 Œ! k  œ

kœ1

k$ 4

" 2 #5

7

5

5

kœ1

kœ1

#

œ Œ! k  kœ1

$

! k $  Œ! k  œ

" 4

" #25

#

! k$ œ Š 7(7  1) ‹  # kœ1

(b)

œ 308

$

Š 5(5 # 1) ‹  Š 5(5 # 1) ‹ œ 3376 #

7

7(7  1) #

" 4

#

Š 7(7 # 1) ‹ œ 588 (c)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 5.2 Sigma Notation and Limits of Finite Sums 30. (a)

(b)

(c)

31. (a)

(b)

(c)

32. (a)

(b)

(c)

301

33. kx"  x! k œ k1.2  0k œ 1.2, kx#  x" k œ k1.5  1.2k œ 0.3, kx$  x# k œ k2.3  1.5k œ 0.8, kx%  x$ k œ k2.6  2.3k œ 0.3, and kx&  x% k œ k3  2.6k œ 0.4; the largest is lPl œ 1.2. 34. kx"  x! k œ k1.6  (2)k œ 0.4, kx#  x" k œ k0.5  (1.6)k œ 1.1, kx$  x# k œ k0  (0.5)k œ 0.5, kx%  x$ k œ k0.8  0k œ 0.8, and kx&  x% k œ k1  0.8k œ 0.2; the largest is lPl œ 1.1. 35. faxb œ "  x#

Since f is decreasing on Ò !, 1Ó we use left endpoints to obtain upper sums. ˜x œ " n ! œ "n and xi œ i˜x œ ni . So an upper sum n"

is ! a"  x#i b "n œ iœ!

œ

n$ n$



n "! # i n$ iœ!

" n

n"

! Š"  ˆ i ‰# ‹ œ n

iœ!

œ"

an  " b n a# an  " b  " b 'n $

#  $n  n"# . Thus, ' n" lim ! a"  x#i b "n œ lim Œ" nÄ_ iœ! nÄ_

" n$

n"

! an#  i# b

iœ!

œ"

#n$  $n#  n 'n $

œ"



#  $n  n"# '

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

œ"

" $

œ

# $

302

Chapter 5 Integration Since f is increasing on Ò !, $Ó we use right endpoints to obtain upper sums. ˜x œ $ n ! œ $n and xi œ i˜x œ $ni . So an upper

36. faxb œ #x

n

n

sum is !#xi ˆ n$ ‰ œ ! 'ni † iœ"

iœ"

n

Thus,

37. faxb œ x#  "

lim ! 'i nÄ_ iœ" n



$ n

œ

# œ lim *n n# *n nÄ_

$ n

n

") n#

") n#

!i œ

iœ"

n an  " b #



œ

*n#  *n n#

œ lim ˆ*  n* ‰ œ *. nÄ_

Since f is increasing on Ò !, $Ó we use right endpoints to obtain upper sums. ˜x œ $ n ! œ $n and xi œ i˜x œ $ni . So an upper n

n

# sum is !ax#i  "b $n œ !Šˆ $ni ‰  "‹ n$ œ

œ

iœ" n #( ! # i  n$ n iœ"

iœ"

†nœ

#( nan  "ba#n  "b ‹ n$ Š '

n

!Š *i##  "‹ n

$ n

iœ"

$

* ")  #( *a#n$  $n#  nb n  n# $œ  $Þ Thus, #n $ # n #( ")  n  n*# lim !ax#i  "b $n œ lim Œ  $ œ # nÄ_ iœ" nÄ_

œ

38. faxb œ $x#

Since f is increasing on Ò !, "Ó we use right endpoints to obtain upper sums. ˜x œ " n ! œ "n and xi œ i˜x œ ni . So an upper sum n

n

iœ"

iœ"

# is !$x#i ˆ "n ‰ œ !$ˆ ni ‰ ˆ n" ‰ œ

œ

#n$  $n#  n #n $

œ lim Œ nÄ_

39. faxb œ x  x# œ xa"  xb

œ

#  $n  n"# #

#  $n  n"# # # #



n

$ n$

! i# œ

iœ"

$ n$

† Š nan  "ba' #n  "b ‹

n

. Thus, lim !$x#i ˆ "n ‰ nÄ_ iœ"

œ ".

Since f is increasing on Ò !, "Ó we use right endpoints to obtain upper sums. ˜x œ " n ! œ "n and xi œ i˜x œ ni . So an upper sum n

n

# is !axi  xi# b n" œ !Š ni  ˆ ni ‰ ‹ n" œ iœ"

iœ"

œ

" n a n  "b ‹ n# Š #

œ

"  "n #

 n"$ Š nan  "ba' #n  "b ‹ n # $  "



œ lim ”Š nÄ_

40. faxb œ $x  #x#

*  $ œ "#.

n

'

" #

" n

n#

n "! i n# iœ"



n "! # i n$ iœ"

n#  n #n#



#n $  $ n #  n 'n$

œ

. Thus, lim !axi  x#i b "n nÄ_ iœ"

‹Œ

$ n

#   n"# '

• œ

" #



# '

œ &' .

Since f is increasing on Ò !, "Ó we use right endpoints to obtain upper sums. ˜x œ " n ! œ "n and xi œ i˜x œ ni . So an upper sum n

n

# is !a$xi  #x#i b "n œ !Š $ni  #ˆ ni ‰ ‹ n" œ iœ"

iœ"

œ

$ n a n  "b ‹ n# Š #

œ

$  $n #



œ lim ”Š nÄ_

 n#$ Š nan  "ba' #n  "b ‹ n # $  "

$ #

n

$

$ n

n#

œ

n $! i n# iœ"

$n#  $n #n#



. Thus, lim !a$xi  #x#i b "n

‹Œ

nÄ_ iœ"

$ n

#   n"# $

• œ

$ #



Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

# $

œ

"$ ' .



n #! # i n$ iœ"

#n#  $n  " $n#

Section 5.3 The Definite Integral

303

5.3 THE DEFINITE INTEGRAL

1.

'02 x# dx

2.

'"! 2x$ dx

3.

'(& ax#  3xb dx

4.

'"% "x dx

5.

'#$ 1 " x dx

6.

'0" È4  x# dx

7.

'! Î% (sec x) dx

8.

'0 Î% (tan x) dx 1

1

9. (a) (c) (e) (f)

10. (a) (b) (c) (d) (e) (f)

11. (a) (c)

12. (a) (c)

13. (a) (b)

14. (a) (b)

" & '#2 g(x) dx œ 0 (b) ' g(x) dx œ  ' g(x) dx œ 8 & " 2 2 & & 2 '" 3f(x) dx œ 3'" f(x) dx œ 3(4) œ 12 (d) ' f(x) dx œ ' f(x) dx  ' f(x) dx œ 6  (4) œ 10 # " " & & & '" [f(x)  g(x)] dx œ '" f(x) dx  '" g(x) dx œ 6  8 œ 2 '"& [4f(x)  g(x)] dx œ 4 '"& f(x) dx  '"& g(x) dx œ 4(6)  8 œ 16

'"* 2f(x) dx œ 2 '"* f(x) dx œ 2(1) œ 2 '(* [f(x)  h(x)] dx œ '(*f(x) dx  '(* h(x) dx œ 5  4 œ 9 '(* [2f(x)  3h(x)] dx œ 2 '(* f(x) dx  3 '(* h(x) dx œ 2(5)  3(4) œ 2 '*"f(x) dx œ  '"* f(x) dx œ (1) œ 1 '"( f(x) dx œ '"* f(x) dx  '(* f(x) dx œ 1  5 œ 6 '*( [h(x)  f(x)] dx œ '(* [f(x)  h(x)] dx œ '(* f(x) dx  '(* h(x) dx œ 5  4 œ 1 '"2 f(u) du œ '"2 f(x) dx œ 5 '#" f(t) dt œ  '"2 f(t) dt œ 5 '!$ g(t) dt œ  '$! g(t) dt œ È2 '$! [g(x)] dx œ  '$! g(x) dx œ È2

(b) (d)

(b) (d)

'"2 È3 f(z) dz œ È3 '"2 f(z) dz œ 5È3 '"2 [f(x)] dx œ  '"2 f(x) dx œ 5 '$! g(u) du œ '$! g(t) dt œ È2 '$! Èg(r)2 dr œ È"2 '$! g(t) dt œ Š È"2 ‹ ŠÈ2‹ œ 1

'$% f(z) dz œ '!% f(z) dz  '!$ f(z) dz œ 7  3 œ 4 '%$ f(t) dt œ  '$% f(t) dt œ 4 '"$ h(r) dr œ '"$ h(r) dr  '"" h(r) dr œ 6  0 œ 6 " $ $  ' h(u) du œ  Œ ' h(u) du œ ' h(u) du œ 6 $ " "

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

304

Chapter 5 Integration

15. The area of the trapezoid is A œ œ

" #

(5  2)(6) œ 21 Ê

œ 21 square units

" #

(3  1)(1) œ 2 Ê

(B  b)h

" #

(B  b)h

'# ˆ #x  3‰ dx %

16. The area of the trapezoid is A œ œ

" #

'"Î#

$Î#

(2x  4) dx

œ 2 square units

17. The area of the semicircle is A œ œ

9 #

1 Ê

" #

1r# œ

1(3)#

'$$ È9  x# dx œ 9# 1 square units

18. The graph of the quarter circle is A œ œ 41 Ê

" #

" 4

1 r# œ

" 4

1(4)#

'%! È16  x# dx œ 41 square units

19. The area of the triangle on the left is A œ

" #

bh œ

œ 2. The area of the triangle on the right is A œ œ Ê

" #

(1)(1) œ

" #.

" # " #

(2)(2) bh

Then, the total area is 2.5

'# kxk dx œ 2.5 square units "

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 5.3 The Definite Integral 20. The area of the triangle is A œ Ê

" #

bh œ

'" a1  kxkb dx œ 1 square unit "

21. The area of the triangular peak is A œ

" #

(2)(1) œ 1

" #

bh œ

" #

(2)(1) œ 1.

The area of the rectangular base is S œ jw œ (2)(1) œ 2. Then the total area is 3 Ê

'"" a2  kxkb dx œ 3 square units

22. y œ 1  È1  x# Ê y  1 œ È1  x# Ê (y  1)# œ 1  x# Ê x#  (y  1)# œ 1, a circle with center (!ß ") and radius of 1 Ê y œ 1  È1  x# is the upper semicircle. The area of this semicircle is A œ "# 1r# œ "# 1(1)# œ 1# . The area of the rectangular base is A œ jw œ (2)(1) œ 2. Then the total area is 2  Ê

23.

'"" Š1  È1  x# ‹ dx œ 2  1# square units

'!b x2 dx œ "# (b)( b2 ) œ b4

#

1 #

24.

'!b 4x dx œ "# b(4b) œ 2b#

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

305

306

Chapter 5 Integration

25.

'ab 2s ds œ "# b(2b)  "# a(2a) œ b#  a#

27.

'"

29.

'1#1 ) d) œ (2#1)

31.

'0

33.

'!"Î# t# dt œ ˆ 3‰

œ

35.

'a#a x dx œ (2a)#



37.

'!

39.

'$" 7 dx œ 7(1  3) œ 14

41.

'!2 5x dx œ 5 '!2 x dx œ 5 ’ 2#

43.

'!2 (2t  3) dt œ 2 '"" t dt  '!2 3 dt œ 2 ’ 2#

44.

'!

45.

'#" ˆ1  #z ‰ dz œ '#" 1 dz  '#" #z dz œ '#" 1 dz  "# '"# z dz œ 1[1  2]  "# ’ 2#  1# “ œ "  "# ˆ 3# ‰ œ  74

46.

'$! (2z  3) dz œ '$! 2z dz  '$! 3 dz œ 2 '!$ z dz  '$! 3 dz œ 2 ’ 3#

47.

'"# 3u# du œ 3 '"# u# du œ 3 ”'!# u# du  '!" u# du• œ 3 Š’ 23

È#

3 È 7

ŠÈ2‹ #

#





(1)# #

œ

1# #

œ

31 # #

" #

28.

'!Þ&#Þ& x dx œ (2.5)#

30.

'È& # # r dr œ Š5È#2‹

x dx œ

3 7‹ ŠÈ

œ

32.

'!!Þ$ s# ds œ (0.3)3

3

34.

'!1Î# )# d) œ ˆ 3‰

7 3

" 24

a# #

œ

36.

'a

$ b‹ ŠÈ

3

œ

b 3

38.

'!$b x# dx œ (3b)3

40.

'!2 È2 dx œ È2 (#  !) œ 2È2

#



0# #“

œ 10

42.

'$& 8x dx œ "8 '$& x dx œ 8" ’ 5#

#

Št  È2‹ dt œ

È2

'!

È2

t dt  ' !



0# #“



(0.5)# #

#

$

1 $ #

È$a

3a# #

$

x# dx œ

#

È

$

#

#

È2

'ab 3t dt œ "# b(3b)  "# a(3a) œ 3# ab#  a# b

#

x dx œ

" $ #

$ È b

26.

œ3 #



ŠÈ2‹ #

œ 24

œ 0.009

œ

1$ #4

#

ŠÈ3a‹

x dx œ

#

$



a# #

œ a#

œ 9b$

#



3# #“

œ

16 16

œ1

 3(2  0) œ 4  6 œ 2 #

È2 dt œ

ŠÈ2‹



#



0# #—

 È2 ’È2  0“ œ 1  2 œ 1

#

#

$



0$ 3“

$



 ’ "3 

0# #“

#

 3[0  3] œ 9  9 œ 0

0$ 3 “‹

$

œ 3 ’ 23 

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

1$ 3“

œ 3 ˆ 73 ‰ œ 7

Section 5.3 The Definite Integral 48.

'"Î#" 24u# du œ 24 '"Î#"

49.

'!# a3x#  x  5b dx œ 3 '!# x# dx  '!# x dx  '!# 5 dx œ 3 ’ 23

50.

'"! a3x#  x  5b dx œ  '!" a3x#  x  5b dx œ  ”3 '!" x# dx  '!" x dx  '!" 5 dx•

u# du œ 24 –

'!"

u# du 

'!"Î#

$

u# du— œ 24 ” 13 

$

$

0$ 3‹

b0 n

œ

œ  ’3 Š 13  51. Let ?x œ

#

 Š 1# 

0# #‹

 5(1  0)“ œ  ˆ 3#  5‰ œ



0$ 3“

ˆ "# ‰$ 3 •

#

 ’ 2# 

œ 24 ’

0# #“

ˆ 78 ‰ 3

“œ7

 5[2  0] œ (8  2)  10 œ 0

7 #

and let x! œ 0, x" œ ?x,

b n

x# œ 2?xß á ß xn" œ (n  1)?x, xn œ n?x œ b. Let the ck 's be the right end-points of the subintervals Ê c" œ x" , c# œ x# , and so on. The rectangles defined have areas: f(c" ) ?x œ f(?x) ?x œ 3(?x)# ?x œ 3(?x)$ f(c# ) ?x œ f(2?x) ?x œ 3(2?x)# ?x œ 3(2)# (?x)$ f(c$ ) ?x œ f(3?x) ?x œ 3(3?x)# ?x œ 3(3)# (?x)$ ã f(cn ) ?x œ f(n?x) ?x œ 3(n?x)# ?x œ 3(n)# (?x)$ n

n

kœ1 n

kœ1

Then Sn œ ! f(ck ) ?x œ ! 3k# (?x)$ $  1) œ 3(?x) ! k# œ 3 Š bn$ ‹ Š n(n  1)(2n ‹ 6

$

kœ1

œ

$

b #

ˆ2 

52. Let ?x œ



3 n

b0 n

"‰ n#

œ

Ê

b n

'!b 3x# dx œ n lim Ä_

b$ #

ˆ2 

3 n



"‰ n#

œ b$ .

and let x! œ 0, x" œ ?x,

x# œ 2?xß á ß xn" œ (n  1)?x, xn œ n?x œ b. Let the ck 's be the right end-points of the subintervals Ê c" œ x" , c# œ x# , and so on. The rectangles defined have areas: f(c" ) ?x œ f(?x) ?x œ 1(?x)# ?x œ 1(?x)$ f(c# ) ?x œ f(2?x) ?x œ 1(2?x)# ?x œ 1(2)# (?x)$ f(c$ ) ?x œ f(3?x) ?x œ 1(3?x)# ?x œ 1(3)# (?x)$ ã f(cn ) ?x œ f(n?x) ?x œ 1(n?x)# ?x œ 1(n)# (?x)$ n

n

Then Sn œ ! f(ck ) ?x œ ! 1k# (?x)$ kœ1 n

kœ1

 1) œ 1(?x)$ ! k# œ 1 Š bn$ ‹ Š n(n  1)(2n ‹ 6 $

kœ1

œ

1b 6

$

ˆ2 

3 n



"‰ n#

Ê

'!b 1x# dx œ n lim Ä_

1 b$ 6

ˆ2 

3 n



"‰ n#

œ

307

1 b$ 3 .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

308

Chapter 5 Integration b0 n

53. Let ?x œ

œ

b n

and let x! œ 0, x" œ ?x,

x# œ 2?xß á ß xn" œ (n  1)?x, xn œ n?x œ b. Let the ck 's be the right end-points of the subintervals Ê c" œ x" , c# œ x# , and so on. The rectangles defined have areas: f(c" ) ?x œ f(?x) ?x œ 2(?x)(?x) œ 2(?x)# f(c# ) ?x œ f(2?x) ?x œ 2(2?x)(?x) œ 2(2)(?x)# f(c$ ) ?x œ f(3?x) ?x œ 2(3?x)(?x) œ 2(3)(?x)# ã f(cn ) ?x œ f(n?x) ?x œ 2(n?x)(?x) œ 2(n)(?x)# n

n

Then Sn œ ! f(ck ) ?x œ ! 2k(?x)# kœ1 n

kœ1

œ 2(?x)# ! k œ 2 Š bn# ‹ Š n(n 2 1) ‹ #

kœ1

œ b# ˆ1  "n ‰ Ê b0 n

54. Let ?x œ

œ

'!b 2x dx œ n lim Ä_ b n

b# ˆ1  n" ‰ œ b# .

and let x! œ 0, x" œ ?x,

x# œ 2?xß á ß xn" œ (n  1)?x, xn œ n?x œ b. Let the ck 's be the right end-points of the subintervals Ê c" œ x" , c# œ x# , and so on. The rectangles defined have areas: " # ‰ f(c" ) ?x œ f(?x) ?x œ ˆ ?x #  1 (?x) œ # (?x)  ?x 2 ? x " f(c# ) ?x œ f(2?x) ?x œ ˆ #  1‰ (?x) œ # (2)(?x)#  ?x f(c$ ) ?x œ f(3?x) ?x œ ˆ 3?# x  1‰ (?x) œ

" #

(3)(?x)#  ?x

f(cn ) ?x œ f(n?x) ?x œ ˆ n?# x  1‰ (?x) œ

" #

(n)(?x)#  ?x

ã

n

n

kœ1

kœ1

Then Sn œ ! f(ck ) ?x œ ! ˆ "# k(?x)#  ?x‰ œ œ

" 4

b# ˆ1  n1 ‰  b Ê

55. av(f) œ Š È3" 0 ‹ œ

'! ˆ x#  1‰ dx œ n lim Ä_ b

" È3

È$

'!

È$

'!

x# dx 

" #

n

n

kœ1

kœ1

(?x)# ! k  ?x ! 1 œ

ˆ 4" b# ˆ1  n" ‰  b‰ œ

" 4

" #

Š bn# ‹ Š n(n 2 1) ‹  ˆ bn ‰ (n) #

b#  b.

ax#  1b dx È$

'!

" È3

1 dx

$

œ

" È3

ŠÈ3‹



3

56. av(f) œ ˆ 3 " 0 ‰ $



" È3

ŠÈ3  0‹ œ 1  1 œ 0.

'!$ Š x# ‹ dx œ 3" ˆ #" ‰ '!$ x# dx #

#

œ  "6 Š 33 ‹ œ  3# ;  x# œ  3# .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 5.3 The Definite Integral

'!" a3x#  1b dx œ " " œ 3 ' x# dx  ' 1 dx œ 3 Š 13 ‹  (1  0) ! !

57. av(f) œ ˆ 1 " 0 ‰

$

œ #.

'!" a3x#  3b dx œ " " œ 3 ' x# dx  ' 3 dx œ 3 Š 13 ‹  3(1  0) ! !

58. av(f) œ ˆ 1 " 0 ‰

$

œ #.

'!$ (t  1)# dt $ $ $ œ 3" ' t# dt  23 ' t dt  3" ' 1 dt ! ! !

59. av(f) œ ˆ 3 " 0 ‰

œ

" 3

$

#

Š 33 ‹  32 Š 3# 

60. av(f) œ Š 1  1(2) ‹

0# #‹

 3" (3  0) œ 1.

'#" at#  tb dt

'#" t# dt  3" '#" t dt " # œ "3 ' t# dt  3" ' t# dt  3" Š 1# ! ! œ

" 3

#

œ

" 3

$

Š 13 ‹  3" Š (32) ‹  $

61. (a) av(g) œ Š 1  "(1) ‹

" #

œ

3 #



(2)# # ‹

.

'"" akxk  1b dx

'"! (x  1) dx  "# '!" (x  1) dx ! ! " " œ  "# ' x dx  "# ' 1 dx  "# ' x dx  "# ' 1 dx " " ! ! œ

" #

#

œ  "# Š 0# 

(1)# # ‹

#

 "# (0  (1))  "# Š 1# 

0# #‹

 "# (1  0)

œ  "# .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

309

310

Chapter 5 Integration

'"$ akxk  1b dx œ #" '"$ (x  1) dx $ $ œ "# ' x dx  "# ' 1 dx œ "# Š 3#  1# ‹  "# (3  1) " "

(b) av(g) œ ˆ 3 " 1 ‰

#

#

œ 1.

(c) av(g) œ Š 3  "(1) ‹ œ

" 4 " 4

'"$ akxk  1b dx

'"" akxk  1b dx  4" '"$ akxk  1b dx " 4

(see parts (a) and (b) above).

62. (a) av(h) œ Š 0  "(1) ‹

'"0  kxk dx œ '"0 (x) dx

œ

œ

(1  2) œ

'"0 x dx œ 0#

#

(b) av(h) œ ˆ 1 " 0 ‰ #

œ  Š "# 



(1)# #

œ  "# .

'0"  kxk dx œ '0" x dx

0# #‹

œ  "# .

(c) av(h) œ Š 1  "(1) ‹

'""  kxk dx

'"0  kxk dx  '0"  kxk dx

œ

" #

Œ

œ

" #

ˆ "#  ˆ "# ‰‰ œ  "# (see parts (a) and (b)

above).

63. To find where x  x#   0, let x  x# œ 0 Ê x(1  x) œ 0 Ê x œ 0 or x œ 1. If 0  x  1, then 0  x  x# Ê a œ 0 and b œ 1 maximize the integral.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 5.3 The Definite Integral

311

64. To find where x%  2x# Ÿ 0, let x%  2x# œ 0 Ê x# ax#  2b œ 0 Ê x œ 0 or x œ „ È2. By the sign graph,  0  0  0  , we can see that x%  2x# Ÿ 0 on ’È2ß È2“ Ê a œ È2 and b œ È2 ! È# È # minimize the integral. " 1 x #

65. f(x) œ

is decreasing on [0ß 1] Ê maximum value of f occurs at 0 Ê max f œ f(0) œ 1; minimum value of f

occurs at 1 Ê min f œ f(1) œ Ê

" #

Ÿ

'0" 1 " x

" 1  1#

œ

" #

. Therefore, (1  0) min f Ÿ

dx Ÿ 1. That is, an upper bound œ 1 and a lower bound œ

#

66. See Exercise 65 above. On [0ß 0.5], max f œ

'0

0.5

(0.5  0) min f Ÿ min f œ Then

" 4

" 1  1#



2 5

" 1  0#

'0

0.5

" 1  x#

dx 

'0.5 1 " x "

#

dx Ÿ

67. 1 Ÿ sin ax# b Ÿ 1 for all x Ê (1  0)(1) Ÿ

" #

" 1  (0.5)#

œ 1, min f œ

f(x) dx Ÿ (0.5  0) max f Ê

Ÿ

2 5

'0

'0.5 1 " x "

œ 0.5. Therefore (1  0.5) min f Ÿ

Ÿ

'0" 1 " x



2 5

Ê

0.5

#

" 1  x#

#

" #

dx Ÿ (1  0) max f .

œ 0.8. Therefore

dx Ÿ

" #

. On [0.5ß 1], max f œ

dx Ÿ (1  0.5) max f Ê

13 20

Ÿ

'0 1 " x "

#

dx Ÿ

9 10

" 4

Ÿ

" 1  (0.5)#

'0.5 1 1 x "

#

dx Ÿ

œ 0.8 and 2 5

.

.

'0" sin ax# b dx Ÿ (1  0)(1) or '0"sin x# dx Ÿ 1

Ê

'0"sin x# dx cannot

equal 2. 68. f(x) œ Èx  8 is increasing on [!ß "] Ê max f œ f(1) œ È1  8 œ 3 and min f œ f(0) œ È0  8 œ 2È2 . Therefore, (1  0) min f Ÿ

'0" Èx  8 dx Ÿ (1  0) max f

Ê 2È 2 Ÿ

'0" Èx  8 dx Ÿ 3.

69. If f(x)   0 on [aß b], then min f   0 and max f   0 on [aß b]. Now, (b  a) min f Ÿ Then b   a Ê b  a   0 Ê (b  a) min f   0 Ê

'ab f(x) dx   0.

70. If f(x) Ÿ 0 on [aß b], then min f Ÿ 0 and max f Ÿ 0. Now, (b  a) min f Ÿ b   a Ê b  a   0 Ê (b  a) max f Ÿ 0 Ê

'ab f(x) dx Ÿ 0.

'ab f(x) dx Ÿ (b  a) max f.

'ab f(x) dx Ÿ (b  a) max f.

Then

'0" (sin x  x) dx Ÿ 0 (see Exercise 70) Ê '0" sin x dx  '0" x dx '0" sin x dx Ÿ Š 1#  0# ‹ Ê '0" sin x dx Ÿ "# . Thus an upper bound is "# .

71. sin x Ÿ x for x   0 Ê sin x  x Ÿ 0 for x   0 Ê Ÿ0 Ê

'0" sin x dx Ÿ '0" x dx

72. sec x   1 

x# #

Ê

#

on ˆ 1# ß 1# ‰ Ê sec x  Š1 

x# #‹

  0 on ˆ 1# ß 1# ‰ Ê

Exercise 69) since [0ß 1] is contained in ˆ 1# ß 1# ‰ Ê  

'0" Š1  x# ‹ dx #

Ê

#

'0" ’sec x  Š1  x# ‹“ dx   0 (see #

'0"sec x dx  '0" Š1  x# ‹ dx   0

'0" sec x dx   '0" 1 dx  "# '0" x# dx

#

Ê

Ê

'0" sec x dx

'0" sec x dx   (1  0)  "# Š 13 ‹ $

Ê

Thus a lower bound is 76 .

'ab f(x) dx is a constant K. Thus'ab av(f) dx œ 'ab K dx 'ab av(f) dx œ (b  a)K œ (b  a) † b " a 'ab f(x) dx œ 'ab f(x) dx.

73. Yes, for the following reasons: av(f) œ œ K(b  a) Ê

" ba

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

'0" sec x dx   76 .

312

Chapter 5 Integration

74. All three rules hold. The reasons: On any interval [aß b] on which f and g are integrable, we have: (a) av(f  g) œ

" ba

'ab [f(x)  g(x)] dx œ b " a ”'ab f(x) dx  'ab g(x) dx• œ b " a 'ab f(x) dx  b " a 'ab g(x) dx

œ av(f)  av(g) (b) av(kf) œ (c) av(f) œ

" ba

" ba

'ab kf(x) dx œ b " a ”k 'ab f(x) dx• œ k ” b " a 'ab f(x) dx• œ k av(f)

'ab f(x) dx Ÿ b " a 'ab g(x) dx since f(x) Ÿ g(x) on [aß b], and b " a 'ab g(x) dx œ av(g).

Therefore, av(f) Ÿ av(g). ba n and let ck be the right n ab  a b × and ck œ a  kabn ab . n

75. Consider the partition P that subdivides the interval Òa, bÓ into n subintervals of width ˜x œ endpoint of each subinterval. So the partition is P œ Öa, a  n

n

kœ"

kœ" b

We get the Riemann sum ! fack b˜x œ ! c † this expression remains cab  ab. Thus,

ba n

œ

ba n , n

c ab  a b ! " n kœ"

a

œ

#a b  a b , n

c ab  a b n

...,a

† n œ cab  ab. As n Ä _ and mPm Ä !

'a c dx œ cab  ab.

76. Consider the partition P that subdivides the interval Òa, bÓ into n subintervals of width ˜x œ endpoint of each subinterval. So the partition is P œ n

n

We get the Riemann sum ! fack b˜x œ ! ck# ˆ b n a ‰ œ

n ba ! # a n Œ kœ"



kœ" n #a a b  a b ! k n kœ"

œ ab  aba#  aab  ab# †



n" n

kœ" n ab  a b # ! # k  n# kœ"



ab  a b $ '



œ

b a n

ba n

and let ck be the right

Öa, a  b n a , a  #abn ab , . . ., a  nabn ab × and ck œ a  kabn ab . n n # # # œ b n a ! Ša  kabn ab ‹ œ bn a ! Ša#  #akabn  ab  k abn# ab ‹ kœ" kœ" † na# 

an  "ba#n  "b n#

#a a b  a b# n#



n a n  "b #



ab  a b $ n$



nan  "ba#n  "b '

$ " "  n" ab  ab$ #  n  n# † "  ' " ab  a b $ †# ' b $ $ x# dx œ b$  a$ . a

œ ab  aba#  aab  ab# †

As n Ä _ and mPm Ä ! this expression has value ab  aba#  aab  ab# † "  œ ba#  a$  ab#  #a# b  a$  "$ ab$  $b# a  $ba#  a$ b œ

b$ $



a$ $.

Thus,

'

77. (a) U œ max" ?x  max# ?x  á  maxn ?x where max" œ f(x" ), max# œ f(x# ), á , maxn œ f(xn ) since f is increasing on [aß b]; L œ min" ?x  min# ?x  á  minn ?x where min" œ f(x! ), min# œ f(x" ), á , minn œ f(xnc1 ) since f is increasing on [aß b]. Therefore U  L œ (max"  min" ) ?x  (max#  min# ) ?x  á  (maxn  minn ) ?x œ (f(x" )  f(x! )) ?x  (f(x# )  f(x" ))?x  á  (f(xn )  f(xnc1 )) ?x œ (f(xn )  f(x! )) ?x œ (f(b)  f(a)) ?x. (b) U œ max" ?x"  max# ?x#  á  maxn ?xn where max" œ f(x" ), max# œ f(x# ), á , maxn œ f(xn ) since f is increasing on[aß b]; L œ min" ?x"  min# ?x#  á  minn ?xn where min" œ f(x! ), min# œ f(x" ), á , minn œ f(xnc1 ) since f is increasing on [aß b]. Therefore U  L œ (max"  min" ) ?x"  (max#  min# ) ?x#  á  (maxn  minn ) ?xn œ (f(x" )  f(x! )) ?x"  (f(x# )  f(x" ))?x#  á  (f(xn )  f(xnc1 )) ?xn Ÿ (f(x" )  f(x! )) ?xmax  (f(x# )  f(x" )) ?xmax  á  (f(xn )  f(xnc1 )) ?xmax . Then U  L Ÿ (f(xn )  f(x! )) ?xmax œ (f(b)  f(a)) ?xmax œ kf(b)  f(a)k ?xmax since f(b)   f(a). Thus lim (U  L) œ lim (f(b)  f(a)) ?xmax œ 0, since ?xmax œ lPl . lPl Ä 0

lPl Ä 0

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 5.3 The Definite Integral

313

78. (a) U œ max" ?x  max# ?x  á  maxn ?x where max" œ f(x! ), max# œ f(x" ), á , maxn œ f(xnc" ) since f is decreasing on [aß b]; L œ min" ?x  min# ?x  á  minn ?x where min" œ f(x" ), min# œ f(x# )ß á , minn œ f(xn ) since f is decreasing on [aß b]. Therefore U  L œ (max"  min" ) ?x  (max#  min# ) ?x  á  (maxn  minn ) ?x œ (f(x! )  f(x" )) ?x  (f(x" )  f(x# ))?x  á  (f(xn" )  f(xn )) ?x œ (f(x! )  f(xn )) ?x œ (f(a)  f(b)) ?x. (b) U œ max" ?x"  max# ?x#  á  maxn ?xn where max" œ f(x! ), max# œ f(x" ), á , maxn œ f(xn" ) since f is decreasing on[aß b]; L œ min" ?x"  min# ?x#  á  minn ?xn where min" œ f(x" ), min# œ f(x# ), á , minn œ f(xn ) since f is decreasing on [aß b]. Therefore U  L œ (max"  min" ) ?x"  (max#  min# ) ?x#  á  (maxn  minn ) ?xn œ (f(x! )  f(x" )) ?x"  (f(x" )  f(x# ))?x#  á  (f(xn" )  f(xn )) ?xn Ÿ (f(x! )  f(xn )) ?xmax œ (f(a)  f(b) ?xmax œ kf(b)  f(a)k ?xmax since f(b) Ÿ f(a). Thus lim (U  L) œ lim kf(b)  f(a)k ?xmax œ 0, since ?xmax œ lPl . lPl Ä 0

lPl Ä 0

79. (a) Partition 0ß 1# ‘ into n subintervals, each of length ?x œ x# œ 2?x, á , xn œ n?x œ

1 #.

1 #n

with points x! œ 0, x" œ ?x,

Since sin x is increasing on 0ß 1# ‘ , the upper sum U is the sum of the areas

of the circumscribed rectangles of areas f(x" ) ?x œ (sin ?x)?x, f(x# ) ?x œ (sin 2?x) ?x, á , f(xn ) ?x œ (sin n?x) ?x. Then U œ (sin ?x  sin 2?x  á  sin n?x) ?x œ ” œ”

1  cos ˆˆn  " ‰ 1 ‰ cos 4n 1 # 2n 1 • ˆ #n ‰ # sin 4n

'!

1  cos ˆ 1  1 ‰‰ 1 ˆcos 4n # 4n 1 4n sin 4n

œ

1  cos ˆ 1  1 ‰ cos 4n # 4n sin 1

Š 14n ‹ 4n

1Î#

(b) The area is

œ

cos ?#x  cosˆ ˆn  #" ‰ ?x‰ • ?x # sin ?#x

sin x dx œ n lim Ä_

1  cos ˆ 1  1 ‰ cos 4n # 4n sin 1

Š 14n ‹

œ

1  cos 1# 1

œ 1.

4n

n

80. (a) The area of the shaded region is !˜xi † mi which is equal to L. iœ" n

(b) The area of the shaded region is !˜xi † Mi which is equal to U. iœ"

(c) The area of the shaded region is the difference in the areas of the shaded regions shown in the second part of the figure and the first part of the figure. Thus this area is U  L. n

n

iœ"

iœ"

81. By Exercise 80, U  L œ !˜xi † Mi  !˜xi † mi where Mi œ maxÖfaxb on the ith subinterval× and n

n

iœ"

iœ"

mi œ minÖfaxb on the ith subinterval×. Thus U  L œ !aMi  mi b˜xi  !% † ˜xi provided ˜xi  $ for each n

n

iœ"

iœ"

i œ "ß Þ Þ Þ , n. Since !% † ˜xi œ % !˜xi œ %ab  ab the result, U  L  %ab  ab follows.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

314

Chapter 5 Integration

82. The car drove the first 150 miles in 5 hours and the second 150 miles in 3 hours, which means it drove 300 miles in 8 hours, for an average of 300 8 mi/hr œ 37.5 mi/hr. In terms of average values of functions, the function whose average value we seek is 30, 0 Ÿ t Ÿ 5 v(t) œ œ , and the average value is 50, 5  1 Ÿ 8 (30)(5)  (50)(3) 8

œ 37.5.

83-88. Example CAS commands: Maple: with( plots ); with( Student[Calculus1] ); f := x -> 1-x; a := 0; b := 1; N :=[ 4, 10, 20, 50 ]; P := [seq( RiemannSum( f(x), x=a..b, partition=n, method=random, output=plot ), n=N )]: display( P, insequence=true ); 89-92. Example CAS commands: Maple: with( Student[Calculus1] ); f := x -> sin(x); a := 0; b := Pi; plot( f(x), x=a..b, title="#23(a) (Section 5.1)" ); N := [ 100, 200, 1000 ]; # (b) for n in N do Xlist := [ a+1.*(b-a)/n*i $ i=0..n ]; Ylist := map( f, Xlist ); end do: for n in N do # (c) Avg[n] := evalf(add(y,y=Ylist)/nops(Ylist)); end do; avg := FunctionAverage( f(x), x=a..b, output=value ); evalf( avg ); FunctionAverage(f(x),x=a..b,output=plot); # (d) fsolve( f(x)=avg, x=0.5 ); fsolve( f(x)=avg, x=2.5 ); fsolve( f(x)=Avg[1000], x=0.5 ); fsolve( f(x)=Avg[1000], x=2.5 ); 83-92. Example CAS commands: Mathematica: (assigned function and values for a, b, and n may vary) Sums of rectangles evaluated at left-hand endpoints can be represented and evaluated by this set of commands Clear[x, f, a, b, n]

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 5.4 The Fundamental Theorem of Calculus {a, b}={0, 1}; n =10; dx = (b  a)/n; f = Sin[x]2 ; xvals =Table[N[x], {x, a, b  dx, dx}]; yvals = f /.x Ä xvals; boxes = MapThread[Line[{{#1,0},{#1, #3},{#2, #3},{#2, 0}]&,{xvals, xvals  dx, yvals}]; Plot[f, {x, a, b}, Epilog Ä boxes]; Sum[yvals[[i]] dx, {i, 1, Length[yvals]}]//N Sums of rectangles evaluated at right-hand endpoints can be represented and evaluated by this set of commands. Clear[x, f, a, b, n] {a, b}={0, 1}; n =10; dx = (b  a)/n; f = Sin[x]2 ; xvals =Table[N[x], {x, a  dx, b, dx}]; yvals = f /.x Ä xvals; boxes = MapThread[Line[{{#1,0},{#1, #3},{#2, #3},{#2, 0}]&,{xvals  dx,xvals, yvals}]; Plot[f, {x, a, b}, Epilog Ä boxes]; Sum[yvals[[i]] dx, {i, 1,Length[yvals]}]//N Sums of rectangles evaluated at midpoints can be represented and evaluated by this set of commands. Clear[x, f, a, b, n] {a, b}={0, 1}; n =10; dx = (b  a)/n; f = Sin[x]2 ; xvals =Table[N[x], {x, a  dx/2, b  dx/2, dx}]; yvals = f /.x Ä xvals; boxes = MapThread[Line[{{#1,0},{#1, #3},{#2, #3},{#2, 0}]&,{xvals  dx/2, xvals  dx/2, yvals}]; Plot[f, {x, a, b},Epilog Ä boxes]; Sum[yvals[[i]] dx, {i, 1, Length[yvals]}]//N 5.4 THE FUNDAMENTAL THEOREM OF CALCULUS 1.

'c (2x  5) dx œ cx#  5xd#! œ a0#  5(0)b  a(2)#  5(2)b œ 6

2.

'c ˆ5  x# ‰ dx œ ’5x  x4 “ %

0

2

4

3.

#

$

3

'

4

0

Š3x 

x$ 4‹

'c ax$  2x  3b dx œ ’ x4

%

'

6.

'

7.

'

1

# #

 Š5(3) 

4% 16 ‹

#

 Š 3(0) # 

(3)# 4 ‹

(0)% 16 ‹

œ

133 4

œ8 %

œ Š 24  2#  3(2)‹  Š (42)  (2)#  3(2)‹ œ 12 %

"

$

ˆx#  Èx‰ dx œ ’ x3  23 x$Î# “ œ ˆ "3  23 ‰  0 œ 1 !

0

0

#

4# 4‹

œ Š 3(4) # 

 x#  3x“

2

5.

5

&

x$Î# dx œ  25 x&Î# ‘ ! œ

32

1

(5)&Î#  0 œ 2(5)$Î# œ 10È5

$#

'cc x2 2

2 5

x'Î& dx œ 5x"Î& ‘ " œ ˆ #5 ‰  (5) œ

1

8.

% x% 16 “ !

#

dx œ ’ 3x# 

2

4.

œ Š5(4) 

#

dx œ

5 #

'cc 2x# dx œ c2x" d " ˆ 2 ‰ ˆ  2 ‰ # œ 1  # œ 1 1

2

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

315

316

Chapter 5 Integration

'

1

9.

'

1

10.

'

1Î3

11.

'

51Î6

12.

'

31Î4

13.

'

1Î3

14.

15.

'

0

0

sin x dx œ [cos x]1! œ (cos 1)  (cos 0) œ (1)  (1) œ 2 (1  cos x) dx œ [x  sin x]1! œ (1  sin 1)  (0  sin 0) œ 1

0

1Î$

1Î6

1Î4

0

œ ˆ2 tan ˆ 13 ‰‰  (2 tan 0) œ 2È3  0 œ 2È3

2 sec# x dx œ [2 tan x]!

&1Î' csc# x dx œ [cot x]1Î' œ ˆcot ˆ 561 ‰‰  ˆcot ˆ 16 ‰‰ œ  ŠÈ3‹  ŠÈ3‹ œ 2È3

$1Î%

csc ) cot ) d) œ [csc )]1Î% œ ˆcsc ˆ 341 ‰‰  ˆcsc ˆ 14 ‰‰ œ È2  ŠÈ2‹ œ 0 1Î$

4 sec u tan u du œ [4 sec u]!

0

"  cos 2t # 1Î2

dt œ

'

0

ˆ" 

1Î2 #

" #

œ 4 sec ˆ 13 ‰  4 sec 0 œ 4(2)  4(1) œ 4

cos 2t‰ dt œ  "# t 

" 4

!

sin 2t‘ 1Î# œ ˆ "# (0) 

" 4

sin 2(0)‰  ˆ "# ˆ 1# ‰ 

" 4

sin 2 ˆ 1# ‰‰

œ  14 Î 1Î$ 2t 'c ÎÎ "  cos dt œ ' ˆ "#  "# cos 2t‰ dt œ  "# t  4" sin 2t‘ 1Î$ # Î 1 3

16.

1 3

1 3

1 3

œ ˆ "# ˆ 13 ‰ 

" 4

sin 2 ˆ 13 ‰‰  ˆ #" ˆ 13 ‰ 

" 4

sin 2 ˆ 13 ‰‰ œ

1 6



" 4

sin 231 

17.

'c

18.

'cÎ Î% ˆ4 sec# t  t1 ‰ dt œ 'Î Î% a4 sec# t  1t# b dt œ 4 tan t  1t ‘ 11Î%Î$

1Î#

1Î#

$

a8y#  sin yb dy œ ’ 8y3  cos y“

1Î#

1Î#

1

œŒ

8 ˆ 1# ‰ 3

$

8 ˆ 1# ‰ 3

 cos 1#   Œ

1 6 $

œ Š4 tan ˆ

 cos ˆ 1# ‰ œ

1‰ 4



 Š4 tan ˆ 13 ‰ 

1 ˆ 13 ‰ ‹



È3 4

21 $ 3

œ (4(1)  4)  Š4 ŠÈ3‹  3‹ œ 4È3  3

'"" (r  1)# dr œ '"" ar#  2r  1b dr œ ’ r3  r#  r“ " œ Š (31)

20.

'È (t  1) at#  4b dt œ 'È at$  t#  4t  4b dt œ ’ t4  t3  2t#  4t“ÈÈ$

$

"

È3

È3

3

œ

%

$

$

 (1)#  (1)‹  Š 13  1#  1‹ œ  38

$



3

%

ŠÈ3‹

$

ŠÈ3‹



4

3

21.

'È" Š u#



" u& ‹

22.

' " ˆ v"



"‰ v%

23.

'

(

2

1

1 3

1 3

1 ˆ 14 ‰ ‹

19.

È2

sin ˆ 321 ‰ œ

1

#

1 3

1Î2

" 4



$

s#  È s s#

(

2

dv œ

ds œ

'

1

È 3 ‹

#

Š  2 ŠÈ3‹  4È3  

" du œ 'È Š u#

%

&

 u ‹ du œ

u) ’ 16



4

$



" " 4u% “È#

ŠÈ3‹

È2

ˆ1  s$Î# ‰ ds œ ’s 

#

)

œ

1) Š 16

$

È# 2 “ Ès "

#

 2 ŠÈ3‹  4 ŠÈ3‹ œ 10È3

3



" ' " av$  v% b dv œ  2v1  3v" ‘ ""Î# œ Š 2(1) 1Î2

$

#

œ È 2 

" 4(1)% ‹





" 3(1)$ ‹

2 É È2 

ŠÈ2‹ 16



" % 4 ŠÈ2‹

" $ 3 ˆ "# ‰

œ  34



" # 2 ˆ "# ‰



 Š1 

2 È1 ‹

œ È2  2$Î%  1

œ È2  %È8  1

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

œ  56

Section 5.4 The Fundamental Theorem of Calculus 24.

'

4

1  Èu Èu 9

du œ

'

4

9

ˆu"Î#  1‰ du œ 2Èu  u‘ % œ Š2È4  4‹  Š2È9  9‹ œ 3 *

'c% kxk dx œ '%! kxk dx  '! 4

25.

4

kxk dx œ 

'%! x dx  '!

4

#

x dx œ ’ x# “

œ 16 26.

'

1

" ! #

acos x  kcos xk b dx œ 1 #

œ sin

27. (a)

!

d dx

28. (a)

'

(b)

d dx

29. (a)

'

(b)

d dt

30. (a)

'

!

" # (cos

x  cos x) dx 

'

1

" 1Î# #

#

 ’ x# “ œ Š 0#  !

(cos x  cos x) dx œ

'

1Î#

!

(4)# # ‹

#

 Š 4# 

Èx

cos t dt œ [sin t]! œ sin Èx  sin 0 œ sin Èx Ê

Èx

'

Œ

sin x

1

!

d dx

Œ

'

Èx

!

cos t dt œ

sin x

'

!

d ˆÈ ‰‰ cos t dt œ ˆcos Èx‰ ˆ dx x œ ˆcos Èx ‰ ˆ "# x"Î# ‰ œ

3t# dt œ ct$ d "

Πt%

1Î#

d dx

ˆsin Èx‰ œ cos Èx ˆ "# x"Î# ‰

sin x

Èu du œ t%

!

tan )

!

d dx

Œ

'

sin x

1

3t# dt œ

d dx

asin$ x  1b œ 3 sin# x cos x

d 3t# dt œ a3 sin# xb ˆ dx (sin x)‰ œ 3 sin# x cos x

1

Œ'

œ sin$ x  1 Ê

cos Èx 2È x

'

t%

!

t%

u"Î# du œ  23 u$Î# ‘ ! œ

2 3

at% b

$Î#

0œ

2 ' 3 t

Ê

d dt

Œ'

Œ

'

t%

!

Èu du œ

d dt

ˆ 23 t' ‰ œ 4t&

Èu du œ Èt% ˆ dtd at% b‰ œ t# a4t$ b œ 4t&

) sec# y dy œ [tan y]tan œ tan (tan ))  0 œ tan (tan )) Ê !

d d)

tan )

!

sec# y dy œ

d d)

(tan (tan )))

œ asec# (tan ))b sec# ) (b)

d d)

'

Œ

tan )

!

sec# y dy œ asec# (tan ))b ˆ dd) (tan ))‰ œ asec# (tan ))b sec# )

31. y œ

'

33. y œ

'È sin t# dt œ '

34. y œ

'

35. y œ

'

36. y œ

'

x

!

È1  t# dt Ê

Èx

!

x

x#

cos Èt dt Ê

sin x

dt È1  t#

!

!

tan x

dt 1  t#

, kxk  Ê

dy dx

œ È1  x#

dy dx

!

!

0# #‹

cos x dx œ [sin x]!

cos Èx 2È x

œ (b)

1Î#

%

#

%

 sin 0 œ 1

Èx

'

'

!

dy dx

1 #

sin t# dt Ê

32. y œ dy dx

'

1

x

" t

dt Ê

dy dx

œ

" x

,x0

#

d ˆÈ ‰‰ œ Šsin ˆÈx‰ ‹ ˆ dx x œ (sin x) ˆ "# x"Î# ‰ œ  2sinÈxx

d œ Šcos Èx# ‹ ˆ dx ax# b‰ œ 2x cos kxk

Ê

dy dx

œ

" È1  sin# x

d ˆ dx (sin x)‰ œ

" Ècos# x

(cos x) œ

cos x kcos xk

œ

cos x cos x

œ 1 since kxk 

" d ‰ ˆ dx œ ˆ 1  tan (tan x)‰ œ ˆ sec"# x ‰ asec# xb œ 1 #x

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

1 #

317

318

Chapter 5 Integration

37. x#  2x œ 0 Ê x(x  2) œ 0 Ê x œ 0 or x œ 2; Area œ

'$# ax#  2xbdx  '#! ax#  2xbdx  '!# ax#  2xbdx $

œ  ’ x3  x# “ œ  ŠŠ

(2)$ 3

# $

$

 ’ x3  x# “ #

 (2) ‹  Š

!

$

#

(3)$ 3

 ’ x3  x# “

#

!

#

 (3) ‹‹

$

 ŠŠ 03  0# ‹  Š (32)  (2)# ‹‹ $

$

$

 ŠŠ 23  2# ‹  Š 03  0# ‹‹ œ

28 3

38. 3x#  3 œ 0 Ê x# œ 1 Ê x œ „ 1; because of symmetry about the y-axis, Area œ 2 Œ

'!" a3x#  3bdx  '"# a3x#  3bdx

"

#

2 Š cx$  3xd !  cx$  3xd " ‹ œ 2 c aa1$  3(1)b  a0$  3(0)bb  aa2$  3(2)b  a1$  3(1)bd œ 2(6) œ 12

39. x$  3x#  2x œ 0 Ê x ax#  3x  2b œ 0 Ê x(x  2)(x  1) œ 0 Ê x œ 0, 1, or 2; Area œ

'!" ax$  3x#  2xbdx  '"# ax$  3x#  2xbdx "

%

%

œ ’ x4  x$  x# “  ’ x4  x$  x# “ !

%

# "

%

œ Š 14  1$  1# ‹  Š 04  0$  0# ‹ %

%

 ’Š 24  2$  2# ‹  Š 14  1$  1# ‹“ œ

" #

40. x$  4x œ 0 Ê x ax#  4b œ 0 Ê x(x  2)(x  2) œ 0 Ê x œ 0, 2, or 2. Area œ œ

% ’ x4

#

 2x “ %

! #



% ’ x4

'c! ax$  4xbdx  '!# ax$  4xbdx 2

#

#

%

 2x “ œ Š 04  2(0)# ‹ !

 Š (42)  2(2)# ‹  ’Š 24  2(2)# ‹  Š 04  2(0)# ‹“ œ 8 %

41. x"Î$ œ 0 Ê x œ 0; Area œ 

%

'c! x"Î$ dx  '!) x"Î$ dx "

! ) œ  34 x%Î$ ‘ "   34 x%Î$ ‘ ! œ ˆ 34 (0)%Î$ ‰  ˆ 34 (1)%Î$ ‰  ˆ 34 (8)%Î$ ‰  ˆ 34 (0)%Î$ ‰

œ

51 4

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 5.4 The Fundamental Theorem of Calculus 42. x"Î$  x œ 0 Ê x"Î$ ˆ1  x#Î$ ‰ œ 0 Ê x"Î$ œ 0 or 1  x#Î$ œ 0 Ê x œ 0 or 1 œ x#Î$ Ê x œ 0 or 1 œ x# Ê x œ 0 or „ 1; Area œ  œ

'c! ˆx"Î$  x‰dx  '!" ˆx"Î$  x‰dx  '") ˆx"Î$  x‰dx "

%Î$

 ’ 34

x



! x# # “ "

œ  ’Š 34 (0)%Î$ 

 ’ 34 x%Î$ 

0# #‹

" x# # “!

 ’ 43 x%Î$  (1)# # ‹“

 Š 34 (1)%Î$ 

 ’Š 34 (1)%Î$ 

1# #‹

 Š 34 (0)%Î$ 

0# # ‹“

 ’Š 34 (8)%Î$ 

8# #‹

 Š 34 (1)%Î$ 

1# # ‹“

œ

" 4

" 4



 ˆ2! 

$ 4

 #" ‰ œ

) x# # “"

83 4

43. The area of the rectangle bounded by the lines y œ 2, y œ 0, x œ 1, and x œ 0 is 21. The area under the curve y œ 1  cos x on [0ß 1] is

'!

1

(1  cos x) dx œ [x  sin x]!1 œ (1  sin 1)  (0  sin 0) œ 1. Therefore the area of

the shaded region is 21  1 œ 1. 44. The area of the rectangle bounded by the lines x œ 16 , x œ " #

51 6 ,

y œ sin

ˆ 561  16 ‰ œ 13 . The area under the curve y œ sin x on  16 ß 561 ‘ is

œ ˆcos

51 ‰ 6

È3 # ‹

 ˆcos 16 ‰ œ  Š

È3 #



'

1 6

œ

51Î6

1Î6

" #

œ sin

51 6

, and y œ 0 is &1Î'

sin x dx œ [cos x]1Î'

œ È3. Therefore the area of the shaded region is È3  13 .

45. On  14 ß 0‘ : The area of the rectangle bounded by the lines y œ È2, y œ 0, ) œ 0, and ) œ  14 is È2 ˆ 14 ‰ œ

1È2 4

. The area between the curve y œ sec ) tan ) and y œ 0 is 

'c

!

1Î4

sec ) tan ) d) œ [sec )]!1Î%

œ (sec 0)  ˆsec ˆ 14 ‰‰ œ È2  1. Therefore the area of the shaded region on  14 ß !‘ is

1È2 4

On 0ß 14 ‘ : The area of the rectangle bounded by ) œ 14 , ) œ 0, y œ È2, and y œ 0 is È2 ˆ 14 ‰ œ under the curve y œ sec ) tan ) is of the shaded region on !ß 14 ‘ is È

'

1Î4

!

1È2 4

1Î%

sec ) tan ) d) œ [sec )]!

œ sec

1 4

 ŠÈ2  1‹ .

1È2 4

. The area

 sec 0 œ È2  1. Therefore the area

 ŠÈ2  1‹ . Thus, the area of the total shaded region is

È

1È2 #

Š 1 4 2  È2  1‹  Š 1 4 2  È2  1‹ œ

.

46. The area of the rectangle bounded by the lines y œ 2, y œ 0, t œ  14 , and t œ 1 is 2 ˆ1  ˆ 14 ‰‰ œ 2  area under the curve y œ sec# t on  14 ß !‘ is under the curve y œ 1  t# on [!ß "] is

'c

!

1Î4

"

$

œ

dt  3 œ 0  3 œ 3 Ê (d) is a solution to this problem.

dy dx

œ

48. y œ

'c sec t dt  4

Ê

dy dx

œ sec x and y(1) œ

49. y œ

'

sec t dt  4 Ê

dy dx

œ sec x and y(0) œ

x

1

!

x

and y(1) œ

'

" t

dt  3 Ê

" x

1

1

Thus, the total

. Therefore the area of the shaded region is ˆ2  1# ‰ 

'

" 1 t

$

5 3

47. y œ

x

$

!

2 3

'

!

. The

! ˆ 1‰ sec# t dt œ [tan t] 1Î% œ tan 0  tan  4 œ 1. The area

'! a1  t# b dt œ ’t  t3 “ " œ Š1  13 ‹  Š0  03 ‹ œ 32 .

area under the curves on  14 ß "‘ is 1 

1 #

'cc sec t dt  4 œ 0  4 œ 4 1

1

!

5 3

œ

" 3



1 #

.

Ê (c) is a solution to this problem.

sec t dt  4 œ 0  4 œ 4 Ê (b) is a solution to this problem.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

319

320

Chapter 5 Integration

50. y œ

'

51. y œ

'

53. s œ

'

x

" " t

"

" t

dt  3 œ 0  3 œ 3 Ê (a) is a solution to this problem.

'

'c ÎÎ

b 2 b 2

$

 ˆ bh # 

bh ‰ 6

Š2 

b   Œh ˆ # ‰ 

2 (x  1)# ‹

bh ‰ 6

dx œ 2

'

$

!

œ

bh 3

t

t!

È1  t# dt  2 g(x) dx  v!

$

2 3

 bh

" (x  1)# ‹

Š1 

"

bÎ2

4h ˆ #b ‰ 3b#

œ bh 

x

4hx$ 3b# “ bÎ2

ˆh  ˆ 4h ‰ # ‰ dx œ ’hx  b# x

œ ˆ bh # 

!

"

54. v œ

4h ˆ b# ‰ 3b#

$

'

f(x) dx  s!

œ Œhˆ #b ‰ 

'

and y(1) œ

'

55. Area œ

56. r œ

" x

52. y œ

#

t!

œ

dy dx

sec t dt  3

x

t

dt  3 Ê

$

dx œ 2 x  ˆ x11 ‰‘ ! œ 2 ’Š3 

" (3  1) ‹

 Š0 

" (0  1) ‹“

œ 2 3 "4  1‘ œ 2 ˆ2 4" ‰ œ 4.5 or $4500 57.

dc dx

œ

" #È x

œ

" #

x"Î# Ê c œ

'

x

!

" "Î# dt # t

œ t"Î# ‘ 0 œ Èx x

c(100)  c(1) œ È100  È1 œ $9.00 58. By Exercise 57, c(400)  c(100) œ È400  È100 œ 20  10 œ $10.00 59. (a) v œ (b) a œ (c) s œ (d) (e) (f) (g)

ds dt df dt

'

!

œ

d dt

'

t

!

f(x) dx œ f(t) Ê v(5) œ f(5) œ 2 m/sec

is negative since the slope of the tangent line at t œ 5 is negative 3

f(x) dx œ

" #

(3)(3) œ

9 #

m since the integral is the area of the triangle formed by y œ f(x), the x-axis,

and x œ 3 t œ 6 since from t œ 6 to t œ 9, the region lies below the x-axis At t œ 4 and t œ 7, since there are horizontal tangents there Toward the origin between t œ 6 and t œ 9 since the velocity is negative on this interval. Away from the origin between t œ 0 and t œ 6 since the velocity is positive there. Right or positive side, because the integral of f from 0 to 9 is positive, there being more area above the x-axis than below it.

60. (a) v œ (b) a œ

dg dt df dt

œ

d dt

'

!

t

g(x) dx œ g(t) Ê v(3) œ g(3) œ 0 m/sec.

is positive, since the slope of the tangent line at t œ 3 is positive

(c) At t œ 3, the particle's position is

'

!

$

g(x) dx œ

" #

(3)(6) œ 9

(d) The particle passes through the origin at t œ 6 because s(6) œ

'

!

'

g(x) dx œ 0

(e) At t œ 7, since there is a horizontal tangent there (f) The particle starts at the origin and moves away to the left for 0  t  3. It moves back toward the origin for 3  t  6, passes through the origin at t œ 6, and moves away to the right for t  6. (g) Right side, since its position at t œ 9 is positive, there being more area above the x-axis than below it at t œ *.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 5.4 The Fundamental Theorem of Calculus 61. k  0 Ê one arch of y œ sin kx will occur over the interval 0ß 1k ‘ Ê the area œ œ  "k cos ˆk ˆ 1k ‰‰  ˆ k" cos (0)‰ œ 62. lim x"$ xÄ!

63.

'

64.

'

x

1

x

!

'

!

x

t%

t# dt "

œ lim

' x %t# dt ! t " x$

xÄ!

x

66.

1

x#

" k

x#

d dx

xÄ!

'

d dx

'

!

1

x

x

f(t) dt œ

d dx

ax#  2x  1b œ 2x  2

f(t) dt œ cos 1x  1x sin 1x Ê f(4) œ cos 1(4)  1(4) sin 1(4) œ 1

Ê f w (x) œ  1  (x9  1) œ

9 x 2

Ê f w (1) œ 3; f(1) œ 2 

'#"" 1 9 t dt œ 2  0 œ 2;

sec (t  1) dt Ê gw (x) œ asec ax#  1bb (2x) œ 2x sec ax#  1b Ê gw (1) œ 2(1) sec a(1)#  1b #

a"b " œ 2; g(1) œ 3  ' sec (t  1) dt œ 3  ' sec (t  1) dt œ 3  0 œ 3; L(x) œ 2(x  (1))  g(1) 1

1

œ 2(x  1)  3 œ 2x  1 67. (a) (b) (c) (d) (e) (f) (g)

True: since f is continuous, g is differentiable by Part 1 of the Fundamental Theorem of Calculus. True: g is continuous because it is differentiable. True, since gw (1) œ f(1) œ 0. False, since gww (1) œ f w (1)  0. True, since gw (1) œ 0 and gww (1) œ f w (1)  0. False: gww (x) œ f w (x)  0, so gww never changes sign. True, since gw (1) œ f(1) œ 0 and gw (x) œ f(x) is an increasing function of x (because f w (x)  0).

68. (a) True: by Part 1 of the Fundamental Theorem of Calculus, hw (x) œ f(x). Since f is differentiable for all x, h has a second derivative for all x. (b) True: they are continuous because they are differentiable. (c) True, since hw (1) œ f(1) œ 0. (d) True, since hw (1) œ 0 and hww (1) œ f w (1)  0. (e) False, since hww (1) œ f w (1)  0. (f) False, since hww (x) œ f w (x)  0 never changes sign. (g) True, since hw (1) œ f(1) œ 0 and hw (x) œ f(x) is a decreasing function of x (because f w (x)  0). 69.

1 Îk

cos kx‘ !

%

L(x) œ 3(x  1)  f(1) œ 3(x  1)  2 œ 3x  5 g(x) œ 3  '

sin kx dx œ 

2 k

xÄ!

f(t) dt œ x cos 1x Ê f(x) œ

'# " 1 9 t dt

!

1Îk

œ lim x$x#" œ lim $ax%" "b œ _.

f(t) dt œ x#  2x  1 Ê f(x) œ

65. f(x) œ 2 

'

321

70. The limit is 3x#

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

322

Chapter 5 Integration

71-74. Example CAS commands: Maple: with( plots ); f := x -> x^3-4*x^2+3*x; a := 0; b := 4; F := unapply( int(f(t),t=a..x), x ); # (a) p1 := plot( [f(x),F(x)], x=a..b, legend=["y = f(x)","y = F(x)"], title="#71(a) (Section 5.4)" ): p1; dF := D(F); # (b) q1 := solve( dF(x)=0, x ); pts1 := [ seq( [x,f(x)], x=remove(has,evalf([q1]),I) ) ]; p2 := plot( pts1, style=point, color=blue, symbolsize=18, symbol=diamond, legend="(x,f(x)) where F '(x)=0" ): display( [p1,p2], title="71(b) (Section 5.4)" ); incr := solve( dF(x)>0, x ); # (c) decr := solve( dF(x) x^2; f := x -> sqrt(1-x^2); F := unapply( int( f(t), t=a..u(x) ), x ); dF := D(F); # (b) cp := solve( dF(x)=0, x ); solve( dF(x)>0, x ); solve( dF(x) x^3/3-x^2/2-2*x+1/3; g := x -> x-1; plot( [f(x),g(x)], x=-5..5, legend=["y = f(x)","y = g(x)"], title="#91(a) (Section 5.6)" ); q1 := [ -5, -2, 1, 4 ]; # (b) q2 := [seq( fsolve( f(x)=g(x), x=q1[i]..q1[i+1] ), i=1..nops(q1)-1 )]; for i from 1 to nops(q2)-1 do # (c) area[i] := int( abs(f(x)-g(x)),x=q2[i]..q2[i+1] ); end do; add( area[i], i=1..nops(q2)-1 ); # (d) Mathematica: (assigned functions may vary) Clear[x, f, g] f[x_] = x2 Cos[x] g[x_] = x3  x Plot[{f[x], g[x]}, {x, 2, 2}] After examining the plots, the initial guesses for FindRoot can be determined. pts = x/.Map[FindRoot[f[x]==g[x],{x, #}]&, {1, 0, 1}] i1=NIntegrate[f[x]  g[x], {x, pts[[1]], pts[[2]]}] i2=NIntegrate[f[x]  g[x], {x, pts[[2]], pts[[3]]}] i1  i2

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

343

344

Chapter 5 Integration

CHAPTER 5 PRACTICE EXERCISES 1. (a) Each time subinterval is of length ?t œ 0.4 sec. The distance traveled over each subinterval, using the midpoint rule, is ?h œ "# avi  vib1 b ?t, where vi is the velocity at the left endpoint and vib1 the velocity at

the right endpoint of the subinterval. We then add ?h to the height attained so far at the left endpoint vi to arrive at the height associated with velocity vib1 at the right endpoint. Using this methodology we build the following table based on the figure in the text: t (sec) 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 v (fps) 0 10 25 55 100 190 180 165 150 140 130 115 105 90 76 65 h (ft) 0 2 9 25 56 114 188 257 320 378 432 481 525 564 592 620.2 t (sec) v (fps) h (ft)

6.4 50 643.2

6.8 37 660.6

7.2 25 672

7.6 12 679.4

8.0 0 681.8

NOTE: Your table values may vary slightly from ours depending on the v-values you read from the graph. Remember that some shifting of the graph occurs in the printing process. The total height attained is about 680 ft. (b) The graph is based on the table in part (a).

2. (a) Each time subinterval is of length ?t œ 1 sec. The distance traveled over each subinterval, using the midpoint rule, is ?s œ "# avi  vib1 b ?t, where vi is the velocity at the left, and vib1 the velocity at the

right, endpoint of the subinterval. We then add ?s to the distance attained so far at the left endpoint vi to arrive at the distance associated with velocity vib1 at the right endpoint. Using this methodology we build the table given below based on the figure in the text, obtaining approximately 26 m for the total distance traveled: t (sec) 0 1 2 3 4 5 6 7 8 9 10 v (m/sec) 0 0.5 1.2 2 3.4 4.5 4.8 4.5 3.5 2 0 s (m) 0 0.25 1.1 2.7 5.4 9.35 14 18.65 22.65 25.4 26.4

(b) The graph shows the distance traveled by the moving body as a function of time for 0 Ÿ t Ÿ 10.

3. (a) (c)

10

!

kœ1 10

ak 4

œ

" 4

10

! ak œ

kœ1

" 4

(2) œ  #"

(b)

10

10

10

kœ1

kœ1

kœ1

10

10

10

kœ1

kœ1

kœ1

! (bk  3ak ) œ ! bk  3 ! ak œ 25  3(2) œ 31

! (ak  bk  1) œ ! ak  ! bk  ! " œ 2  25  (1)(10) œ 13

kœ1

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 5 Practice Exercises 10

10

kœ1

kœ1

! ˆ 5  bk ‰ œ ! #

(d)

20

5 #

10

 ! bk œ kœ1

20

kœ1 20

(b)

kœ1

! ˆ"  #

(c)

kœ1 20

2bk ‰ 7

20

œ !

kœ1 20

" #



20

! bk œ

2 7

kœ1 20

" #

20

20

20

kœ1

kœ1

kœ1

! (ak  bk ) œ ! ak  ! bk œ 0  7 œ 7

(20)  27 (7) œ 8

! aak  2b œ ! ak  ! 2 œ 0  2(20) œ 40

(d)

kœ1

kœ1

kœ1 " #

5. Let u œ 2x  1 Ê du œ 2 dx Ê 5

1

'

(2x  1)"Î# dx œ

9

1

3

1

x ax#  1b

7. Let u œ

"Î$

'

dx œ

8

0

du œ dx; x œ 1 Ê u œ 1, x œ 5 Ê u œ 9 *

u"Î# ˆ "# du‰ œ u"Î# ‘ " œ 3  1 œ 2

6. Let u œ x#  1 Ê du œ 2x dx Ê

'

(10)  25 œ 0

! 3ak œ 3 ! ak œ 3(0) œ 0

4. (a)

'

5 #

" #

du œ x dx; x œ 1 Ê u œ 0, x œ 3 Ê u œ 8 )

u"Î$ ˆ "# du‰ œ  38 u%Î$ ‘ ! œ

3 8

(16  0) œ 6

Ê 2 du œ dx; x œ 1 Ê u œ  1# , x œ 0 Ê u œ 0

x 2

' cos ˆ x# ‰ dx œ ' Î (cos u)(2 du) œ [2 sin u]!1Î# œ 2 sin 0  2 sin ˆ 1# ‰ œ 2(0  (1)) œ 2 0

0

1

1 2

8. Let u œ sin x Ê du œ cos x dx; x œ 0 Ê u œ 0, x œ

'

1Î2

0

(sin x)(cos x) dx œ

(e)

10. (a) (c) (e)

#

u du œ ’ u2 “ œ !

Ê uœ1

" #

2

2

5

2

2

(c)

0

"

'c f(x) dx œ "3 'c 3 f(x) dx œ 3" (12) œ 4 (b) ' f(x) dx œ ' f(x) dx  ' f(x) dx œ 6  4 œ 2 c c c ' g(x) dx œ  'c g(x) dx œ 2 (d) ' (1 g(x)) dx œ 1 ' g(x) dx œ 1(2) œ 21 c c 'c Š f(x) 5 g(x) ‹ dx œ 5" 'c f(x) dx  5" 'c g(x) dx œ 5" (6)  5" (2) œ 85 2

9. (a)

'

1

1 #

' ' '

2

5

5

2

5

5

5

2

2

2

2

0 0

2

' 7 g(x) dx œ "7 (7) œ 1 f(x) dx œ ' f(x) dx œ 1 [g(x)  3 f(x)] dx œ ' g(x) dx  3' g(x) dx œ

2

" 7

(b)

0 2

(d)

0

2

0

5

2

0

0

2

' '

2

2

2

5

5

2

2

2

1 2

0

g(x) dx œ

'

0

2

g(x) dx 

È2 f(x) dx œ È2

'

0

2

'

0

1

g(x) dx œ 1  2 œ 1

f(x) dx œ È2 (1) œ 1È2

f(x) dx œ 1  31

11. x#  4x  3 œ 0 Ê (x  3)(x  1) œ 0 Ê x œ 3 or x œ 1; Area œ

'

0

1

ax#  4x  3b dx  "

$

'

1

$

3

ax#  4x  3b dx

œ ’ x3  2x#  3x“  ’ x3  2x#  3x“ !

$ "

$

œ ’Š "3  2(1)#  3(1)‹  0“ $

$

 ’Š 33  2(3)#  3(3)‹  Š 13  2(1)#  3(1)‹“ œ ˆ "3  1‰  0  ˆ 3"  1‰‘ œ

8 3

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

345

346

Chapter 5 Integration

12. 1 

x# 4

œ 0 Ê 4  x#  0 Ê x œ „ 2;

Area œ

'c Š1  x4 ‹ dx  ' 2

2

œ ’x 

2

# x$ 12 “ # 2$ 12 ‹

œ ’Š2 

3

#

 ’x 

Š1 

x# 4‹

dx

$ x$ 12 “ #

 Š2 

(2)$ 12 ‹“

œ  43  ˆ 43 ‰‘  ˆ 34  43 ‰ œ

 ’Š3 

3$ 12 ‹

2$ 12 ‹“

 Š2 

13 4

13. 5  5x#Î$ œ 0 Ê 1  x#Î$ œ 0 Ê x œ „ 1; Area œ

'c ˆ5  5x#Î$ ‰ dx  ' 1

1

1

8

ˆ5  5x#Î$ ‰ dx

" ) œ 5x  3x&Î$ ‘ "  5x  3x&Î$ ‘ " œ ˆ5(1)  3(1)&Î$ ‰  ˆ5(1)  3(1)&Î$ ‰‘

 ˆ5(8)  3(8)&Î$ ‰  ˆ5(1)  3(1)&Î$ ‰‘ œ [2  (2)]  [(40  96)  2] œ 62 14. 1  Èx œ 0 Ê x œ 1; Area œ œ œ œ

'

0

1

ˆ1  Èx‰ dx 

4

1

ˆ1  Èx‰ dx

x  23 x$Î# ‘ "  x  23 x$Î# ‘ % ! " ˆ1  23 (1)$Î# ‰  0‘  ˆ4  23 " ˆ4  16 ‰ "‘ 3  3  3 œ 2

15. f(x) œ x, g(x) œ œ

'

'

2

1

ˆx 

"‰ x#

œ

'

œ

Š 42

1

Šx 

a œ 1, b œ 2 Ê A œ

'

b

[f(x)  g(x)] dx

a

#

#

dx œ ’ x#  x" “ œ ˆ 4#  "# ‰  ˆ "#  1‰ œ 1

16. f(x) œ x, g(x) œ 2

" x# ,

(4)$Î# ‰  ˆ1  23 (1)$Î# ‰‘

"

" Èx

" Èx ‹dx

, a œ 1, b œ 2 Ê A œ # œ ’ x#  2Èx“

 2È2‹  ˆ "#  2‰ œ

'

a

b

[f(x)  g(x)] dx

#

" 7 4 È 2 #

'

# 17. f(x) œ ˆ1  Èx‰ , g(x) œ 0, a œ 0, b œ 1 Ê A œ

œ

'

0

1

ˆ1  2x"Î#  x‰ dx œ ’x  43 x$Î#  #

" x# # “!

x% #



" x( 7 “!

œ1

" #



" 7

œ

a

œ1

18. f(x) œ a1  x$ b , g(x) œ 0, a œ 0, b œ 1 Ê A œ œ ’x 

b

'

a

b

'

[f(x)  g(x)] dx œ 4 3



" #

œ

" 6

1

0

ˆ1  Èx‰# dx œ

(6  8  3) œ

[f(x)  g(x)] dx œ

'

0

1

'

0

1

ˆ1  2Èx  x‰ dx

" 6

#

a1  x$ b dx œ

'

0

9 14

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

1

a1  2x$  x' b dx

Chapter 5 Practice Exercises 19. f(y) œ 2y# , g(y) œ 0, c œ 0, d œ 3 Ê Aœ œ2

'

3

'

d

c

y# dy œ

0

'

[f(y)  g(y)] dy œ 2 3

3

0

a2y#  0b dy

$

cy$ d ! œ 18

20. f(y) œ 4  y# , g(y) œ 0, c œ 2, d œ 2 Ê Aœ

'

d

c

# y$ 3 “ #

œ ’4y 

'c a4  y# b dy 2

[f(y)  g(y)] dy œ œ 2 ˆ8 

8‰ 3

2

œ

32 3

y# 4

21. Let us find the intersection points:

y 2 4

œ

Ê y#  y  2 œ 0 Ê (y  2)(y  1) œ 0 Ê y œ 1 or y œ 2 Ê c œ 1, d œ 2; f(y) œ Ê Aœ

'

d

c

y 2 4

2

#

1

œ

" 4

'c ay  2  y# b dy œ 4" ’ y#

œ

" 4

ˆ 4#  4  83 ‰  ˆ "#  2  3" ‰‘ œ

#

1

y# 4

'c Š y4 2  y4 ‹ dy

[f(y)  g(y)] dy œ

2

, g(y) œ

 2y  9 8

y#  4 4

22. Let us find the intersection points:

# y$ 3 “ "

œ

y  16 4

Ê y#  y  20 œ 0 Ê (y  5)(y  4) œ 0 Ê y œ 4 or y œ 5 Ê c œ 4, d œ 5; f(y) œ Ê Aœ

'

d

c

[f(y)  g(y)] dy œ

y  16 4

, g(y) œ

y#  4 4

'c Š y 416  y 4 4 ‹ dy 5

#

4

œ

" 4

'c ay  20  y# b dy œ "4 ’ y#

œ

" 4 " 4

125 ‰ ˆ 25 ‰‘  ˆ "#6  80  64 #  100  3 3 9 " 9 " ˆ #  180  63‰ œ 4 ˆ #  117‰ œ 8 (9  234) œ

œ

5

#

 20y 

4

23. f(x) œ x, g(x) œ sin x, a œ 0, b œ Ê Aœ

'

b

a

#

[f(x)  g(x)] dx œ

œ ’ x#  cos x“

1Î% !

#

œ Š 31# 

'

1Î4

(x  sin x) dx

1

24. f(x) œ 1, g(x) œ ksin xk , a œ  1# , b œ Ê Aœ œ

'c

œ2

0

'

a

b

[f(x)  g(x)] dx œ

(1  sin x) dx 

1Î2 1Î2

'

0

'

0

1Î2

243 8

1 4

0

È2 # ‹

& y$ 3 “ %

'c

1Î2

1Î2

1 2

a1  ksin xkb dx

(1  sin x) dx 1Î#

(1  sin x) dx œ 2[x  cos x]!

œ 2 ˆ 1#  1‰ œ 1  2 Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

347

348

Chapter 5 Integration

25. a œ 0, b œ 1, f(x)  g(x) œ 2 sin x  sin 2x

'

Ê Aœ

1

0

(2 sin x  sin 2x) dx œ 2 cos x 

cos 2x ‘ 1 # !

œ 2 † (1)  "# ‘  ˆ2 † 1  "# ‰ œ 4

26. a œ  13 , b œ 13 , f(x)  g(x) œ 8 cos x  sec# x

'c

1Î3

Ê Aœ œ Š8 †

1Î3

È3 #

1Î$

a8 cos x  sec# xb dx œ [8 sin x  tan x]1Î$

 È3‹  Š8 †

È3 #

 È3‹ œ 6È3

27. f(y) œ Èy, g(y) œ 2  y, c œ 1, d œ 2

'

Ê Aœ œ

'

1

2

d

c

[f(y)  g(y)] dy œ

'

2

1

Èy  (2  y)‘ dy

ˆÈy  2  y‰ dy œ ’ 23 y$Î#  2y 

œ Š 43 È2  4  2‹  ˆ 23  2  "# ‰ œ

4 3

# y# # “"

È2 

7 6

œ

8 È 2 7 6

28. f(y) œ 6  y, g(y) œ y# , c œ 1, d œ 2 Ê Aœ

'

œ ’6y 

y# #

œ4

c



7 3

d

[f(y)  g(y)] dy œ

 " #

# y$ 3 “"

œ

'

2

1

a6  y  y# b dy

œ ˆ12  2  83 ‰  ˆ6 

24143 6

œ

" #

 3" ‰

13 6

29. f(x) œ x$  3x# œ x# (x  3) Ê f w (x) œ 3x#  6x œ 3x(x  2) Ê f w œ  ±  ±  ! # Ê f(0) œ 0 is a maximum and f(2) œ 4 is a minimum. A œ  ‰ œ  ˆ 81 4  27 œ 30. A œ

'

a

0

4 3

a# 6

 "# ‰ œ

'

a

&Î$

A# œ

" y# # “!

œ

0

(6  8  3) œ

" 10

'

0

1

a

x# # “0

$ !

œ a#  34 Èa † aÈa 

a# 6

ˆy#Î$  y‰ dy

; the area below the x-axis is

'c ˆy#Î$  y‰ dy œ ’ 3y5 0

%

ax$  3x# b dx œ  ’ x4  x$ “

ˆa  2Èa x"Î#  x‰ dx œ ’ax  43 Èa x$Î# 

31. The area above the x-axis is A" œ œ ’ 3y5 

0

3

27 4

ˆa"Î#  x"Î# ‰# dx œ

œ a# ˆ1 

'

&Î$

1

Ê the total area is A"  A# œ



! y# # “ "

œ

11 10

6 5

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

a# #

Chapter 5 Practice Exercises

'

32. A œ 

1Î4

0

'

31Î2

51Î4

(cos x  sin x) dx 

'

51Î4

1Î4

(sin x  cos x) dx 1Î%

(cos x  sin x) dx œ [sin x  cos x]! &1Î%

$1Î#

 [ cos x  sin x]1Î%  [sin x  cos x]&1Î% œ ’Š

È2 #

È2 # ‹



 (0  1)“  ’Š

 ’(1  0)  Š

33. y œ x#  34. y œ

'

x

0

'

x

" 1 t

È2 #

dt Ê



dy dx

È2 # ‹“

xœ0 Ê yœ

'

0

0



È2 # ‹

È2 #

 Š



œ

8È 2 #

 2 œ 4È2  2

" x

Ê

d# y dx#

œ 2x 

ˆ1  2Èsec t‰ dt Ê

È2 #

œ2

" x#

; y(1) œ 1 

œ 1  2Èsec x Ê

dy dx

d# y dx#

ˆ1  2Èsec t‰ dt œ 0 and x œ 0 Ê

dy dx

36. y œ

'c È2  sin# t dt  2 so that dydx œ È2  sin# x; x œ 1

sin t t

dt  3 Ê

dy dx

œ

;xœ5 Ê yœ

sin x x

5

5

sin t t

1

1

" t

dt œ 1 and yw (1) œ 2  1 œ 3

œ 1  2Èsec 0 œ 3

'

x

'

œ 2 ˆ "# ‰ (sec x)"Î# (sec x tan x) œ Èsec x (tan x);

35. y œ

5

'

È2 # ‹“

dt  3 œ 3

x

Ê yœ

1

'cc È2  sin# t dt  2 œ 2 1

1

37. Let u œ cos x Ê du œ sin x dx Ê  du œ sin x dx

' 2(cos x)"Î# sin x dx œ ' 2u"Î# ( du) œ 2 ' u"Î# du œ 2 Š u"Î#" ‹  C œ 4u"Î#  C #

œ 4(cos x)"Î#  C 38. Let u œ tan x Ê du œ sec# x dx

' (tan x)$Î# sec# x dx œ ' u$Î# du œ ˆu"Î#"‰  C œ 2u"Î#  C œ (tanx)2 "Î#  C #

39. Let u œ 2)  1 Ê du œ 2 d) Ê

" #

du œ d)

' [2)  1  2 cos (2)  1)] d) œ ' (u  2 cos u) ˆ "# du‰ œ u4

#

œ )#  )  sin (2)  1)  C, where C œ C"  40. Let u œ 2)  1 Ê du œ 2 d) Ê

'Š œ

41.

42.

" #

" È 2 ) 1

" #

 2 sec# (#)  1)‹ d) œ

" 4

 sin u  C" œ

(2)1)# 4

 sin (2)  1)  C"

is still an arbitrary constant

du œ d)

' Š È"u  2 sec# u‹ ˆ #" du‰ œ #" ' ˆu"Î#  2 sec# u‰ du

"Î#

Š u " ‹  "# (2 tan u)  C œ u"Î#  tan u  C œ (2)  1)"Î#  tan (2)  1)  C #

' ˆt  2t ‰ ˆt  2t ‰ dt œ ' ˆt#  t4 ‰ dt œ ' at#  4t# b dt œ t3$  4 Š t"1 ‹  C œ t3$  4t  C #

t# ' (t1)t%#1 dt œ ' t#t%2t dt œ ' ˆ t"#  t2$ ‰ dt œ ' at#  2t$ b dt œ (t"1)  2 Š # ‹  C œ  "t  t"#  C

43. Let u œ #t$Î# Ê du œ $Èt dt Ê "$ du œ Èt dt

' Èt sin ˆ#t$Î# ‰dt œ "$ ' sin u du œ  "$ cos u  C œ  "$ cosˆ#t$Î# ‰  C Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

349

350

Chapter 5 Integration

44. Let u œ "  sec ) Ê du œ sec ) tan) d) Ê

' sec ) tan) È"  sec ) d) œ ' u"Î# du œ #$ u$Î#  C

œ #$ a"  sec )b$Î#  C

'c a3x#  4x  7b dx œ cx$  2x#  7xd "" œ c1$  2(1)#  7(1)d  c(1)$  2(1)#  7(1)d œ 6  (10) œ 16 1

45.

1

46.

'

47.

'

48.

'

49.

'

1

0

"

a8s$  12s#  5b ds œ c2s%  4s$  5sd ! œ c2(1)%  4(1)$  5(1)d  0 œ 3

2

4 # 1 v 27

1

'

dv œ

2

#

4v# dv œ c4v" d " œ ˆ #4 ‰  ˆ 14 ‰ œ 2

1

#(

x%Î$ dx œ 3x"Î$ ‘ " œ 3(27)"Î$  ˆ3(1)"Î$ ‰ œ 3 ˆ "3 ‰  3(1) œ 2

4

dt 1 tÈt

œ

'

4

œ

dt

t$Î#

1

'

4

1

%

50. Let x œ 1  Èu Ê dx œ

'

4

ˆ1  Èu‰"Î# Èu

1

du œ

'

3

2

2 È4

t$Î# dt œ 2t"Î# ‘ " œ " #

u"Î# du Ê 2 dx œ

du Èu



(2) È1

œ1

; u œ 1 Ê x œ 2, u œ 4 Ê x œ 3

$

x"Î# (2 dx) œ 2 ˆ 23 ‰ x$Î# ‘ # œ

4 3

ˆ3$Î# ‰  43 ˆ2$Î# ‰ œ 4È3  83 È2 œ

4 3

Š3È3  2È2‹

51. Let u œ 2x  1 Ê du œ 2 dx Ê 18 du œ 36 dx; x œ 0 Ê u œ 1, x œ 1 Ê u œ 3

'

1

36 dx $ 0 (2x1)

œ

'

3

# $

$

 9 ‘ ˆ 9 ‰ ˆ  9 ‰ 18u$ du œ ’ "8u 2 “ œ u # " œ 3 #  1 # œ 8 "

1

52. Let u œ 7  5r Ê du œ 5 dr Ê  "5 du œ dr; r œ 0 Ê u œ 7, r œ 1 Ê u œ 2

'

1

dr $ È (7  5r)#

0

œ

'

'

1

(7  5r)#Î$ dr œ

0

2

7

#

u#Î$ ˆ 5" du‰ œ  5" 3u"Î$ ‘ ( œ

53. Let u œ 1  x#Î$ Ê du œ  23 x"Î$ dx Ê  3# du œ x"Î$ dx; x œ x œ 1 Ê u œ 1  1#Î$ œ 0

'

1

1Î8

œ

x"Î$ ˆ1  x#Î$ ‰

$Î#

'

dx œ

0

1Î2

0

x$ a1  9x% b

" ˆ 25 ‰ œ  18 16

"Î#

$Î#

dx œ

'

0

1

sin# 5r dr œ

56. Let u œ 4t 

'

1Î%

0

œ

1 8

1 4

$Î%

" 36

#Î$

œ

3 4

,

! &Î# œ  35 u&Î# ‘ $Î% œ  35 (0)&Î#  ˆ 35 ‰ ˆ 34 ‰

'

51

0

" 16



" 16

" 5

"Î# #

1 8

' Î acos 1 4

"

%

Ê u œ 1  9 ˆ #" ‰ œ

25 16

#&Î"'

" "Î# ‘ œ  18 u "

du œ dr; r œ 0 Ê u œ 0, r œ 1 Ê u œ 51

Ê du œ 4 dt Ê

œ

#&Î"'

" #

" 90

asin# ub ˆ "5 du‰ œ

31Î4

du œ x$ dx; x œ 0 Ê u œ 1, x œ

" " u$Î# ˆ 36 du‰ œ ’ 36 Š u " ‹“

"  ˆ 18 (1)"Î# ‰ œ

cos# ˆ4t  14 ‰ dt œ 

25Î16

1

55. Let u œ 5r Ê du œ 5 dr Ê

'

!

#

Ê u œ 1  ˆ 8" ‰

27È3 160

54. Let u œ 1  9x% Ê du œ 36x$ dx Ê

'

&Î#

u$Î# ˆ #3 du‰ œ ’ˆ 32 ‰ Š u 5 ‹“

3Î4

" 8

Š $È7  $È2‹

3 5

" 4

#

" 5

 u2 

sin 2u ‘ &1 4 !

œ ˆ 1# 

sin 101 ‰ #0

du œ dt; t œ 0 Ê u œ  14 , t œ ub ˆ "4 du‰ œ

" 4

 u2 

sin 2u ‘ $1Î% 4 1Î%

œ

 ˆ0  1 4 " 4

sin 0 ‰ 20

Ê uœ Š 381 

œ

1 #

31 4

sin ˆ 3#1 ‰ ‹ 4

 4" Š 18 

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

sin ˆ 1# ‰ ‹ 4

Chapter 5 Practice Exercises

'

1Î$

57.

'

31Î4

58.

0

1Î$

sec# ) d) œ [tan )]!

1Î4

31

1

1 3

 tan 0 œ È3

$1Î%

csc# x dx œ [cot x]1Î% œ ˆ cot

59. Let u œ

'

œ tan

cot#

" 6

Ê du œ

x 6

dx œ

x 6

'

1Î6

31 ‰ 4

 ˆ cot 14 ‰ œ 2

dx Ê 6 du œ dx; x œ 1 Ê u œ 16 , x œ 31 Ê u œ

1Î2

351

'

6 cot# u du œ 6

1Î2

1 # 1Î#

acsc# u  1b du œ [6(cot u  u)]1Î' œ 6 ˆ cot

1Î6

1 #

 1# ‰  6 ˆcot

1 6

 16 ‰

œ 6È3  21 60. Let u œ

'

1

0

tan#

) 3 ) 3

œ 3 tan

" 3

Ê du œ d) œ 1 3

'

0

1

d) Ê 3 du œ d); ) œ 0 Ê u œ 0, ) œ 1 Ê u œ ) 3

ˆsec#

 1‰ d) œ

'

1Î3

0

1 3 1Î$

3 asec# u  1b du œ [3 tan u  3u]!

 3 ˆ 13 ‰‘  (3 tan 0  0) œ 3È3  1

'c

sec x tan x dx œ [sec x]!1Î$ œ sec 0  sec ˆ 13 ‰ œ 1  2 œ 1

'

csc z cot z dz œ [csc z]1Î% œ ˆ csc

0

61.

62.

1Î3

31Î4

1Î4

$1Î%

31 ‰ 4

 ˆ csc 14 ‰ œ È2  È2 œ 0

63. Let u œ sin x Ê du œ cos x dx; x œ 0 Ê u œ 0, x œ

'

1Î2

0

'

5(sin x)$Î# cos x dx œ

1

0

1 #

Ê uœ1

"

"

5u$Î# du œ 5 ˆ 25 ‰ u&Î# ‘ ! œ 2u&Î# ‘ ! œ 2(1)&Î#  2(0)&Î# œ 2

64. Let u œ 1  x# Ê du œ 2x dx Ê  du œ 2x dx; x œ 1 Ê u œ 0, x œ 1 Ê u œ 0

'c

1 1

'

2x sin a1  x# b dx œ

0

 sin u du œ 0

0

" 3

65. Let u œ sin 3x Ê du œ 3 cos 3x dx Ê œ 1

'c ÎÎ

1 2

15 sin% 3x cos 3x dx œ

1 2

du œ cos 3x dx; x œ  1# Ê u œ sin ˆ 3#1 ‰ œ 1, x œ

1 #

& & '  15u% ˆ "3 du‰ œ '  5u% du œ cu& d " " œ (1)  (1) œ 2 1

1

1

1

66. Let u œ cos ˆ x# ‰ Ê du œ  "# sin ˆ x# ‰ dx Ê 2 du œ sin ˆ x# ‰ dx; x œ 0 Ê u œ cos ˆ 0# ‰ œ 1, x œ œ

'

" #

21Î3

cos% ˆ x# ‰ sin ˆ x# ‰ dx œ

0

'

1

1Î2

$

u% (2 du) œ ’2 Š u3 ‹“

67. Let u œ 1  3 sin# x Ê du œ 6 sin x cos x dx Ê Ê u œ 1  3 sin#

'

1Î2

0

3 sin x cos x È1  3 sin# x

1 #

œ4

dx œ

'

4

" Èu

1

ˆ #" du‰ œ

'

4

1

" #

'

0

1Î4

1 4

Ê u œ 1  7 tan

sec# x (1  7 tan x)#Î$

dx œ

'

1

1 4 8

" #

"Î# "

œ

2 3

ˆ "# ‰$  32 (1)$ œ

2 3

(8  1) œ

du œ 3 sin x cos x dx; x œ 0 Ê u œ 1, x œ "Î#

%

#

"

21 3

21

Ê u œ cos Š #3 ‹

14 3

1 #

%

u"Î# du œ ’ 2" Š u " ‹“ œ u"Î# ‘ " œ 4"Î#  1"Î# œ 1 " 7

68. Let u œ 1  7 tan x Ê du œ 7 sec# x dx Ê xœ

Ê u œ sin ˆ 3#1 ‰

du œ sec# x dx; x œ 0 Ê u œ 1  7 tan 0 œ 1,

œ8 " u#Î$

ˆ 7" du‰ œ

'

1

8

" 7

"Î$

)

3

"

)

u#Î$ du œ ’ 7" Š u " ‹“ œ  37 u"Î$ ‘ " œ

3 7

(8)"Î$  37 (1)"Î$ œ

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

3 7

352

Chapter 5 Integration

69. Let u œ sec ) Ê du œ sec ) tan ) d); ) œ 0 Ê u œ sec 0 œ 1, ) œ

'

1Î3

0

tan ) È2 sec )

" È2

œ

'

d) œ

"Î#

#

#

"

'

1Î3

0

’ ˆu " ‰ “ œ ’

1Î3

sec ) tan ) sec ) tan ) d) œ È2 (sec ))$Î# sec ) È2 sec ) 0 # 2 2 2 È2u “ œ  È2(2)  Š È2(1) ‹ œ " cos Èt 2È t

70. Let u œ sin Èt Ê du œ ˆcos Èt‰ ˆ "# t"Î# ‰ dt œ #

1 4



'

1 Î4 #

Ê u œ sin

71. (a) av(f) œ

'

" 1  (1)

'c

" k  (k)

(b) av(f) œ " #k

œ

1

" 1Î2 Èu

1 1

'c

k k

(2 du) œ 2

73. favw œ

'

a

b

" È2 u$Î#

du œ

" È2

'

1

2

œ2 u$Î# du

È2  1 dt Ê 2 du œ

cos Èt Èt

dt; t œ

1# 36

Ê u œ sin

1 6

œ

" #

,

"

"

" #k

’ mx2  bx“

"

#

’ mx2  bx“

(2bk) œ b " 30

1

1 3

u"Î# du œ 4Èu‘ "Î# œ 4È1  4É #" œ 2 Š2  È2‹ #

(mx  b) dx œ

3

0

3

0

0

" ba

1

1Î2

" #

a

(b) yav

'

(mx  b) dx œ

' È3x dx œ "3 ' œ a " 0 ' Èax dx œ "a '

72. (a) yav œ

'

Ê u œ sec

œ1

dt œ

cos Èt Ét sin Èt

1# Î36

1 #

d) œ

2

1 3

È3 x"Î# dx œ

a

Èa x"Î# dx œ

0

" b a

Èaxf w (x) dx œ

[f(x)]ab œ

" b a

k

ck

#

#

m(1)  b(1)‹“ œ ’Š m(1) 2  b(1)‹  Š #

œ

" #

œ

" #k

#

" #

(2b) œ b

#

m(k)  b(k)‹“ ’Š m(k) 2  b(k)‹  Š #

È3 3

 23 x$Î# ‘ $ œ !

È3 3

 23 (3)$Î#  23 (0)$Î# ‘ œ

È3 3

Š2È3‹ œ 2

Èa a

 23 x$Î# ‘ a œ !

Èa a

ˆ 23 (a)$Î#  23 (0)$Î# ‰ œ

Èa a

ˆ 32 aÈa‰ œ

[f(b)  f(a)] œ

f(b)  f(a) ba

2 3

a

so the average value of f w over [aß b] is the

slope of the secant line joining the points (aß f(a)) and (bß f(b)), which is the average rate of change of f over [aß b]. 74. Yes, because the average value of f on [aß b] is and the average value of the function is

" #

'

a

" ba

'

a

b

f(x) dx. If the length of the interval is 2, then b  a œ 2

b

f(x) dx.

75. We want to evaluate " $'&  !

'

$'&

!

f(x) dx œ

" $'&

'

$'&

!

#1 Œ$(sin” $'& ax  "!"b•  #&dx œ

#1 Notice that the period of y œ sin” $'& ax  "!"b• is

length 365. Thus the value of

76.

" '(&#!

œ

'#

'(& !

$( $'&

'

$'&

!

" '&& Œ”)Þ#(a'(&b



#'a'(&b #†"!&



#1 $'&

"Þ)(a'(&b $†"!&

$

'

!

$'&

#1 sin” $'& ax  "!"b•dx 

#& $'&

'

$'&

!

dx

œ $'& and that we are integrating this function over an iterval of

#1 ax  "!"b•dx  sin” $'&

a)Þ#(  "!& a#'T  "Þ)(T# bbdT œ #

#1

$( $'&

" '&& ”)Þ#(T

•  ”)Þ#(a#!b 



#& $'&

#'T# #†"!&

#'a#!b #†"!&

#

'

!

 

$'&

dx is

"Þ)(T$ $†"!& • "Þ)(a#!b $†"!&

$

$( $'&

†!

#& $'&

† $'& œ #&.

'(& #!

• ¸

" '&& a$(#%Þ%%

 "'&Þ%!b

œ &Þ%$ œ the average value of Cv on [20, 675]. To find the temperature T at which Cv œ &Þ%$, solve &Þ%$ œ )Þ#(  "!& a#'T  "Þ)(T# b for T. We obtain "Þ)(T#  #'T  #)%!!! œ ! ÊTœ

#' „ Éa#'b#  %a"Þ)(ba#)%!!!b È#"#%**' œ #' „ $Þ(% . #a"Þ)(b ‰

So T œ $)#Þ)# or T œ $*'Þ(#. Only T œ $*'Þ(# lies in the

interval [20, 675], so T œ $*'Þ(# C. 77.

dy dx

œ È#  cos$ x

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 5 Practice Exercises 78.

dy dx

œ È#  cos$ a(x# b †

79.

dy dx

œ

d dx Œ

80.

dy dx

œ

d dx Œ

d # dx a(x b

œ "%xÈ#  cos$ a(x# b

' x $ ' t dt œ  $'x %

1

353

%

'sec# x t " " dt œ  dxd Œ'#sec x t " " dt œ  sec "x  " dxd asec xb œ  sec" xsectan xx #

#

#

#

81. Yes. The function f, being differentiable on [aß b], is then continuous on [aß b]. The Fundamental Theorem of Calculus says that every continuous function on [aß b] is the derivative of a function on [aß b]. 82. The second part of the Fundamental Theorem of Calculus states that if F(x) is an antiderivative of f(x) on [aß b], then

'

0

1

'

b

a

f(x) dx œ F(b)  F(a). In particular, if F(x) is an antiderivaitve of È1  x% on [0ß 1], then

È1  x% dx œ F(1)  F(0).

83. y œ

' x È1  t# dt œ ' x È1  t# dt

84. y œ

'

1

1

0

" # cos x 1  t

dt œ 

'

0

cos x

" 1  t#

dt Ê

Ê

dy dx

œ

d dx

dy dx

œ

d dx

”

' x È1  t# dt• œ  dxd ”' x È1  t# dt• œ È1  x#

”

'

1

cos x

0

" d ‰ ˆ dx œ  ˆ 1  cos (cos x)‰ œ  ˆ sin"# x ‰ ( sin x) œ #x

1

" 1  t#

" sin x

d dt• œ  dx ”

'

0

cos x

" 1  t#

dt•

œ csc x

85. We estimate the area A using midpoints of the vertical intervals, and we will estimate the width of the parking lot on each interval by averaging the widths at top and bottom. This gives the estimate A ¸ "& † ˆ ! # $'  $' # &%  &% # &"  &" #%*Þ&  %*Þ&# &%  &% #'%Þ%  '%Þ% # '(Þ&  '(Þ&# %# ‰

A ¸ &*'" ft# . The cost is Area † ($2.10/ft# ) ¸ a5961 ft# b a$2.10/ft# b œ $12,518.10 Ê the job cannot be done for $11,000.

86. (a) Before the chute opens for A, a œ 32 ft/sec# . Since the helicopter is hovering, v! œ 0 ft/sec

Ê v œ ' 32 dt œ 32t  v! œ 32t. Then s! œ 6400 ft Ê s œ ' 32t dt œ 16t#  s! œ 16t#  6400.

At t œ 4 sec, s œ 16(4)#  6400 œ 6144 ft when A's chute opens;

(b) For B, s! œ 7000 ft, v! œ 0, a œ 32 ft/sec# Ê v œ ' 32 dt œ 32t  v! œ 32t Ê s œ ' 32t dt œ 16t#  s! œ 16t#  7000. At t œ 13 sec, s œ 16(13)#  7000 œ 4296 ft when B's chute opens;

(c) After the chutes open, v œ 16 ft/sec Ê s œ ' 16 dt œ 16t  s! . For A, s! œ 6144 ft and for B,

s! œ 4296 ft. Therefore, for A, s œ 16t  6144 and for B, s œ 16t  4296. When they hit the ground, 4296 s œ 0 Ê for A, 0 œ 16t  6144 Ê t œ 6144 16 œ 384 seconds, and for B, 0 œ 16t  4296 Ê t œ 16 œ 268.5 seconds to hit the ground after the chutes open. Since B's chute opens 58 seconds after A's opens Ê B hits the ground first. 87. av(I) œ œ

" 30

" 30

'

30

0

(1200  40t) dt œ

" 30

$!

c1200t  20t# d! œ

" 30

ca(1200(30)  20(30)# b  a1200(0)  20(0)# bd

(18,000) œ 600; Average Daily Holding Cost œ (600)($0.03) œ $18

88. av(I) œ

" 14

'

0

14

(600  600t) dt œ

" 14

"%

c600t  300t# d! œ

" 14

c600(14)  300(14)#  0d œ 4800; Average Daily

Holding Cost œ (4800)($0.04) œ $192

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

354

Chapter 5 Integration

'

" 30

89. av(I) œ

30

#

0

$

" 30

Š450  t# ‹ dt œ

’450t  t6 “

œ (300)($0.02) œ $6

œ

" 60

'

" 60

90. av(I) œ

60

0

40È15 3

’600(60) 

(60)

$Î#

'

" 60

Š600  20È15t‹ dt œ

0

" 60

 0“ œ

60

$! !

" 30

œ

30$ 6

’450(30) 

 0“ œ 300; Average Daily Holding Cost

Š600  20È15 t"Î# ‹ dt œ

" 60

’600t  20È15 ˆ 23 ‰ t$Î# “

'! !

ˆ36,000  ˆ 320 ‰ 15# ‰ œ 200; Average Daily Holding Cost 3

œ (200)($0.005) œ $1.00 CHAPTER 5 ADDITIONAL AND ADVANCED EXERCISES

'

1. (a) Yes, because

1

0

(b) No. For example, 4È 2 3

œ

'

1

0

'

" 7

f(x) dx œ

1

0

" 7

7f(x) dx œ

(7) œ 1

'

"

8x dx œ c4x# d ! œ 4, but

1

0

"

È8x dx œ ’2È2 Š x$Î# œ 3 ‹“

2

2

5

5

5

2

2

2

2

2

œ432œ9

'c f(x) dx œ 4  3 œ 7  2 œ 'c g(x) dx

(c) False:

5

5

2

2

œ 

'

x

0

sin ax a sin ax a

'

0

f(t) cos at dt 

'

d

Πdx

œ cos ax

x

0

'

x

0

f(x) dx 

5

2

5

2

x

0

0

x

x

0

0

'

f(t) cos at dt 

sin ax a

x

0

f(t) sin at dt 

(f(x) cos ax)  sin ax

x

cos ax a

'

x

0

d

Πdx

'

0

x

f(t) sin at dt

f(t) sin at dt 

cos ax a

(f(x) sin ax)

x

0 x

#

#

0

x

0

'

d  (sin ax) Πdx

 a cos ax

'

0

x

0

x

0

f(t) sin at dt œ a sin ax

4. x œ

'

" #

x

0

y

" 0 È1  4t#

Ê 1œ œ

'

'

f(t) cos at dt 

dt Ê

" È14y#

a1  4y# b

'

0

x

d dx

Š dy dx ‹ Ê

"Î#

(x) œ dy dx

0

x

'

d dx

0

'

0

y

x

'

'

" È1  4t#

dy 4y Š dx ‹

È1  4y#

0

x

0

x

f(t) cos at dt  a cos ax

'

0

x

f(t) sin at dt  f(x).

f(t) cos at dt  f(x)

f(t) sin at dt œ f(x). Note also that yw (0) œ y(0) œ 0.

dt œ

œ È1  4y# . Then

(8y) Š dy dx ‹ œ

f(t) sin at dt

f(t) cos at dt  (cos ax)f(x) cos ax

f(t) sin at dt  a sin ax

cos ax a

x

0

f(t) sin at dt  (sin ax)f(x) sin ax œ a sin ax

Therefore, yww  a# y œ a cos ax  a# Œ sinaax

2

2

x

" a

f(t) cos at dt  sin ax

œ cos ax

dy dx

5

5

' f(t) cos at dt  sin ax ' f(t) sin at dt. Next, d y ' f(t) cos at dt  (cos ax) Œ dxd ' f(t) cos at dt  a cos ax ' dx œ a sin ax Ê

'c g(x) dx

' f(t) sin ax cos at dt  "a ' f(t) cos ax sin at dt cos ax ' ' f(t) cos at dt f(t) sin at dt Ê dy a dx œ cos ax Œ

f(t) sin a(x  t) dt œ x

2

5

'c [f(x)  g(x)] dx  0 Ê 'c [g(x)  f(x)] dx  0. Ê ' [g(x)  f(x)] dx   0 which is a contradiction. c

Ê

On the other hand, f(x) Ÿ g(x) Ê [g(x)  f(x)]   0 " a

ˆ1$Î#  0$Î# ‰

5

5

(b) True:

4È 2 3

Á È4

' f(x) dx œ  ' f(x) dx œ 3 'c [f(x)  g(x)] dx œ 'c f(x) dx  'c g(x) dx œ 'c f(x) dx  '

2. (a) True:

3. y œ

!

#

œ

'

d dy



d# y dx#

œ

4y ˆÈ1  4y# ‰ È1  4y#

y

0

" È1  4t#

d dx

ˆÈ1  4y# ‰ œ

œ 4y. Thus

dt• Š dy dx ‹ from the chain rule

d# y dx#

d dy

ˆÈ1  4y# ‰ Š dy dx ‹

œ 4y, and the constant of

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 5 Additional and Advanced Exercises

355

proportionality is 4.

'

5. (a)

x#

f(t) dt œ x cos 1x Ê

0

cos 1x  1x sin 1x . 2x

Ê f ax# b œ

'

(b)

f(x)

0

d dx

$

t# dt œ ’ t3 “

f(x)

!

œ

" 3

'

x#

f(t) dt œ cos 1x  1x sin 1x Ê f ax# b (2x) œ cos 1x  1x sin 1x

0

cos 21  21 sin 21 4

Thus, x œ 2 Ê f(4) œ " 3

(f(x))$ Ê

" 4

œ

(f(x))$ œ x cos 1x Ê (f(x))$ œ 3x cos 1x Ê f(x) œ $È3x cos 1x

Ê f(4) œ $È3(4) cos 41 œ $È12 6.

'

a

f(x) dx œ

0

a# #



a #

Ê f(a) œ Fw (a) œ a  7.

'

b

1

1 #

sin a  " #

cos a. Let F(a) œ

sin a 

a #

1 #

cos a 

f(x) dx œ Èb#  1  È2 Ê f(b) œ

d db

'

a

0

f(t) dt Ê f(a) œ Fw (a). Now F(a) œ

sin a Ê f ˆ 1# ‰ œ

'

b

1

f(x) dx œ

" #

side of the equation is: œ

d dx

œ

'

0

'

”x

0

x

f(u) du• 

'

d dx



d dx

'

x

0

x

0

f(u)(x  u) du• œ

u f(u) du œ

'

x

0

' ”'

dy dx

d dx

0

'

x

0

0

u

" #

1 #

sin

"Î#

'

0

x

d dx



(2b) œ

f(t) dt• du• œ

f(u) x du 

d f(u) du  x ” dx

'

'

0

cos

1 #





1 #

a #

sin a 

sin

1 #

Ê f(x) œ

b È b#  1

œ

1 #

1 #

cos a



" #



1 #

œ

" #

x È x#  1

x

f(t) dt; the derivative of the right

x

0

u f(u) du

f(u) du•  xf(x) œ

'

0

x

f(u) du  xf(x)  xf(x)

x

f(u) du. Since each side has the same derivative, they differ by a constant, and since both sides equal 0

when x œ 0, the constant must be 0. Therefore,

9.





ab#  1b

x

d dx

8. The derivative of the left side of the equation is:

1 #

ˆ 1# ‰ #

a# #

' ”' x

0

0

u

f(t) dt• du œ

'

0

x

f(u)(x  u) du.

œ 3x#  2 Ê y œ ' a3x#  2b dx œ x$  2x  C. Then (1ß 1) on the curve Ê 1$  2(1)  C œ 1 Ê C œ 4

Ê y œ x$  2x  4 10. The acceleration due to gravity downward is 32 ft/sec# Ê v œ ' 32 dt œ 32t  v! , where v! is the initial

velocity Ê v œ 32t  32 Ê s œ ' (32t  32) dt œ 16t#  32t  C. If the release point, at t œ !, is s œ 0, then C œ 0 Ê s œ 16t#  32t. Then s œ 17 Ê 17 œ 16t#  32t Ê 16t#  32t  17 œ 0. The discriminant of this quadratic equation is 64 which says there is no real time when s œ 17 ft. You had better duck.

11.

'c f(x) dx œ 'c x#Î$ dx  ' œ œ œ

12.

3

0

8

8

3

4 dx

0

 35 x&Î$ ‘ !  [4x]!$ ) ˆ0  35 (8)&Î$ ‰  (4(3) 36 5

 0) œ

'c f(x) dx œ 'c Èx dx  ' 3

0

4

4

!

3

0

$

œ  23 (x)$Î# ‘ %  ’ x3  4x“

96 5

 12

ax#  4b dx $ !

$

œ 0  ˆ 23 (4)$Î# ‰‘  ’ Š 33  4(3)‹  0 “ œ

16 3

3œ

7 3

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

356 13.

Chapter 5 Integration

'

2

0

'

g(t) dt œ

1

t dt 

0

"

#

'

2

1

sin 1t dt

#

œ ’ t2 “   1" cos 1t‘ " !

œ ˆ "#  0‰   1" cos 21  ˆ 1" cos 1‰‘ " #

œ

14.

'

2

0



2 1

h(z) dz œ

'

1

0

'

È1  z dz 

1

2

(7z  6)"Î$ dz

" # 3 œ  23 (1  z)$Î# ‘ !   14 (7z  6)#Î$ ‘ " œ  23 (1  1)$Î#  ˆ 23 (1  0)$Î# ‰‘ 3   14 (7(2)  6)#Î$  6 3 ‰ 55 œ  ˆ 7  14 œ 42

3 14

(7(1)  6)#Î$ ‘

2 3

'c f(x) dx œ 'cc dx  'c a1  x# b dx  ' 2

15.

1

2

1

2

1

"

x$ 3 “ "

œ [x]" #  ’x 

1$ 3‹

16.

 ˆ 23 ‰  4  2 œ

2 3

'c h(r) dr œ 'c r dr  ' 2

0

1

1

#

œ ’ r2 “

!

"

2 3

 Š Š1 

1œ

a1  r# b dr 

" ba

1$ 3‹

'

2

1

7 6

'

b

a

f(x) dx œ

" #0

'

2

0

f(x) dx œ

#

’Š 1#  0‹  Š 2#  2‹  Š 1#  1‹“ œ

'

20. f(x) œ

'

x

" t

1/x

" ba

sin x

" " t 1  t# " sin x



'

a

'ÈÈ sin t# dt

22. f(x) œ

'

y

x

xb3

f(x) dx œ

y

" x

" 30

'

3

0

" #



'

1

0

x dx 

'

2

1

(x  1) dx• œ

" #

#

"

#

’ x2 “  #" ’ x2  x“ !

# "

" #

f(x) dx œ

" 3



'

dx ‰ d ˆ " ‰‰ ˆ dx  Š "" ‹ ˆ dx œ x x

0

" x

1

dx 

'

1

2

0 dx 

 x ˆ x"# ‰ œ

" x

'



3

2

dx• œ

" x

œ

#

#

" 3

[1  0  0  3  2] œ

2 3

2 x

" d " d ‰ ˆ dx ‰ ˆ dx dt Ê f w (x) œ ˆ 1  sin (sin x)‰  ˆ 1  cos (cos x)‰ œ #x #x

21. g(y) œ

2

b

dt Ê f w (x) œ

cos x

" cos x

dr

 0‹  a2  1b

#

18. Ave. value œ

œ

13 3

"

#

19. f(x) œ

 ’2(2)  2(1)“

!

(1)# # ‹

17. Ave. value œ " #

(1)$ 3 ‹•

 Š1 

 ’r  r3 “  [r]#"

œ  "# 

œ

1

0

$

œ Š0 

2 dx

 [2x]#"

œ a1  (2)b  ”Š1  œ1

2

1

cos x cos# x



sin x sin# x

d ˆ d ˆ Èy‰‹ œ Ê gw (y) œ Šsin ˆ2Èy‰ ‹ Š dy 2Èy‰‹  Šsin ˆÈy‰ ‹ Š dy

sin 4y Èy



sin y 2È y

d ‰ t(5  t) dt Ê f w (x) œ (x  3)(&  (x  3)) ˆ dx (x  3)‰  x(5  x) ˆ dx dx œ (x  3)(2  x)  x(5  x)

œ 6  x  x#  5x  x# œ 6  6x. Thus f w (x) œ 0 Ê 6  6x œ 0 Ê x œ 1. Also, f ww (x) œ 6  ! Ê x œ 1 gives a

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 5 Additional and Advanced Exercises maximum. 23. Let f(x) œ x& on [0ß 1]. Partition [0ß 1] into n subintervals with ?x œ

10 n

œ "n . Then "n , n2 , á ,

_

n n

&

are the

right-hand endpoints of the subintervals. Since f is increasing on [0ß 1], U œ ! Š nj ‹ ˆ "n ‰ is the upper sum for

_

œ

j 1

&

! Š j ‹ ˆ"‰ œ f(x) œ x& on [0ß 1] Ê n lim n n Ä_ jœ1 œ

'

1

'

"

x& dx œ ’ x6 “ œ !

0

& lim " ’ˆ n" ‰ nÄ_ n



ˆ n2 ‰&

&

 á  ˆ nn ‰ “ œ n lim ’1 Ä_

&

 2&  á  n& “ n'

" 6

24. Let f(x) œ x$ on [0ß 1]. Partition [0ß 1] into n subintervals with ?x œ

10 n

œ "n . Then "n , n2 , á ,

_

n n

$

are the

right-hand endpoints of the subintervals. Since f is increasing on [0ß 1], U œ ! Š nj ‹ ˆ "n ‰ is the upper sum for

_

œ

j 1

$

! Š j ‹ ˆ " ‰ œ lim f(x) œ x$ on [0ß 1] Ê n lim n n Ä_ nÄ_ jœ1 œ

'

0

1

%

"

x$ dx œ ’ x4 “ œ !

" n

$ $ $ ’ˆ n" ‰  ˆ n2 ‰  á  ˆ nn ‰ “ œ n lim ’1 Ä_

$

 2$  á  n$ “ n%

" 4

25. Let y œ f(x) on [0ß 1]. Partition [0ß 1] into n subintervals with ?x œ

10 n

œ "n . Then "n , 2n , á ,

_

n n

are the

right-hand endpoints of the subintervals. Since f is continuous on [!ß 1], ! f Š nj ‹ ˆ "n ‰ is a Riemann sum of

œ

j 1

_

! f Š j ‹ ˆ " ‰ œ lim y œ f(x) on [0ß 1] Ê n lim n n Ä_ nÄ_ jœ1

" n

'

1

" 26. (a) n lim [2  4  6  á  2n] œ n lim Ä _ n# Ä_ on [0ß 1] (see Exercise 25)

" n

 n2 

" (b) n lim c1"&  2"&  á  n"& d œ n lim Ä _ n"' Ä_ "& f(x) œ x on [0ß 1] (see Exercise 25)

" n

"& "& "& ’ˆ 1n ‰  ˆ 2n ‰  á  ˆ nn ‰ “ œ

'

'

f ˆ n" ‰  f ˆ n2 ‰  á  f ˆ nn ‰‘ œ

4 n



6 n

á 

œ

2n ‘ n

0

1

0

f(x) dx

"

2x dx œ cx# d! œ 1, where f(x) œ 2x

'

0

1

"'

"

" 16 ,

x"& dx œ ’ x16 “ œ !

where

1

" "  (c) n lim sin 1n  sin 2n1  á  sin nn1 ‘ œ sin n1 dx œ  1" cos 1x‘ ! œ  1" cos 1  ˆ 1" cos 0‰ Ä_ n 0 œ 12 , where f(x) œ sin 1x on [0ß 1] (see Exercise 25) " (d) n lim c1"&  2"&  á  n"& d œ Šn lim Ä _ n"( Ä_ " ‰ ˆ œ 0 16 œ 0 (see part (b) above) " n"&

(e) n lim Ä_

c1"&  2"&  á  n"& d œ n lim Ä_

œ Šn lim n‹ Šn lim Ä_ Ä_

" n"'

" " n ‹ Šn lim Ä _ n"'

n n"'

c1"&  2"&  á  n"& d‹ œ Šn lim Ä_

" n‹

'

1

0

x"& dx

c1"&  2"&  á  n"& d

c1"&  2"&  á  n"& d‹ œ Šn lim n‹ Ä_

'

0

1

x"& dx œ _ (see part (b) above)

27. (a) Let the polygon be inscribed in a circle of radius r. If we draw a radius from the center of the circle (and the polygon) to each vertex of the polygon, we have n isosceles triangles formed (the equal sides are equal to r, the radius of the circle) and a vertex angle of )n where )n œ 2n1 . The area of each triangle is An œ

" # # r

sin )n Ê the area of the polygon is A œ nAn œ

(b) n lim A œ n lim Ä_ Ä_

nr# #

sin

21 n

œ n lim Ä_

n1r# 21

sin

21 n

nr# #

nr# 21 # sin n . sin ˆ 2n1 ‰ # ˆ 2n1 ‰ œ a1r b

sin )n œ

œ n lim a1 r # b Ä_

lim

2 1 În Ä 0

sin ˆ 2n1 ‰ ˆ 2n1 ‰

œ 1 r#

'x cos 2t dt  " œ sin x  ' x cos 2t dt  " Ê yw œ cos x  cosa2xb; when x œ 1 we have 1 yw œ cos 1  cosa21b œ "  " œ #. And yww œ sin x  2sina2xb; when x œ 1, y œ sin 1  ' cos 2t dt  " x

28. y œ sin x 

1

1

œ !  !  " œ ". Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

357

358

Chapter 5 Integration

' ga$b œ '

29. (a) ga"b œ (b)

1

1

$

1

(c) ga"b œ

fatb dt œ ! fatb dt œ  "# a#ba"b œ "

'  fatb dt œ ' fatb dt œ  "% a1 ## b œ 1 1

1

1

1

(d) gw axb œ faxb œ ! Ê x œ $, ", $ and the sign chart for gw axb œ faxb is relative maximum at x œ ". (e) gw a"b œ fa"b œ # is the slope and ga"b œ

±  ±  ± . So g has a 3 1 3

'  fatb dt œ 1, by (c). Thus the equation is y  1 œ #ax  "b 1

1

y œ #x  #  1 . (f) gww axb œ f w axb œ ! at x œ " and gww axb œ f w axb is negative on a$ß "b and positive on a"ß "b so there is an inflection point for g at x œ ". We notice that gww axb œ f w axb  ! for x on a"ß #b and gww axb œ f w axb  ! for x on a#ß %b, even though gww a#b does not exist, g has a tangent line at x œ #, so there is an inflection point at x œ #. (g) g is continuous on Ò$ß %Ó and so it attains its absolute maximum and minimum values on this interval. We saw in (d) that gw axb œ ! Ê x œ $, ", $. We have that ga$b œ

' $ fatb dt œ '$" fatb dt œ  1## 1

#

œ #1

' fatb dt œ ! $ ga$b œ ' fatb dt œ " % ga%b œ ' fatb dt œ "  "# † " † " œ  "#

ga"b œ

1

1

1

1

Thus, the absolute minimum is #1 and the absolute maximum is !. Thus, the range is Ò#1ß !Ó.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 5 Additional and Advanced Exercises NOTES:

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

359

360

Chapter 5 Integration

NOTES:

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

CHAPTER 6 APPLICATIONS OF DEFINITE INTEGRALS 6.1 VOLUMES BY SLICING AND ROTATION ABOUT AN AXIS 1. (a) A œ 1(radius)# and radius œ È1  x# Ê A(x) œ 1 a1  x# b (b) A œ width † height, width œ height œ 2È1  x# Ê A(x) œ 4 a1  x# b (diagonal)# ; #

(c) A œ (side)# and diagonal œ È2(side) Ê A œ (d) A œ

È3 4

diagonal œ 2È1  x# Ê A(x) œ 2 a1  x# b

(side)# and side œ 2È1  x# Ê A(x) œ È3 a1  x# b

2. (a) A œ 1(radius)# and radius œ Èx Ê A(x) œ 1x (b) A œ width † height, width œ height œ 2Èx Ê A(x) œ 4x (diagonal)# ; #

(c) A œ (side)# and diagonal œ È2(side) Ê A œ (d) A œ

È3 4

(side)# and side œ 2Èx Ê A(x) œ È3x

(diagonal)# #

3. A(x) œ

diagonal œ 2Èx Ê A(x) œ 2x

œ

ˆ È x  ˆ È x ‰ ‰ # #

œ 2x (see Exercise 1c); a œ 0, b œ 4;

V œ 'a A(x) dx œ '0 2x dx œ cx# d ! œ 16 b

4

1(diameter)# 4

4. A(x) œ

œ

%

1 c a2  x # b  x # d 4

#

œ

1c2 a1  x# bd 4

#

œ 1 a1  2x#  x% b ; a œ 1, b œ 1;

V œ 'a A(x) dx œ 'c1 1 a1  2x#  x% b dx œ 1 ’x  23 x$  b

1

" x& 5 “ "

#

œ 21 ˆ1 

2 3

 5" ‰ œ

161 15

#

5. A(x) œ (edge)# œ ’È1  x#  ŠÈ1  x# ‹“ œ Š2È1  x# ‹ œ 4 a1  x# b ; a œ 1, b œ 1; V œ 'a A(x) dx œ 'c1 4a1  x# b dx œ 4 ’x  b

1

#

(diagonal)# #

6. A(x) œ

œ

œ

#

Š2È1  x# ‹

V œ 'a A(x) dx œ 2'c1 a1  x# b dx œ 2 ’x  1

" #

7. (a) STEP 1) A(x) œ

#

" x$ 3 “ "

(side) † (side) † ˆsin 13 ‰ œ

STEP 2) a œ 0, b œ 1

œ 8 ˆ1  "3 ‰ œ

16 3

#

’È1  x#  ŠÈ1  x# ‹“

b

" x$ 3 “ "

" #

œ 2 a1  x# b (see Exercise 1c); a œ 1, b œ 1; œ 4 ˆ1  "3 ‰ œ

8 3

† Š2Èsin x‹ † Š2Èsin x‹ ˆsin 13 ‰ œ È3 sin x

STEP 3) V œ 'a A(x) dx œ È3 '0 sin x dx œ ’È3 cos x“ œ È3(1  1) œ 2È3 1

1

b

!

#

(b) STEP 1) A(x) œ (side) œ Š2Èsin x‹ Š2Èsin x‹ œ 4 sin x STEP 2) a œ 0, b œ 1

STEP 3) V œ 'a A(x) dx œ '0 4 sin x dx œ c4 cos xd 1! œ 8 1

b

#

8. (a) STEP 1) A(x) œ 1(diameter) œ 14 (sec x  tan x)# œ 4 sin x ‘ œ 14 sec# x  asec# x  1b  2 cos #x STEP 2) a œ  13 , b œ

asec# x  tan# x  2 sec x tan xb

1 3

STEP 3) V œ 'a A(x) dx œ 'c1Î3 b

1 4

1Î3

1 4

ˆ2 sec# x  1 

2 sin x ‰ cos# x

dx œ

1 4

2 tan x  x  2 ˆ cos" x ‰‘1Î$ 1Î$

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

362

Chapter 6 Applications of Definite Integrals œ

1 4

’2È3 

1 3

 2 Š ˆ "" ‰ ‹  Š2È3  #

1 3

 2 Š ˆ "" ‰ ‹‹“ œ #

(b) STEP 1) A(x) œ (edge)# œ (sec x  tan x)# œ ˆ2 sec# x  1  2 STEP 2) a œ  13 , b œ

1 3

STEP 3) V œ 'a A(x) dx œ 'c1Î3 ˆ2 sec# x  1  1Î3

b

1 4

9. A(y) œ

(diameter)# œ

1 4

#

ŠÈ5y#  0‹ œ

c œ 0, d œ 2; V œ 'c A(y) dy œ '0 d

#

&

œ ’ˆ 541 ‰ Š y5 ‹“ œ !

" #

10. A(y) œ

2

1 4

51 4

51 4

Š4È3 

21 3 ‹

sin x ‰ cos# x

dx œ 2 Š2È3  13 ‹ œ 4È3 

21 3

y% ;

y% dy

a2&  0b œ 81

" #

(leg)(leg) œ

# È1  y#  ˆÈ1  y# ‰‘ œ

V œ 'c A(y) dy œ 'c1 2a1  y# b dy œ 2 ’y  d

2 sin x ‰ cos# x

1 4

1

" y$ 3 “ "

" #

#

ˆ2È1  y# ‰ œ 2 a1  y# b ; c œ 1, d œ 1;

œ 4 ˆ1  "3 ‰ œ

8 3

11. (a) It follows from Cavalieri's Principle that the volume of a column is the same as the volume of a right prism with a square base of side length s and altitude h. Thus, STEP 1) A(x) œ (side length)# œ s# ; STEP 2) a œ 0, b œ h; STEP 3) V œ 'a A(x) dx œ '0 s# dx œ s# h b

h

(b) From Cavalieri's Principle we conclude that the volume of the column is the same as the volume of the prism described above, regardless of the number of turns Ê V œ s# h 12. 1) The solid and the cone have the same altitude of 12. 2) The cross sections of the solid are disks of diameter x  ˆ x# ‰ œ x# . If we place the vertex of the cone at the origin of the coordinate system and make its axis of symmetry coincide with the x-axis then the cone's cross sections will be circular disks of diameter x ˆ x‰ x 4   4 œ # (see accompanying figure). 3) The solid and the cone have equal altitudes and identical parallel cross sections. From Cavalieri's Principle we conclude that the solid and the cone have the same volume. 13. R(x) œ y œ 1  œ 1 ˆ2 

4 2



14. R(y) œ x œ

3y #

x #

8 ‰ 12

# Ê V œ '0 1[R(x)]# dx œ 1'0 ˆ1  x# ‰ dx œ 1'0 Š1  x  2

œ

2

2

x# 4‹

dx œ 1 ’x 

x# #



21 3

‰ dy œ 1' Ê V œ '0 1[R(y)]# dy œ 1'0 ˆ 3y # 0 2

15. R(x) œ tan ˆ 14 y‰ ; u œ

1 4

y Ê du œ

2

1 4

#

2

9 4

#

y# dy œ 1  34 y$ ‘ ! œ 1 †

3 4

dy Ê 4 du œ 1 dy; y œ 0 Ê u œ 0, y œ 1 Ê u œ

# x$ 12 “ !

† 8 œ 61 1 4

;

1Î% V œ '0 1[R(y)]# dy œ 1'0 tan ˆ 14 y‰‘ dy œ 4 '0 tan# u du œ 4 '0 a1  sec# ub du œ 4[u  tan u]! 1

1

#

1Î4

1Î4

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 6.1 Volumes by Slicing and Rotation About an Axis œ 4 ˆ 14  1  0‰ œ 4  1 1 #

16. R(x) œ sin x cos x; R(x) œ 0 Ê a œ 0 and b œ œ 1'0

1Î2



1 #

(sin x cos x)# dx œ 1 '0

1Î2

Ê u œ 1‘ Ä V œ 1'0

1

" 8

(sin 2x)# 4

are the limits of integration; V œ '0

1Î2

dx; u œ 2x Ê du œ 2 dx Ê

sin# u du œ

1 8

 #u



" 4

sin

1 2u‘ !

œ

1 8

ˆ 1#

du 8

œ

dx 4

1[R(x)]# dx

; x œ 0 Ê u œ 0,

 0‰  0‘ œ

1# 16

17. R(x) œ x# Ê V œ '0 1[R(x)]# dx œ 1 '0 ax# b dx 2

2

œ 1 '0 x% dx œ 1 ’ x5 “ œ 2

#

&

#

321 5

!

18. R(x) œ x$ Ê V œ '0 1[R(x)]# dx œ 1'0 ax$ b dx 2

2

œ 1 '0 x' dx œ 1 ’ x7 “ œ 2

(

# !

#

1281 7

19. R(x) œ È9  x# Ê V œ 'c3 1[R(x)]# dx œ 1 'c3 a9  x# b dx 3

$ x$ 3 “ $

œ 1 ’9x 

3

œ 21 9(3) 

27 ‘ 3

œ 2 † 1 † 18 œ 361

20. R(x) œ x  x# Ê V œ '0 1[R(x)]# dx œ 1'0 ax  x# b dx 1

1

œ 1'0 ax#  2x$  x% b dx œ 1 ’ x3  1

œ 1 ˆ 13 

$

" #

 5" ‰ œ

1 30

(10  15  6) œ

21. R(x) œ Ècos x Ê V œ '0

1Î2

1Î#

œ 1 csin xd !

2x% 4

 1 30

#

" x& 5 “!

1[R(x)]# dx œ 1'0 cos x dx 1Î2

œ 1(1  0) œ 1

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

363

364

Chapter 6 Applications of Definite Integrals 1Î4

1Î4

22. R(x) œ sec x Ê V œ 'c1Î4 1[R(x)]# dx œ 1 '1Î4 sec# x dx 1Î%

œ 1 ctan xd 1Î% œ 1[1  (1)] œ 21

23. R(x) œ È2  sec x tan x Ê V œ œ1

'01Î4 1[R(x)]# dx

'01Î4 ŠÈ2  sec x tan x‹# dx

œ 1 '0 Š2  2È2 sec x tan x  sec# x tan# x‹ dx 1Î4

œ 1 Œ'0 2 dx  2È2 '0 sec x tan x dx  1Î4

1Î%

œ 1 Œ[2x]!

'01Î4 (tan x)# sec# x dx

1Î4

1Î%

 2È2 [sec x]!

$

 ’ tan3 x “

1Î%



!

œ 1 ’ˆ 1#  0‰  2È2 ŠÈ2  1‹  "3 a1$  0b“ œ 1 Š 1#  2È2 

11 3 ‹

24. R(x) œ 2  2 sin x œ 2(1  sin x) Ê V œ '0 1[R(x)]# dx 1Î2

œ 1 '0 4(1  sin x)# dx œ 41 '0 a1  sin# x  2 sin xb dx 1Î2

1Î2

œ 41'0 1  "# (1  cos 2x)  2 sin x‘ dx 1Î2

œ 41'0 ˆ 3#  1Î2

 2 sin x‰

cos 2x 2

1Î# œ 41  3# x  sin42x  2 cos x‘ ! œ 41 ˆ 341  0  0‰  (0  0  2)‘ œ 1(31  8)

25. R(y) œ È5 † y# Ê V œ 'c1 1[R(y)]# dy œ 1 'c1 5y% dy 1

1

"

œ 1 cy& d " œ 1[1  (1)] œ 21

26. R(y) œ y$Î# Ê V œ '0 1[R(y)]# dy œ 1'0 y$ dy 2

%

2

#

œ 1 ’ y4 “ œ 41 !

27. R(y) œ È2 sin 2y Ê V œ '0 1[R(y)]# dy 1Î2

œ 1'0 2 sin 2y dy œ 1 c cos 2yd ! 1Î2

1Î#

œ 1[1  (1)] œ 21

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 6.1 Volumes by Slicing and Rotation About an Axis 28. R(y) œ Écos

1y 4

Ê V œ 'c2 1[R(y)]# dy 0

œ 1 'c2 cos ˆ 14y ‰ dy œ 4 sin 0

29. R(y) œ

2 y1

1y ‘ ! 4 #

œ 4[0  (1)] œ 4

Ê V œ '0 1[R(y)]# dy œ 41 '0 3

3

" (y  1)#

dy

$

 " ‘ œ 41 ’ y" 1 “ œ 41  4  (1) œ 31 !

30. R(y) œ

È2y y # 1

Ê V œ '0 1[R(y)]# dy œ 1'0 2y ay#  1b 1

1

#

dy;

#

cu œ y  1 Ê du œ 2y dy; y œ 0 Ê u œ 1, y œ 1 Ê u œ 2d Ä V œ 1'1 u# du œ 1  "u ‘ " œ 1  #"  (1)‘ œ 2

#

1 #

31. For the sketch given, a œ  1# , b œ 1# ; R(x) œ 1, r(x) œ Ècos x; V œ 'a 1 a[R(x)]#  [r(x)]# b dx b

œ 'c1Î2 1(1  cos x) dx œ 21'0 (1  cos x) dx œ 21[x  sin x]! 1Î2

1Î2

1Î#

œ 21 ˆ 1#  1‰ œ 1#  21

32. For the sketch given, c œ 0, d œ 14 ; R(y) œ 1, r(y) œ tan y; V œ 'c 1 a[R(y)]#  [r(y)]# b dy d

œ 1'0 a1  tan# yb dy œ 1 '0 a2  sec# yb dy œ 1[2y  tan y]! 1Î4

1Î4

33. r(x) œ x and R(x) œ 1 Ê V œ œ '0 1 a1  x# b dx œ 1 ’x  1

1Î%

œ 1 ˆ 1#  1‰ œ

1# #

1

'01 1 a[R(x)]#  [r(x)]# b dx

" x$ 3 “!

œ 1 ˆ1  "3 ‰  0‘ œ

21 3

34. r(x) œ 2Èx and R(x) œ 2 Ê V œ '0 1 a[R(x)]#  [r(x)]# b dx 1

œ 1'0 (4  4x) dx œ 41’x  1

" x# # “!

œ 41 ˆ1  "# ‰ œ 21

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

365

366

Chapter 6 Applications of Definite Integrals

35. r(x) œ x#  1 and R(x) œ x  3

Ê V œ 'c1 1 a[R(x)]#  [r(x)]# b dx 2

œ 1'c1 ’(x  3)#  ax#  1b “ dx 2

#

œ 1 'c1 cax#  6x  9b  ax%  2x#  1bd dx 2

œ 1 'c1 ax%  x#  6x  8b dx 2

&

œ 1 ’ x5 

x$ 3

œ 1 ˆ 32 5 

8 3

#



6x# #

 8x“



24 #

 16‰  ˆ 5" 

"

" 3



6 #

‰ ˆ 5†30533 ‰ œ  8‰‘ œ 1 ˆ 33 5  3  28  3  8 œ 1

36. r(x) œ 2  x and R(x) œ 4  x#

Ê V œ 'c1 1 a[R(x)]#  [r(x)]# b dx 2

œ 1'c1 ’a4  x# b  (2  x)# “ dx 2

#

œ 1 'c1 ca16  8x#  x% b  a4  4x  x# bd dx 2

œ 1'c1 a12  4x  9x#  x% b dx 2

œ 1 ’12x  2x#  3x$  œ 1 ˆ24  8  24 

# x& 5 “ "

32 ‰ 5

 ˆ12  2  3  "5 ‰‘ œ 1 ˆ15 

33 ‰ 5

œ

1081 5

37. r(x) œ sec x and R(x) œ È2

Ê V œ 'c1Î4 1 a[R(x)]#  [r(x)]# b dx 1Î4

œ 1 'c1Î4 a2  sec# xb dx œ 1[2x  tan x]1Î% 1Î4

1Î%

œ 1 ˆ 1#  1‰  ˆ 1#  1‰‘ œ 1(1  2)

38. R(x) œ sec x and r(x) œ tan x

Ê V œ '0 1 a[R(x)]#  [r(x)]# b dx 1

œ 1 '0 asec# x  tan# xb dx œ 1 '0 1 dx œ 1[x]!" œ 1 1

1

39. r(y) œ 1 and R(y) œ 1  y

Ê V œ '0 1 a[R(y)]#  [r(y)]# b dy 1

œ 1'0 c(1  y)#  1d dy œ 1 '0 a1  2y  y#  1b dy 1

1

œ 1 '0 a2y  y# b dy œ 1 ’y#  1

" y$ 3 “!

œ 1 ˆ1  3" ‰ œ

41 3

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

1171 5

Section 6.1 Volumes by Slicing and Rotation About an Axis 40. R(y) œ 1 and r(y) œ 1  y Ê V œ '0 1 a[R(y)]#  [r(y)]# b dy 1

œ 1'0 c1  (1  y)# d dy œ 1'0 c1  a1  2y  y# bd dy 1

1

œ 1'0 a2y  y# b dy œ 1 ’y#  1

" y$ 3 “!

œ 1 ˆ1  "3 ‰ œ

21 3

41. R(y) œ 2 and r(y) œ Èy Ê V œ '0 1 a[R(y)]#  [r(y)]# b dy 4

œ 1'0 (4  y) dy œ 1 ’4y  4

% y# 2 “!

œ 1(16  8) œ 81

42. R(y) œ È3 and r(y) œ È3  y#

È3

Ê V œ '0

È3

œ 1 '0

$

œ 1 ’ y3 “

1 a[R(y)]#  [r(y)]# b dy

È3

c3  a3  y# bd dy œ 1'0 È$ !

y# dy

œ 1È3

43. R(y) œ 2 and r(y) œ 1  Èy Ê V œ '0 1 a[R(y)]#  [r(y)]# b dy 1

œ 1'0 ’4  ˆ1  Èy‰ “ dy 1

#

œ 1 '0 ˆ4  1  2Èy  y‰ dy 1

œ 1 '0 ˆ3  2Èy  y‰ dy 1

œ 1 ’3y  43 y$Î#  œ 1 ˆ3 

" y# # “!

 "# ‰ œ 1 ˆ 18683 ‰ œ

4 3

71 6

44. R(y) œ 2  y"Î$ and r(y) œ 1

Ê V œ '0 1 a[R(y)]#  [r(y)]# b dy 1

# œ 1'0 ’ˆ2  y"Î$ ‰  1“ dy 1

œ 1'0 ˆ4  4y"Î$  y#Î$  1‰ dy 1

œ 1 '0 ˆ3  4y"Î$  y#Î$ ‰ dy 1

œ 1 ’3y  3y%Î$ 

" 3y&Î$ 5 “!

œ 1 ˆ3  3  53 ‰ œ

31 5

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

367

368

Chapter 6 Applications of Definite Integrals

45. (a) r(x) œ Èx and R(x) œ 2 Ê V œ '0 1 a[R(x)]#  [r(x)]# b dx 4

œ 1'0 (4  x) dx œ 1 ’4x  4

(b) r(y) œ 0 and R(y) œ y#

% x# # “!

œ 1(16  8) œ 81

Ê V œ '0 1 a[R(y)]#  [r(y)]# b dy 2

œ 1'0 y% dy œ 1 ’ y5 “ œ 2

&

# !

321 5

# (c) r(x) œ 0 and R(x) œ 2  Èx Ê V œ '0 1 a[R(x)]#  [r(x)]# b dx œ 1'0 ˆ2  Èx‰ dx 4

œ 1'0 ˆ4  4Èx  x‰ dx œ 1 ’4x  4

4

8x$Î# 3



% x# # “!

œ 1 ˆ16 

64 3



16 ‰ #

œ

81 3

(d) r(y) œ 4  y# and R(y) œ 4 Ê V œ '0 1 a[R(y)]#  [r(y)]# b dy œ 1 '0 ’16  a4  y# b “ dy 2

2

œ 1 '0 a16  16  8y#  y% b dy œ 1 '0 a8y#  y% b dy œ 1 ’ 83 y$  2

2

46. (a) r(y) œ 0 and R(y) œ 1 

# y& 5 “!

#

œ 1 ˆ 64 3 

32 ‰ 5

œ

2241 15

y #

Ê V œ '0 1 a[R(y)]#  [r(y)]# b dy 2

# œ 1'0 ˆ1  y# ‰ dy œ 1'0 Š1  y  2

œ 1 ’y 

2

y# #



# y$ 12 “ !

œ 1 ˆ# 

(b) r(y) œ 1 and R(y) œ 2 

4 2



8 ‰ 12

y# 4‹

œ

dy

21 3

y #

# Ê V œ '0 1 a[R(y)]#  [r(y)]# b dy œ 1 '0 ’ˆ2  y# ‰  1“ dy œ 1 '0 Š4  2y  2

2

œ 1'0 Š3  2y  2

y# 4‹

dy œ 1 ’3y  y# 

# y$ 12 “ !

2

œ 1 ˆ6  4 

8 ‰ 12

œ 1 ˆ2  23 ‰ œ

y# 4

 1‹ dy

81 3

47. (a) r(x) œ 0 and R(x) œ 1  x#

Ê V œ 'c1 1 a[R(x)]#  [r(x)]# b dx 1

œ 1 'c1 a1  x# b dx œ 1 'c1 a1  2x#  x% b dx 1

œ 1 ’x 

1

#

2x$ 3



" x& 5 “ "

103 ‰ œ 21 ˆ 1515 œ

œ 21 ˆ1 

2 3

 15 ‰

161 15

(b) r(x) œ 1 and R(x) œ 2  x# Ê V œ 'c1 1 a[R(x)]#  [r(x)]# b dx œ 1 'c1 ’a2  x# b  1“ dx 1

1

œ 1 'c1 a4  4x#  x%  1b dx œ 1'c1 a3  4x#  x% b dx œ 1 ’3x  43 x$  1

œ

21 15

1

(45  20  3) œ

561 15

#

" x& 5 “ "

œ 21 ˆ3 

4 3

 15 ‰

2 3

 15 ‰

(c) r(x) œ 1  x# and R(x) œ 2 Ê V œ 'c1 1 a[R(x)]#  [r(x)]# b dx œ 1 'c1 ’4  a1  x# b “ dx 1

1

œ 1 'c1 a4  1  2x#  x% b dx œ 1'c1 a3  2x#  x% b dx œ 1 ’3x  23 x$  1

œ

21 15

1

(45  10  3) œ

641 15

#

" x& 5 “ "

œ 21 ˆ3 

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 6.1 Volumes by Slicing and Rotation About an Axis

369

48. (a) r(x) œ 0 and R(x) œ  hb x  h

Ê V œ '0 1 a[R(x)]#  [r(x)]# b dx b

# œ 1 '0 ˆ hb x  h‰ dx b

œ 1'0 Š hb# x#  b

#

$

x œ 1h# ’ 3b # 

x# b

2h# b

x  h# ‹ dx b

 x“ œ 1h# ˆ b3  b  b‰ œ !

1 h# b 3

# (b) r(y) œ 0 and R(y) œ b ˆ1  yh ‰ Ê V œ '0 1 a[R(y)]#  [r(y)]# b dy œ 1b# '0 ˆ1  yh ‰ dy h

œ 1b# '0 Š1  h

2y h



y# h# ‹

dy œ 1b# ’y 

y# h

h



h

y$ 3h# “ !

1 b# h 3

œ 1b# ˆh  h  3h ‰ œ

49. R(y) œ b  Èa#  y# and r(y) œ b  Èa#  y# Ê V œ 'ca 1 a[R(y)]#  [r(y)]# b dy a

œ 1 'ca ’ˆb  Èa#  y# ‰  ˆb  Èa#  y# ‰ “ dy #

a

#

œ 1 'ca 4bÈa#  y# dy œ 4b1'ca Èa#  y# dy a

a

1a# #

œ 4b1 † area of semicircle of radius a œ 4b1 †

œ 2a# b1#

50. (a) A cross section has radius r œ È#y and area 1r# œ #1y. The volume is '0 #1ydy œ 1 cy# d ! œ #&1. &

(b) Vahb œ ' Aahbdh, so

dV dh

œ Aahb. Therefore

For h œ %, the area is #1a%b œ )1, so

dh dt

œ

dV dt

" )1

œ

dV dh



œ Aahb †

dh dt

$

$ )1

† $ units sec œ

hca

51. (a) R(y) œ Èa#  y# Ê V œ 1'ca aa#  y# b dy œ 1 ’a# y  œ 1 ’a# h  "3 ah$  3h# a  3ha#  a$ b  dV $ dt œ 0.2 m /sec dV # dh œ 101h  1h

(b) Given Ê

and a œ 5 m, find Ê

dV dt

œ

dV dh



dh dt

a$ 3“

œ 1 Ša# h 



so

dh dt

œ

" A ah b



dV dt .

units$ sec . hca

y$ 3 “ ca

h$ 3

dh dt ,

&

œ 1 ’a# h  a$ 

 h# a  ha# ‹ œ

(h  a)$ 3

 Ša$ 

a$ 3 ‹“

1h# (3a  h) 3

#

From part (a), V(h) œ 1h (153  h) œ 51h#  13h dh ¸ 0.2 " " œ 1h(10  h) dh dt Ê dt hœ4 œ 41(10  4) œ (201)(6) œ 1#01 m/sec. dh ¸ dt hœ4 .

$

52. Suppose the solid is produced by revolving y œ 2  x about the y-axis. Cast a shadow of the solid on a plane parallel to the xy-plane. Use an approximation such as the Trapezoid Rule, to #

estimate 'a 1cRaybd# dy ¸ ! 1Œ #k  ˜y. b

n

d^

kœ"

53. The cross section of a solid right circular cylinder with a cone removed is a disk with radius R from which a disk of radius h has been removed. Thus its area is A" œ 1R#  1h# œ 1 aR#  h# b . The cross section of the hemisphere is a disk of #

radius ÈR#  h# . Therefore its area is A# œ 1 ŠÈR#  h# ‹ œ 1 aR#  h# b . We can see that A" œ A# . The altitudes of both solids are R. Applying Cavalieri's Principle we find Volume of Hemisphere œ (Volume of Cylinder)  (Volume of Cone) œ a1R# b R  "3 1 aR# b R œ

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

2 3

1 R$ .

370

Chapter 6 Applications of Definite Integrals

54. R(x) œ

rx h

Ê V œ '0 1[R(x)]# dx œ 1'0 h

h # # r x

dx œ

h#

1r# h#

h

$

#

$

’ x3 “ œ Š 1hr# ‹ Š h3 ‹ œ !

" 3

1r# h, the volume of

a cone of radius r and height h. c7

c7

55. R(y) œ È256  y# Ê V œ 'c16 1[R(y)]# dy œ 1'c16 a256  y# b dy œ 1 ’256y  œ 1 ’(256)(7)  56. R(x) œ œ

1 144

x 1#

7$ 3

 Š(256)(16) 

16$ 3 ‹“

$

È36  x# Ê V œ ' 1[R(x)]# dx œ 1' 0 0 6

' x& 5 “!

’12x$ 

œ

1 144

6

Š12 † 6$ 

6& 5‹

œ

16$ 3 ‹

œ 1 Š 73  256(16  7) 

1 †6 $ 144

x# 144

ˆ12 

a36  x# b dx œ

36 ‰ 5

1 144

( y$ 3 “ "'

œ 10531 cm$ ¸ 3308 cm$

'06 a36x#  x% b dx

1 ‰ ˆ 6036 ‰ œ ˆ 196 œ 144 5

361 5

cm$ . The plumb bob will

weigh about W œ (8.5) ˆ 3651 ‰ ¸ 192 gm, to the nearest gram. 57. (a) R(x) œ kc  sin xk , so V œ 1'0 [R(x)]# dx œ 1'0 (c  sin x)# dx œ 1'0 ac#  2c sin x  sin# xb dx 1

1

œ 1'0 ˆc#  2c sin x 

'1

1

(b)

1

1cos 2x ‰ dx œ 1 0 ˆc#  "#  2c sin x  cos#2x ‰ dx # 1 œ 1 ˆc#  "# ‰ x  2c cos x  sin42x ‘ ! œ 1 ˆc# 1  1#  2c  0‰  (0  2c  0)‘ œ 1 ˆc# 1  1#  4c‰ . Let 2 V(c) œ 1 ˆc# 1  1#  4c‰ . We find the extreme values of V(c): dV dc œ 1(2c1  4) œ 0 Ê c œ 1 is a critical # # point, and V ˆ 12 ‰ œ 1 ˆ 14  1#  18 ‰ œ 1 ˆ 1#  14 ‰ œ 1#  4; Evaluate V at the endpoints: V(0) œ 1# and # # V(1) œ 1 ˆ 3# 1  4‰ œ 1#  (4  1)1. Now we see that the function's absolute minimum value is 1#  4, taken on at the critical point c œ 12 . (See also the accompanying graph.) # From the discussion in part (a) we conclude that the function's absolute maximum value is 1# , taken on at

the endpoint c œ 0. (c) The graph of the solid's volume as a function of c for 0 Ÿ c Ÿ 1 is given at the right. As c moves away from [!ß "] the volume of the solid increases without bound. If we approximate the solid as a set of solid disks, we can see that the radius of a typical disk increases without bounds as c moves away from [0ß 1]. 58. (a) R(x) œ 1 

œ 1 'c4 Š1  4

œ 1 ’x 

x$ 24

œ 21 ˆ4 

Ê V œ 'c4 1[R(x)]# dx 4

x# 16

8 3

x# 16 ‹



#

dx œ 1'c4 Š1  4

%

x& 5†16# “ %

 45 ‰ œ

21 15

œ 21 Š4 

x# 8



x% 16# ‹

4$ 24



4& 5†16# ‹

(60  40  12) œ

641 15

dx

ft$

(b) The helicopter will be able to fly ˆ 64151 ‰ (7.481)(2) ¸ 201 additional miles. 6.2 VOLUME BY CYLINDRICAL SHELLS 1. For the sketch given, a œ 0, b œ 2;

shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x Š1  b

2

x# 4‹

dx œ 21'0 Šx 

x# 4‹

dx œ 21'0 Š2x 

2

x$ 4‹

œ 21 † 3 œ 61 2. For the sketch given, a œ 0, b œ 2;

shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x Š2  b

2

2

#

dx œ 21 ’ x# 

x$ 4‹

# x% 16 “ !

dx œ 21 ’x# 

œ 21 ˆ 4# 

# x% 16 “ !

16 ‰ 16

œ 21(4  1) œ 61

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 6.2 Volume by Cylindrical Shells 3. For the sketch given, c œ 0, d œ È2;

È2

shell ‰ shell V œ 'c 21 ˆ radius Š height ‹ dy œ '0 d

È2

21y † ay# b dy œ 21'0

%

y$ dy œ 21 ’ y4 “

4. For the sketch given, c œ 0, d œ È3;

È3

È3

shell ‰ shell V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21y † c3  a3  y# bd dy œ 21 '0 d

È# !

œ 21

%

y$ dy œ 21 ’ y4 “

È3 !

œ

5. For the sketch given, a œ 0, b œ È3;

È3

shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x † ŠÈx#  1‹ dx; b

’u œ x#  1 Ê du œ 2x dx; x œ 0 Ê u œ 1, x œ È3 Ê u œ 4“ Ä V œ 1'1 u"Î# du œ 1  23 u$Î# ‘ " œ %

4

21 3

ˆ4$Î#  1‰ œ ˆ 231 ‰ (8  1) œ

141 3

6. For the sketch given, a œ 0, b œ 3;

shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x Š Èx9x ‹ dx; $9 b

3

cu œ x$  9 Ê du œ 3x# dx Ê 3 du œ 9x# dx; x œ 0 Ê u œ 9, x œ 3 Ê u œ 36d Ä V œ 21 '9 3u"Î# du œ 61 2u"Î# ‘ * œ 121 ŠÈ36  È9‹ œ 361 $'

36

7. a œ 0, b œ 2;

shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x x  ˆ x2 ‰‘ dx b

2

œ '0 21x# † 2

3 #

dx œ 1 '0 3x# dx œ 1 cx$ d ! œ 81 2

#

8. a œ 0, b œ 1;

shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x ˆ2x  x2 ‰ dx b

1

œ 1 '0 2 Š 3x# ‹ dx œ 1 ' 3x# dx œ 1 cx$ d ! œ 1 1

1

#

"

0

9. a œ 0, b œ 1;

shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x c(2  x)  x# d dx b

1

œ 21'0 a2x  x#  x$ b dx œ 21 ’x#  1

œ 21 ˆ1 

" 3

 4" ‰ œ 21 ˆ 12 124  3 ‰ œ

x$ 3



101 12

œ

" x% 4 “!

51 6

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

91 #

371

372

Chapter 6 Applications of Definite Integrals

10. a œ 0, b œ 1;

shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x ca2  x# b  x# d dx b

1

œ 21'0 x a2  2x# b dx œ 41'0 ax  x$ b dx 1

1

" x% 4 “!

#

œ 41 ’ x# 

œ 41 ˆ "2  4" ‰ œ 1

11. a œ 0, b œ 1;

shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x Èx  (2x  1)‘ dx b

1

" œ 21'0 ˆx$Î#  2x#  x‰ dx œ 21  25 x&Î#  23 x$  "# x# ‘ ! 1

œ 21 ˆ 25 

2 3

 15 ‰  "# ‰ œ 21 ˆ 12  20 œ 30

71 15

12. a œ ", b œ 4;

shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '1 21x ˆ 32 x"Î# ‰ dx b

4

œ 31'1 x"Î# dx œ 31  23 x$Î# ‘ " œ 21 ˆ4$Î#  "‰ %

4

œ 21(8  1) œ 141

13. (a) xf(x) œ œ

xf(x) œ œ

x†

sin x, 0  x Ÿ 1 0xŸ1 Ê xf(x) œ œ ; since sin 0 œ 0 we have 0, x œ 0 x, x œ 0

sin x x ,

sin x, 0  x Ÿ 1 Ê xf(x) œ sin x, 0 Ÿ x Ÿ 1 sin x, x œ 0

shell ‰ shell (b) V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x † f(x) dx and x † f(x) œ sin x, 0 Ÿ x Ÿ 1 by part (a) 1

b

Ê V œ 21'0 sin x dx œ 21[ cos x]1! œ 21( cos 1  cos 0) œ 41 1

tan# x x ,

tan# x, 0  x Ÿ 1/4 0  x Ÿ 14 Ê xg(x) œ œ ; since tan 0 œ 0 we have 0, x œ 0 x † 0, x œ 0 tan# x, 0  x Ÿ 1/4 Ê xg(x) œ tan# x, 0 Ÿ x Ÿ 1/4 xg(x) œ œ tan# x, x œ 0

14. (a) xg(x) œ œ

x†

shell ‰ shell (b) V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x † g(x) dx and x † g(x) œ tan# x, 0 Ÿ x Ÿ 1/4 by part (a) 1Î4

b

Ê V œ 21'0 tan# x dx œ 21'0 asec# x  1b dx œ 21[tan x  x]! 1Î4

1Î4

1Î%

œ 21 ˆ1  14 ‰ œ

41  1 # #

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 6.2 Volume by Cylindrical Shells 15. c œ 0, d œ 2;

shell ‰ shell V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21y Èy  (y)‘ dy d

2

œ 21'0 ˆy$Î#  y# ‰ dy œ 21 ’ 2y5 2

&Î#

&

œ 21 ” 25 ŠÈ2‹  œ

161 15

2$ 3•



# y$ 3 “!

È

œ 21 Š 8 5 2  83 ‹ œ 161 Š

È2 5

 "3 ‹

Š3È2  5‹

16. c œ 0, d œ 2;

shell ‰ shell V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21y cy#  (y)ddy d

2

œ 21'0 ay$  y# b dy œ 21 ’ y4  2

%

œ 161 ˆ 56 ‰ œ

401 3

# y$ 3 “!

œ 161 ˆ 24  "3 ‰

17. c œ 0, d œ 2;

shell ‰ shell V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21y a2y  y# bdy d

2

œ 21'0 a2y#  y$ b dy œ 21 ’ 2y3  2

$

œ 321 ˆ "3  4" ‰ œ

321 12

œ

81 3

# y% 4 “!

œ 21 ˆ 16 3 

"6 ‰ 4

18. c œ 0, d œ 1;

shell ‰ shell V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21y a2y  y#  ybdy d

1

œ 21'0 y ay  y# b dy œ 21'0 ay#  y$ b dy 1

1

$

œ 21 ’ y3 

" y% “ 4 !

œ 21 ˆ 13  "4 ‰ œ

1 6

19. c œ 0, d œ 1;

shell ‰ shell V œ 'c 21 ˆ radius Š height ‹ dy œ 21'0 y[y  (y)]dy d

1

œ 21'0 2y# dy œ 1

41 3

"

cy$ d ! œ

41 3

20. c œ 0, d œ 2;

shell ‰ shell V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21 yˆy  y2 ‰dy d

2

œ 21 '0

2

y2 2 dy

1

œ 13 c y3 d ! œ

81 3

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

373

374

Chapter 6 Applications of Definite Integrals

21. c œ 0, d œ 2;

shell ‰ shell V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21y c(2  y)  y# d dy d

2

œ 21 '0 a2y  y#  y$ b dy œ 21 ’y#  2

œ 21 ˆ4 



8 3

16 ‰ 4

1 6

œ

y$ 3

(48  32  48) œ



# y% 4 “!

161 3

22. c œ 0, d œ 1;

shell ‰ shell V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21y c(2  y)  y# d dy d

1

œ 21'0 a2y  y#  y$ b dy œ 21 ’y#  1

œ 21 ˆ1 

 14 ‰ œ

1 3

1 6

(12  4  3) œ

y$ 3



51 6

" y% 4 “!

shell ‰ shell 23. (a) V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21y † 12 ay#  y$ b dy œ 241 '0 ay$  y% b dy œ 241 ’ y4  d

1

œ 241 ˆ 14  15 ‰ œ

241 20

œ

1

" y& 5 “!

%

61 5

shell ‰ shell (b) V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21(1  y) c12 ay#  y$ bd dy œ 241'0 (1  y) ay#  y$ b dy d

1

1

œ 241'0 ay#  2y$  y% b dy œ 241 ’ y3  1

$

y% 2



" y& 5 “!

œ 241 ˆ "3 

1 2

" ‰  51 ‰ œ 241 ˆ 30 œ

41 5

shell ‰ shell (c) V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21 ˆ 85  y‰ c12 ay#  y$ bd dy œ 241 '0 ˆ 85  y‰ ay#  y$ b dy d

1

œ 241'0 ˆ 85 y#  1

œ

241 12

13 5

1

8 $ y$  y% ‰ dy œ 241 ’ 15 y 

13 20

y% 

" y& 5 “!

8 œ 241 ˆ 15 

13 20

241 60

 15 ‰ œ

(32  39  12)

œ 21

shell ‰ shell (d) V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21 ˆy  25 ‰ c12 ay#  y$ bd dy œ 241'0 ˆy  25 ‰ ay#  y$ b dy d

1

1

2 $ œ 241'0 ˆy$  y%  25 y#  25 y$ ‰ dy œ 241'0 ˆ 25 y#  35 y$  y% ‰ dy œ 241 ’ 15 y  1

1

2 œ 241 ˆ 15 

3 20

 15 ‰ œ

241 60

(8  9  12) œ

241 12

2

%

œ 21 ’ y4 

#

y' 24 “ !

%

2' 24 ‹

œ 21 Š 24 

#

%

œ 321 ˆ 4" 

4 ‰ 24

dy œ '0 21y Šy#  2

y# # ‹“

2

œ 21 '0 Š2y#  2

y% 2

 y$ 

y& 4‹

#

$

dy œ 21 ’ 2y3 



y% 4



2

œ 21'0 Š5y#  54 y%  y$  2

y& 4‹

#

$

dy œ 21 ’ 5y3 



y% 4

# y' #4 “ !

œ 21 ˆ 16 3 

œ

2

œ 21'0 Šy$  2

y& 4

 58 y# 

5 32

#

%

y% ‹ dy œ 21 ’ y4 

%

y' #4



5y$ #4

2

y# # ‹“



16 4



64 ‰ 24

2

y' #4 “ ! y# # ‹“



32 10

dy œ '0 21(5  y) Šy#  #



shell ‰ shell (d) V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21 ˆy  58 ‰ ’ y#  Š y4  d

81 3 y% 4‹

%

5y& 20

2

dy œ '0 21(2  y) Šy# 

shell ‰ shell (c) V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21(5  y) ’ y#  Š y4  d

dy œ 21'0 Šy$ 

y# # ‹“

%

y& 10

y% 4‹

2 ‰ œ 321 ˆ 4"  6" ‰ œ 321 ˆ 24 œ

shell ‰ shell (b) V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21(2  y) ’ y#  Š y4  d

" y& 5 “!

y% 

œ 21

shell ‰ shell 24. (a) V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21y ’ y#  Š y4  d

3 20

œ 21 ˆ 40 3 

160 20



16 4



dy œ '0 21 ˆy  58 ‰ Šy# 

# 5y& 160 “ !

2

œ 21 ˆ 16 4 

64 24



40 24



Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

81 5

y% 4‹

64 ‰ 24

dy

dy

œ 81 y% 4‹

160 ‰ 160

dy

œ 41

y& 4‹

dy

Section 6.2 Volume by Cylindrical Shells

375

shell ‰ shell 25. (a) About x-axis: V œ 'c 21 ˆ radius Š height ‹dy d

œ '0 21yˆÈy  y‰dy œ 21'0 ˆy$Î#  y# ‰dy 1

1

" œ 21 #& y&Î#  "$ y$ ‘ ! œ 21ˆ #&  "$ ‰ œ

#1 "&

shell ‰ shell About y-axis: V œ 'a 21 ˆ radius Š height ‹dx b

œ '0 21xax  x# bdx œ 21'0 ax2  x3 bdx 1

1

$

œ 21’ x$ 

" x% % “!

œ 21ˆ "$  "% ‰ œ

1 '

(b) About x-axis: Raxb œ x and raxb œ x# Ê V œ 'a 1Raxb#  raxb# ‘dx œ '0 1cx#  x% ddx b

$

œ 1’ x$ 

" x& & “!

œ 1ˆ "$  "& ‰ œ

1

#1 "&

About y-axis: Rayb œ Èy and rayb œ y Ê V œ 'c 1Rayb#  rayb# ‘dy œ '0 1cy  y2 ddy d

#

œ 1’ y# 

" y$ $ “!

œ 1ˆ "#  "$ ‰ œ

1

1 '

# 26. (a) V œ 'a 1Raxb#  raxb# ‘dx œ 1'0 ’ˆ #x  #‰  x# “dx %

b

œ 1'0 ˆ $% x#  #x  %‰dx œ 1’ x%  x#  %x“ %

$

œ 1a"'  "'  "'b œ "'1

% !

shell ‰ shell (b) V œ 'a 21 ˆ radius Š height ‹dx œ '0 #1xˆ x#  #  x‰dx %

b

œ '0 #1xˆ#  x# ‰dx œ #1'0 Š#x  %

%

œ #1’x# 

% x$ ' “!

'% ‰ '

œ #1ˆ"' 

œ

x# # ‹dx $#1 $

shell ‰ shell (c) V œ 'a 21 ˆ radius Š height ‹dx œ '0 #1a%  xbˆ x#  #  x‰dx œ '0 #1a%  xbˆ#  x# ‰dx œ #1'0 Š)  %x  %

b

œ #1’)x  #x# 

% x$ “ ' !

œ #1ˆ$#  $# 

%

'% ‰ '

%

x# # ‹dx

'%1 $

œ

# (d) V œ 'a 1Raxb#  raxb# ‘dx œ 1'0 ’a)  xb#  ˆ'  #x ‰ “dx œ 1'0 ’a'%  "'x  x# b  Š$'  'x x% ‹“dx %

b

%

#

1'0 ˆ $% x#  "!x  #)‰dx œ 1’ x%  &x#  #)x“ œ 1"'  a&ba"'b  a(ba"'b‘ œ 1a$ba"'b œ %)1 %

%

$

!

shell ‰ shell 27. (a) V œ 'c 21 ˆ radius Š height ‹ dy œ '1 21y(y  1) dy d

2

œ 21'1 ay#  yb dy œ 21 ’ y3  2

$

# y# # “"

œ 21 ˆ 83  42 ‰  ˆ "3  #" ‰‘ œ 21 ˆ 73  2  "# ‰ œ 13 (14  12  3) œ

shell ‰ shell (b) V œ 'a 21 ˆ radius Š height ‹ dx

51 3

b

œ '1 21x(2  x) dx œ 21'1 a2x  x# b dx œ 21 ’x#  2

2

œ 21 ˆ 12 3 8 ‰  ˆ 3 3 " ‰‘ œ 21 ˆ 34  32 ‰ œ

41 3

# x$ 3 “"

œ 21 ˆ4  83 ‰  ˆ1  "3 ‰‘

shell ‰ shell ' ˆ 203  ‰ (c) V œ 'a 21 ˆ radius Š height ‹ dx œ '1 21 ˆ 10 3  x (2  x) dx œ 21 1 b

2

#

" $‘ 8 # ˆ 40 œ 21  20 3 x  3 x  3 x " œ 21 3 

2

32 3

 38 ‰  ˆ 20 3 

8 3

16 3

x  x# ‰ dx

 3" ‰‘ œ 21 ˆ 33 ‰ œ 21

shell ‰ shell (d) V œ 'c 21 ˆ radius Š height ‹ dy œ '1 21(y  1)(y  1) dy œ 21'1 (y  1)# œ 21 ’ (y31) “ œ d

2

2

$

# "

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

21 3

376

Chapter 6 Applications of Definite Integrals

shell ‰ shell 28. (a) V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21yay#  0b dy d

2

œ 21'0 y$ dy œ 21 ’ y4 “ œ 21 Š 24 ‹ œ 81 2

%

#

%

!

shell ‰ shell (b) V œ 'a 21 ˆ radius Š height ‹ dx b

œ '0 21x ˆ2  Èx‰ dx œ 21'0 ˆ2x  x$Î# ‰ dx 4

4

%

2 †2 & 5 ‹

œ 21 x#  25 x&Î# ‘ ! œ 21 Š16  œ 21 ˆ16 

64 ‰ 5

21 5

œ

321 5

(80  64) œ

shell ‰ shell (c) V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21(4  x) ˆ2  Èx‰ dx œ 21'0 ˆ8  4x"Î#  2x  x$Î# ‰ dx b

4

4

%

œ 21 8x  83 x$Î#  x#  25 x&Î# ‘ ! œ 21 ˆ32 

64 3

 16 

64 ‰ 5

œ

21 15

(240  320  192) œ

21 15

shell ‰ shell (d) V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21(2  y) ay# b dy œ 21 '0 a2y#  y$ b dy œ 21 ’ 23 y$  d

2

œ 21 ˆ 16 3 

16 ‰ 4

œ

321 12

2

81 3

(4  3) œ

(112) œ

2241 15

# y% 4 “!

shell ‰ shell 29. (a) V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21yay  y$ b dy d

1

œ '0 21 ay#  y% b dy œ 21 ’ y3  1

œ

$

41 15

" y& “ 5 !

œ 21 ˆ "3  "5 ‰

shell ‰ shell (b) V œ 'c 21 ˆ radius Š height ‹ dy d

œ '0 21(1  y) ay  y$ b dy 1

œ 21 '0 ay  y#  y$  y% b dy œ 21 ’ y#  1

#

y$ 3



y% 4



" y& 5 “!

œ 21 ˆ "# 

" 3



" 4

 5" ‰ œ

21 60

(30  20  15  12) œ

71 30

shell ‰ shell 30. (a) V œ 'c 21 ˆ radius Š height ‹dy d

œ '0 21y c1  ay  y$ bddy 1

œ 21 '0 ay  y#  y% b dy œ 21 ’ y#  1

#

œ 21 ˆ "#  œ

" 3

 5" ‰ œ

21 30

y$ 3



" y& 5 “!

(15  10  6)

111 15

(b) Use the washer method: V œ 'c 1 cR# (y)  r# (y)d dy œ '0 1 ’1#  ay  y$ b “ dy œ 1 '0 a1  y#  y'  2y% b dy œ 1 ’y  d

1

œ 1 ˆ1 

" 3



" 7

 25 ‰ œ

1 105

1

#

(105  35  15  42) œ

y$ 3



y( 7



971 105

" 2y& 5 “!

(c) Use the washer method: V œ 'c 1 cR# (y)  r# (y)d dy œ '0 1 ’c1  ay  y$ bd  0“ dy œ 1'0 ’1  2 ay  y$ b  ay  y$ b “ dy d

1

œ 1'0 a1  y#  y'  2y  2y$  2y% b dy œ 1 ’y  1

œ

1 210

(70  30  105  2 † 42) œ

1

#

y$ 3



y( 7

 y# 

#

y% #



1211 210

" 2y& 5 “!

œ 1 ˆ1 

" 3



" 7

1

" #

 25 ‰

shell ‰ shell (d) V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21(1  y) c1  ay  y$ bd dy œ 21 '0 (1  y) a1  y  y$ b dy d

1

1

œ 21'0 a1  y  y$  y  y#  y% b dy œ 21'0 a1  2y  y#  y$  y% b dy œ 21 ’y  y#  1

œ 21 ˆ1  1 

1

" 3



" 4

 5" ‰ œ

21 60

(20  15  12) œ

231 30

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

y$ 3



y% 4



" y& 5 “!

Section 6.2 Volume by Cylindrical Shells shell ‰ shell 31. (a) V œ 'c 21 ˆ radius Š height ‹dy œ '0 21y ˆÈ8y  y# ‰ dy d

2

œ 21'0 Š2È2 y$Î#  y$ ‹ dy œ 21 ’ 4 5 2 y&Î#  È

2

# y% 4 “!

&

œ 21 

4È2†ŠÈ2‹

2% 4



5

œ 21 † 4 ˆ 85  1‰ œ

81 5

$

œ 21 Š 4†52 

(8  5) œ

4 †4 4 ‹

241 5

shell ‰ shell (b) V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x ŠÈx  b

4

&

œ 21 Š 2†52 

4% 3# ‹

'

œ 21 Š 25 

2) 32 ‹

œ

1†2( 160

x# 8‹

dx œ 21'0 Šx$Î# 

(32  20) œ

4

1†2* †3 160

œ

1†2% †3 5

œ

x$ 8‹

dx œ 21 ’ 25 x&Î# 

481 5

shell ‰ shell 32. (a) V œ 'a 21 ˆ radius Š height ‹ dx b

œ '0 21x ca2x  x# b  xd dx 1

œ 21 '0 x ax  x# b dx œ 21'0 ax#  x$ b dx 1

$

1

œ 21 ’ x3 

" x% 4 “!

œ 21 ˆ "3  4" ‰ œ

1 6

shell ‰ shell (b) V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21(1  x) ca2x  x# b  xd dx œ 21'0 (1  x) ax  x# b dx b

1

1

œ 21 '0 ax  2x#  x$ b dx œ 21 ’ x2  23 x$  1

" x% 4 “!

#

œ 21 ˆ 12 

2 3

 "4 ‰ œ

21 1#

(6  8  3) œ

1 6

33. (a) V œ 'a 1 cR# (x)  r# (x)d dx œ 1 '1Î16 ˆx"Î#  1‰ dx b

1

"

œ 1 2x"Î#  x‘"Î"' œ 1 (2  1)  ˆ2 † œ 1 ˆ1 

7 ‰ 16

œ

" 4



" ‰‘ 16

91 16

shell ‰ shell (b) V œ 'a 21 ˆ radius Š height ‹ dy œ '1 21y Š y"%  b

2

œ 21'1 ˆy$  2

y ‰ 16

dy œ 21 ’ 12 y# 

œ 21 ˆ "8  8" ‰  ˆ #"  œ

21 32

(8  1) œ

91 16

" ‰‘ 3#

d

2

œ 1  "3 y$  œ

1 48

y ‘# 16 "

y# 32 “ "

" ‰ 32

" 16 ‹

dy

" œ 1 ˆ 24  8" ‰  ˆ 3" 

(2  6  16  3) œ

dy

#

œ 21 ˆ 4" 

34. (a) V œ 'c 1 cR# (y)  r# (y)d dy œ '1 1 Š y"% 

" 16 ‹

" ‰‘ 16

111 48

shell ‰ shell (b) V œ 'a 21 ˆ radius Š height ‹ dx œ '1Î4 21x Š È"x  "‹ dx b

1

œ 21 '1Î4 ˆx"Î#  x‰ dx œ 21 ’ 23 x$Î#  1

œ 21 ˆ 23  "# ‰  ˆ 23 †

" 8



" ‰‘ 3#

" x# 2 “ "Î%

œ 1 ˆ 43  1 

" 6



" ‰ 16

œ

1 48

(4 † 16  48  8  3) œ

111 48

35. (a) H3=k: V œ V"  V#

V" œ 'a 1[R" (x)]# dx and V# œ 'a 1[R# (x)]# with R" (x) œ É x 3 2 and R# (x) œ Èx, b"

b#

"

#

a" œ 2, b" œ 1; a# œ 0, b# œ 1 Ê two integrals are required (b) [ +=2/ sqrt(1-x^2);a := -1; b := 1; N := [2, 4, 8 ]; for n in N do xx := [seq( a+i*(b-a)/n, i=0..n )]; pts := [seq([x,f(x)],x=xx)]; L := simplify(add( distance(pts[i+1],pts[i]), i=1..n )); T := sprintf("#31(a) (Section 6.3)\nn=%3d L=%8.5f\n", n, L ); P[n] := plot( [f(x),pts], x=a..b, title=T ): end do: display( [seq(P[n],n=N)], insequence=true, scaling=constrained ); L := ArcLength( f(x), x=a..b, output=integral ): L = evalf( L );

# (b) # (a)

# (c)

37-40. Example CAS commands: Maple: with( plots ); with( student ); x := t -> t^3/3; y := t -> t^2/2; a := 0; b := 1; N := [2, 4, 8 ]; for n in N do tt := [seq( a+i*(b-a)/n, i=0..n )]; pts := [seq([x(t),y(t)],t=tt)]; Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

383

384

Chapter 6 Applications of Definite Integrals L := simplify(add( student[distance](pts[i+1],pts[i]), i=1..n )); T := sprintf("#37(a) (Section 6.3)\nn=%3d L=%8.5f\n", n, L ); P[n] := plot( [[x(t),y(t),t=a..b],pts], title=T ): end do: display( [seq(P[n],n=N)], insequence=true ); ds := t ->sqrt( simplify(D(x)(t)^2 + D(y)(t)^2) ): L := Int( ds(t), t=a..b ): L = evalf(L);

# (b) # (a)

# (c)

31-40. Example CAS commands: Mathematica: (assigned function and values for a, b, and n may vary) Clear[x, f] {a, b} = {1, 1}; f[x_] = Sqrt[1  x2 ] p1 = Plot[f[x], {x, a, b}] n = 8; pts = Table[{xn, f[xn]}, {xn, a, b, (b  a)/n}]/ / N Show[{p1,Graphics[{Line[pts]}]}] Sum[ Sqrt[ (pts[[i  1, 1]]  pts[[i, 1]])2  (pts[[i  1, 2]]  pts[[i, 2]])2 ], {i, 1, n}] NIntegrate[ Sqrt[ 1  f'[x]2 ],{x, a, b}] 6.4 MOMENTS AND CENTERS OF MASS 1. Because the children are balanced, the moment of the system about the origin must be equal to zero: 5 † 80 œ x † 100 Ê x œ 4 ft, the distance of the 100-lb child from the fulcrum. 2. Suppose the log has length 2a. Align the log along the x-axis so the 100-lb end is placed at x œ a and the 200-lb end at x œ a. Then the center of mass x satisfies x œ at a distance a  or

2 3

a 3

œ

2a 3

œ

" 3

(2a) which is

" 3

100(a)  200(a) 300

Ê x œ 3a . That is, x is located

of the length of the log from the 200-lb (heavier) end (see figure)

of the way from the lighter end toward the heavier end. " 3

(2a)

èëëéëëê 100 lbs.  ñïïïïïïïïïïïïïïñïïïïñïïïïïïñ a 200 lbs a x œ a/3 ! 3. The center of mass of each rod is in its center (see Example 1). The rod system is equivalent to two point m masses located at the centers of the rods at coordinates ˆ L# ß !‰ and ˆ0ß L# ‰. Therefore x œ y m

œ

x" m" x# m# m" m#

œ

L # †m0

mm

œ

L 4

and y œ

mx m

œ

y" m# y# m# m" m#

œ

0 L2 †m mm

œ

L 4

Ê

ˆ L4 ß L4 ‰

is the center of

mass location. 4. Let the rods have lengths x œ L and y œ 2L. The center of mass of each rod is in its center (see Example 1). The rod system is equivalent to two point masses located at the centers of the rods at coordinates ˆ L# ß !‰ and (!ß L). Therefore x œ

L # †m0†2m

m2m

œ

5. M! œ '0 x † 4 dx œ ’4 x# “ œ 4 † 2

#

# !

6. M! œ '1 x † 4 dx œ ’4 x# “ œ 3

#

$ "

4 #

!†mL†2m m2m

L 6

and y œ

œ

4 #

œ 8; M œ '0 4 dx œ [4x]#! œ 4 † 2 œ 8 Ê x œ 2

2L 3

‰ Ê ˆ L6 ß 2L 3 is the center of mass location. M! M

œ1

(9  1) œ 16; M œ '1 4 dx œ [4x]$" œ 12  4 œ 8 Ê x œ 3

M! M

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

œ

16 8

œ2

Section 6.4 Moments and Centers of Mass 7. M! œ '0 x ˆ1  x3 ‰ dx œ '0 Šx  3

œ3

3

œ

9 6

9 #

Ê xœ

ˆ 15 ‰ 2 ˆ 92 ‰

œ

M! M

x# 3‹

œ

8. M! œ '0 x ˆ2  x4 ‰ dx œ '0 Š2x  4

4

M œ '0 ˆ2  x4 ‰ dx œ ’2x  4

9. M! œ '1 x Š1  4

" Èx ‹

% x# 8 “!

15 9

$ x$ 9 “!

#

dx œ ’ x#  œ

x# 4‹

œ

27 ‰ 9

M œ '0 ˆ1  3x ‰ dx œ ’x  3

15 # ;

16 8

% x$ 12 “ !

œ ˆ16 

64 ‰ 12

œ

œ

œ6 Ê xœ

dx œ '1 ˆx  x"Î# ‰ dx œ ’ x#  4

#

M! M

% 2x$Î# 3 “"

32 3 †6

œ ˆ8 

œ 16 

16 ‰ 3

M! M

10. M! œ '1Î4 x † 3 ˆx$Î#  x&Î# ‰ dx œ 3'1Î4 ˆx"Î#  x$Î# ‰ dx œ 3 2x"Î#  1

1

œ 6  14 œ 20 Ê x œ

M! M

œ

2 ‘" 3x$Î# "Î%

œ

9 3

1

2

œ 3; M œ '0 (2  x) dx  '1 x dx œ ’2x  1

2

" x# # “!



#

# # ’ x# “ "

œ ˆ2 

12. M! œ '0 x(x  1) dx  '1 2x dx œ '0 ax#  xb dx  '1 2x dx œ ’ x3  œ3

œ

32 3 ;

ˆ 73 ‰ 6 5

œ

2 ‘" x"Î# "Î%

œ

15 #



14 3

2

1

1

2

2

œ

23 6 ;

Ê xœ

M! M

‰ ˆ 72 ‰ œ œ ˆ 23 6

œ

73 6

;

73 30

œ 3 ’(2  2)  Š2 † 16 ‰‘ 3

$

"‰ #

" x$ 3 “!

" #



2 ˆ "# ‰ ‹“

œ 3 ˆ2 

14 ‰ 3



" x# 2 “!

ˆ 4#

#

$

 ’ x3 “ œ ˆ1  "3 ‰  ˆ 83  "3 ‰ "



"‰ #

œ3 Ê xœ

#

"

M! M

œ1

#  cx# d " œ ˆ "3  2" ‰  (4  1)

M œ '0 (x  1) dx  '1 2 dx œ ’ x#  x“  c2xd #" œ ˆ "#  1‰  (4  #) œ 2 

5 6

4528 6

œ

9 20

2

1

2 3

œ 3 ˆ2  32 ‰  ˆ4 

11. M! œ '0 x(2  x) dx  '1 x † x dx œ '0 a2x  x# b dx  '1 x# dx œ ’ 2x#  1

œ 16 †

 ˆ "#  32 ‰ œ

4

œ 3(4  1) œ 9; M œ 3'1Î4 ˆx$Î#  x&Î# ‰ dx œ 3  x"Î#2 

16 3

16 9

% M œ '1 ˆ1  x"Î# ‰ dx œ x  2x"Î# ‘ " œ (4  4)  (1  2) œ 5 Ê x œ 1

$ x# 6 “!

5 3

dx œ ’x# 

œ8

œ ˆ 92 

385

!

3 #

œ

7 #

23 21

13. Since the plate is symmetric about the y-axis and its density is constant, the distribution of mass is symmetric about the y-axis and the center of mass lies on the y-axis. This means that x œ 0. It remains to find y œ MMx . We model the distribution of mass with @/3-+6 strips. The typical strip has center of mass: # (µ x ßµ y ) œ Šxß x  4 ‹ , length: 4  x# , width: dx, area: #

#

dA œ a4  x b dx, mass: dm œ $ dA œ $ a4  x# b dx. The moment of the strip about the x-axis is # µ C dm œ Š x #4 ‹ $ a4  x# b dx œ #$ a16  x% b dx. The moment of the plate about the x-axis is Mx œ ' µ C dm œ 'c2 #$ a16  x% b dx œ 2

$ #

’16x 

# x& 5 “ #

plate is M œ ' $ a4  x# b dx œ $ ’4x 

œ

$ #

’Š16 † 2 

# x$ 3 “ #

2& 5‹

œ 2$ ˆ8  83 ‰ œ

32$ 3 .

2& 5 ‹“

œ

$ †2 #

ˆ32 

Therefore y œ

Mx M

œ

 Š16 † 2 

32 ‰ 5

$ Š 128 5 ‹

Š 323$ ‹

‰ mass is the point (xß y) œ ˆ!ß 12 5 .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

œ

œ

128$ 5 .

12 5 .

The mass of the

The plate's center of

386

Chapter 6 Applications of Definite Integrals

14. Applying the symmetry argument analogous to the one in Exercise 13, we find x œ 0. To find y œ MMx , we use the @/3-+6 strips technique. The typical strip has center of # mass: (µ x ßµ y ) œ Šxß 25  x ‹ , length: 25  x# , width: dx, #

#

area: dA œ a25  x bdx, mass: dm œ $ dA œ $ a25  x# b dx. The moment of the strip about the x-axis is # µ y dm œ Š 25 # x ‹ $ a25  x# b dx œ

œ 'c5 #$ a25  x# b dx œ 5

#

œ $ † 625 ˆ5  œ 2$ Š5$ 

10 3

5$ 3‹

$ #

'c55

a25  x# b dx. The moment of the plate about the x-axis is Mx œ ' µ y dm #

$ #

$ #

a625  50x#  x% b dx œ

’625x 

50 3

x$ 

& x& 5 “ &

œ 2 † #$ Š625 † 5 

50 3

† 5$ 

 1‰ œ $ † 625 † ˆ 38 ‰ . The mass of the plate is M œ ' dm œ 'c5 $ a25  x# b dx œ $ ’25x  5

œ

$ † 5$ . Therefore y œ

4 3

Mx M

œ

$ †5% † ˆ 83 ‰ $ †5$ †ˆ 43 ‰

5& 5‹ & x$ 3 “ &

œ 10. The plate's center of mass is the point (xß y) œ (!ß 10).

15. Intersection points: x  x# œ x Ê 2x  x# œ 0 Ê x(2  x) œ 0 Ê x œ 0 or x œ 2. The typical @/3-+6 # strip has center of mass: (µ x ßµ y ) œ Šxß ax  x b  (x) ‹ #

œ Šxß 

x# # ‹,

#

length: ax  x b  (x) œ 2x  x# , width: dx,

area: dA œ a2x  x# b dx, mass: dm œ $ dA œ $ a2x  x# b dx. The moment of the strip about the x-axis is # µ y dm œ Š x# ‹ $ a2x  x# b dx; about the y-axis it is µ x dm œ x † $ a2x  x# b dx. Thus, Mx œ ' µ y dm œ  '0 ˆ #$ x# ‰ a2x  x# b dx œ  #$ '0 a2x$  x% b dx œ  #$ ’ x#  2

2

%

# x& 5 “!

œ  #$ Š2$ 

œ  45$ ; My œ ' µ x dm œ '0 x † $ a2x  x# b dx œ $ '0 a2x#  x$ b œ $ ’ 23 x$  2

2

M œ ' dm œ '0 $ a2x  x# b dx œ $ '0 a2x  x# b dx œ $ ’x#  2

2

œ ˆ 43$ ‰ ˆ 43$ ‰ œ 1 and y œ

Mx M

# x$ 3 “!

# x% 4 “!

2& 5‹

œ  #$ † 2$ ˆ1  45 ‰

œ $ Š2 †

œ $ ˆ4  83 ‰ œ

4$ 3

2$ 3



2% 4‹

œ

. Therefore, x œ

$ †2% 1#

œ

My M

œ ˆ 45$ ‰ ˆ 43$ ‰ œ  35 Ê (xß y) œ ˆ1ß  35 ‰ is the center of mass.

16. Intersection points: x#  3 œ 2x# Ê 3x#  3 œ 0 Ê 3(x  1)(x  1) œ 0 Ê x œ 1 or x œ 1. Applying the symmetry argument analogous to the one in Exercise 13, we find x œ 0. The typical @/3-+6 strip has center of mass: # # # (µ x ßµ y ) œ Šxß 2x  ax  3b ‹ œ Šxß x  3 ‹ , #

#

#

#

#

length: 2x  ax  3b œ 3 a1  x b, width: dx, area: dA œ 3 a1  x# b dx, mass: dm œ $ dA œ 3$ a1  x# b dx. The moment of the strip about the x-axis is µ y dm œ 3 $ ax#  3b a1  x# b dx œ 3 $ ax%  3x#  x#  3b dx œ #

œ

3 #

$ 'c1 ax%  2x#  3b dx œ 1

#

3 #

&

$ ’ x5 

2x$ 3

M œ ' dm œ 3$ 'c1 a1  x# b dx œ 3$ ’x  1

 3x“ " x$ 3 “ "

" "

œ

3 #

3 #

$ ax%  2x#  3b dx; Mx œ ' µ y dm

† $ † 2 ˆ 5" 

2 3

45 ‰  3‰ œ 3$ ˆ 310 œ  325$ ; 15

œ 3$ † 2 ˆ1  3" ‰ œ 4$ . Therefore, y œ

Mx M

œ  5$††$32†4 œ  58

Ê (xß y) œ ˆ0ß  85 ‰ is the center of mass.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

4$ 3

;

Section 6.4 Moments and Centers of Mass

387

17. The typical 29+6 strip has center of mass: $ (µ x ßµ y ) œ Š y  y ß y‹ , length: y  y$ , width: dy, #

area: dA œ ay  y$ b dy, mass: dm œ $ dA œ $ ay  y$ b dy. The moment of the strip about the y-axis is $ # µ x dm œ $ Š y  y ‹ ay  y$ b dy œ $ ay  y$ b dy #

œ

$ #

#

#

%

'

ay  2y  y b dy; the moment about the x-axis is

1 $ µ y dm œ $ y ay  y$ b dy œ $ ay#  y% b dy. Thus, Mx œ ' µ y dm œ $ '0 ay#  y% b dy œ $ ’ y3 

My œ ' µ x dm œ

$ #

'01 ay#  2y%  y' b dy œ #$ ’ y3

$

œ $ '0 ay  y$ b dy œ $ ’ y#  1

œ

#

" y% 4 “!

2y& 5



œ $ ˆ "#  4" ‰ œ

$ 4



" y( 7 “!

œ

$ #

ˆ "3 

. Therefore, x œ

2 5

 7" ‰ œ

$ #

œ $ ˆ "3  "5 ‰ œ

 15 ‰ ˆ 35 3†42 œ 5†7

4$ ‰ ˆ 4 ‰ œ ˆ 105 $ œ

My M

" y& 5 “!

16 105

2$ 15

;

4$ 105

; M œ ' dm

Mx M

2$ ‰ ˆ 4 ‰ œ ˆ 15 $

and y œ

16 8 ‰ Ê (xß y) œ ˆ 105 ß 15 is the center of mass.

8 15

18. Intersection points: y œ y#  y Ê y#  2y œ 0 Ê y(y  2) œ 0 Ê y œ 0 or y œ 2. The typical 29+6 strip has center of mass: # # (µ x ßµ y ) œ Š ay yby ß y‹ œ Š y ß y‹ , #

2

#

length: y  ay  yb œ 2y  y# , width: dy, area: dA œ a2y  y# b dy, mass: dm œ $ dA œ $ a2y  y# b dy. The moment about the y-axis is µ x dm œ #$ † y# a2y  y# b dy œ #$ a2y$  y% b dy; the moment about the x-axis is µ y dm œ $ y a2y  y# b dy œ $ a2y#  y$ b dy. Thus, Mx œ ' µ y dm œ '0 $ a2y#  y$ b dy œ $ ’ 2y3  2

œ '0

2

$ #

$

a2y$  y% b dy œ

œ $ ’y# 

# y$ 3 “!

$ #

%

’ y2 

œ $ ˆ4  83 ‰ œ

# y& 5 “!

4$ 3

œ

$ #

ˆ8 

# y% 4 “!

16$ 1#

ˆ 405 32 ‰ œ

4$ 5

; M œ ' dm œ '0 $ a2y  y# b dy

œ

$ #

My M

œ ˆ 45$ ‰ ˆ 43$ ‰ œ

32 ‰ 5

. Therefore, x œ

œ

(4  3) œ

4$ 3

; My œ ' µ x dm

16 ‰ 4

œ $ ˆ 16 3 

2

3 5

and y œ

Mx M

œ ˆ 43$ ‰ ˆ 43$ ‰ œ 1

Ê (xß y) œ ˆ 35 ß "‰ is the center of mass. 19. Applying the symmetry argument analogous to the one used in Exercise 13, we find x œ 0. The typical @/3-+6 strip has center of mass: (µ x ßµ y ) œ ˆxß cos# x ‰ , length: cos x, width: dx,

area: dA œ cos x dx, mass: dm œ $ dA œ $ cos x dx. The moment of the strip about the x-axis is µ y dm œ $ † cos# x † cos x dx 2x ‰ œ #$ cos# x dx œ #$ ˆ 1  cos dx œ 4$ (1  cos 2x) dx; thus, # 1Î2

Mx œ ' µ y dm œ 'c1Î2 4$ (1  cos 2x) dx œ 1Î#

œ $ [sin x]1Î# œ 2$ . Therefore, y œ

Mx M

œ

$ 4

x  $1 4 †# $

œ

sin 2x ‘ 1Î# # 1Î# 1 8

œ

$ 4

ˆ 1#  0‰  ˆ 1# ‰‘ œ

$1 4

Ê (xß y) œ ˆ!ß 18 ‰ is the center of mass.

20. Applying the symmetry argument analogous to the one used in Exercise 13, we find x œ 0. The typical vertical strip has # center of mass: (µ x ßµ y ) œ Šxß sec# x ‹ , length: sec# x, width: dx, area: dA œ sec# x dx, mass: dm œ $ dA œ $ sec# x dx. The # moment about the x-axis is µ y dm œ Š sec x ‹ a$ sec# xb dx œ

$ #

1Î4

sec% x dx. Mx œ 'c1Î4 µ y dm œ

#

$ #

1Î2

; M œ ' dm œ $ '1Î2 cos x dx

'11ÎÎ44 sec% x dx

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

388

Chapter 6 Applications of Definite Integrals œ

$ #

'c11ÎÎ44 atan# x  1b asec# xb dx œ #$ '11ÎÎ44 (tan x)# asec# xb dx  #$ '11ÎÎ44 sec# x dx œ 2$ ’ (tan3x) “ 1Î4

œ

$ 2

 3"  ˆ 3" ‰‘  #$ [1  (1)] œ

$

1Î%

1 Î4

Therefore, y œ

Mx M

œ ˆ 43$ ‰ ˆ 2"$ ‰ œ

2 3

$ 3

$ œ

4$ 3

 #$ [tan x]1Î%

; M œ ' dm œ $ 'c1Î4 sec# x dx œ $ [tan x]1Î4 œ $ [1  (1)] œ 2$ . 1Î4

1Î4

Ê (xß y) œ ˆ!ß 32 ‰ is the center of mass.

21. Since the plate is symmetric about the line x œ 1 and its density is constant, the distribution of mass is symmetric about this line and the center of mass lies on it. This means that x œ 1. The typical @/3-+6 strip has center of mass: # # # (µ x ßµ y ) œ Šxß a2x  x ba2x  4xb ‹ œ Šxß x  2x ‹ , #

#

#

#

#

length: a2x  x b  a2x  4xb œ 3x  6x œ 3 a2x  x# b , width: dx, area: dA œ 3 a2x  x# b dx, mass: dm œ $ dA œ 3$ a2x  x# b dx. The moment about the x-axis is # µ y dm œ 3 $ ax#  2xb a2x  x# b dx œ  3 $ ax#  2xb dx #

#

œ  3# $ ax%  4x$  4x# b dx. Thus, Mx œ ' µ y dm œ '0

2

œ $ 3 2

& Š 25

%

2 

4 3

$

%

†2 ‹œ $†2 3 #

œ '0 3$ a2x  x# b dx œ 3$ ’x#  2

# x$ 3 “!

ˆ 25

1

2‰ 3

3 2

&

$ ax%  4x$  4x# b dx œ  32 $ ’ x5  x%  34 x$ “ %

œ $ †2 3 #

 10 ‰ ˆ 6  15 15

œ 3$ ˆ4  83 ‰ œ 4$ . Therefore, y œ

Mx M

œ

8$ 5

; M œ ' dm

# !

œ ˆ 85$ ‰ ˆ 4"$ ‰ œ  25

Ê (xß y) œ ˆ1ß  25 ‰ is the center of mass. 22. (a) Since the plate is symmetric about the line x œ y and its density is constant, the distribution of mass is symmetric about this line. This means that x œ y. The typical @/3-+6 strip has center of mass: È # (µ x ßµ y ) œ Šxß 9  x ‹ , length: È9  x# , width: dx, #

area: dA œ È9  x# dx, mass: dm œ $ dA œ $ È9  x# dx. The moment about the x-axis is È # µ y dm œ $ Š 9# x ‹ È9  x# dx œ

$ #

a9  x# b dx. Thus, Mx œ ' µ y dm œ '0

3

$ #

a9  x# b dx œ

$ #

’9x 

$ x$ 3 “!

(27  9) œ 9$ ; M œ ' dm œ ' $ dA œ $ ' dA œ $ (Area of a quarter of a circle of radius 3) œ $ ˆ 941 ‰ œ 4 ‰ Therefore, y œ MMx œ (9$ ) ˆ 91$ œ 14 Ê (xß y) œ ˆ 14 ß 14 ‰ is the center of mass. œ

$ #

(b) Applying the symmetry argument analogous to the one used in Exercise 13, we find that x œ 0. The typical vertical strip has the same parameters as in part (a). 3 Thus, M œ ' µ y dm œ ' $ a9  x# b dx x

œ #'0

3

$ #

c3 #

a9  x# b dx œ 2(9$ ) œ 18$ ;

M œ ' dm œ ' $ dA œ $ ' dA œ $ (Area of a semi-circle of radius 3) œ $ ˆ 921 ‰ œ 91$ 2 . Therefore, y œ 4 as in part (a) Ê (xß y) œ ˆ0ß 1 ‰ is the center of mass.

Mx M

2 ‰ œ (18$ ) ˆ 91$ œ

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

4 1

, the same y

91$ 4

.

Section 6.4 Moments and Centers of Mass

389

23. Since the plate is symmetric about the line x œ y and its density is constant, the distribution of mass is symmetric about this line. This means that x œ y. The typical @/3-+6 strip has È # center of mass: (µ x ßµ y ) œ Šxß 3  9  x ‹ , #

length: 3  È9  x# , width: dx, area: dA œ Š3  È9  x# ‹ dx, mass: dm œ $ dA œ $ Š3  È9  x# ‹ dx. The moment about the x-axis is µ y dm œ $

Š3  È9  x# ‹ Š3  È9  x# ‹ #

dx œ

$ #

c9  a9  x# bd dx œ

$ x# #

dx. Thus, Mx œ '0

3

$ x# #

dx œ

$ 6

$

cx$ d ! œ #

9$ #

equals the area of a square with side length 3 minus one quarter the area of a disk with radius 3 Ê A œ 3  œ

9 4

9$ 4

(4  1) Ê M œ $ A œ

(4  1). Therefore, y œ

Mx M

œ ˆ 9#$ ‰ ’ 9$(44 1) “ œ

2 41

. The area 19 4

Ê (xß y) œ ˆ 4 2 1 ß 4 2 1 ‰ is the

center of mass. 24. Applying the symmetry argument analogous to the one used in Exercise 13, we find that y œ 0. The typical @/3-+6 strip has center of mass: (µ x ßµ y ) œ Œxß " x$

length:

 ˆ x"$ ‰ œ

2 x$

" x$

 x"$ #

 œ (xß 0),

, width: dx, area: dA œ

2 x$

dx,

2$ x$

mass: dm œ $ dA œ dx. The moment about the y-axis is a µ x dm œ x † 2x$$ dx œ 2x$# dx. Thus, My œ ' µ x dm œ '1 2x$# dx œ 2$  x" ‘ " œ 2$ ˆ "a  1‰ œ a



My M

œ

’ 2$(aa 1) “

25. Mx œ ' µ y dm œ '1

2

# ’ $ aa#a  1b “

Š x2# ‹ #

2$ (a1) a

œ

2a a1

; M œ ' dm œ '1

a

Ê (xß y) œ

2$ x$

ˆ a 2a ‰ 1ß 0 .

dx œ $  x"# ‘ " œ $ ˆ a"#  1‰ œ a

$ aa#  1b a#

. Therefore,

Also, a lim x œ 2. Ä_

† $ † ˆ x2# ‰ dx

œ '1 ˆ x"# ‰ ax# b ˆ x2# ‰ dx œ '1 2

2

2 x#

dx œ 2'1 x# dx 2

#

œ 2 cx" d " œ 2 ˆ "# ‰  (1)‘ œ 2 ˆ "# ‰ œ 1;

My œ ' µ x dm œ '1 x † $ † ˆ x2# ‰ dx 2

œ '1 x ax# b ˆ x2# ‰ dx œ 2'1 x dx œ 2 ’ x# “ 2

2

#

# "

œ 2 ˆ2  "# ‰ œ 4  1 œ 3; M œ ' dm œ '1 $ ˆ x2# ‰ dx œ '1 x# ˆ x2# ‰ dx œ 2'1 dx œ 2[x]"# œ 2(2  1) œ 2. So xœ

My M

œ

3 #

and y œ

Mx M

œ

" #

2

2

2

Ê (xß y) œ ˆ 3# ß "# ‰ is the center of mass.

26. We use the @/3-+6 strip approach: 1 # M œ'µ y dm œ ' ax  x b ax  x# b † $ dx x

œ

0

" #

#

'0 ax#  x% b † 12x dx 1

œ 6'0 ax$  x& b dx œ 6 ’ x4  1

œ 6 ˆ "4  6" ‰ œ

%

6 4

1œ

" #

" x' 6 “!

;

My œ ' µ x dm œ '0 x ax  x# b † $ dx œ '0 ax#  x$ b † 12x dx œ 12'0 ax$  x% b dx œ 12 ’ x4  1

1

1

%

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

" x& 5 “!

œ 12 ˆ "4  5" ‰

390

Chapter 6 Applications of Definite Integrals œ

12 #0



œ

; M œ ' dm œ ' ax  x# b † $ dx œ 12'0 ax#  x$ b dx œ 12 ’ x3  1

3 5

1

$

0

My M

œ

3 5

and y œ

Mx M

œ

" #

" x% 4 “!

œ 12 ˆ "3  4" ‰ œ

12 12

œ 1. So

Ê ˆ 35 ß "# ‰ is the center of mass.

shell ‰ shell 27. (a) We use the shell method: V œ 'a 21 ˆ radius Š height ‹ dx œ '1 21x ’ È4x  Š È4x ‹“ dx b

œ 161'1

4

x Èx

4

% dx œ 161'1 x"Î# dx œ 161  32 x$Î# ‘ " œ 161 ˆ 32 † 8  32 ‰ œ 4

(b) Since the plate is symmetric about the x-axis and its density $ (x) œ

" x

321 3

(8  1) œ

2241 3

is a function of x alone, the

distribution of its mass is symmetric about the x-axis. This means that y œ 0. We use the vertical strip 4 4 4 approach to find x: My œ ' µ x dm œ '1 x † ’ È4x  Š È4x ‹“ † $ dx œ '1 x † È8x † x" dx œ 8'1 x"Î# dx 4 œ 8 2x"Î# ‘ " œ 8(2 † 2  2) œ 16; M œ ' dm œ '1 ’ È4x  Š È ‹“ † $ dx œ 8'1 Š È"x ‹ ˆ "x ‰ dx œ 8'1 x$Î# dx x %

4

%

œ 8 2x"Î# ‘ " œ 8[1  (2)] œ 8. So x œ

My M

4

œ

4

œ 2 Ê (xß y) œ (2ß 0) is the center of mass.

16 8

(c)

28. (a) We use the disk method: V œ 'a 1R# (x) dx œ '1 1 ˆ x4# ‰ dx œ 41'1 x# dx œ 41  x" ‘ " b

4

4

%

‘ œ 41  " 4  (1) œ 1[1  4] œ 31

(b) We model the distribution of mass with vertical strips: Mx œ ' µ y dm œ '1

4

2 œ 2'1 x$Î# dx œ 2 ’ È x dm œ '1 x † “ œ 2[1  (2)] œ 2; My œ ' µ x %

4

$Î#

4

"

%

2‘ œ 2 ’ 2x3 “ œ 2  16 3  3 œ "

œ 2(4  2) œ 4. So x œ

My M

28 3

œ

; M œ ' dm œ '1

4

ˆ 28 ‰ 3 4

œ

7 3

and y œ

2 x

Mx M

† $ dx œ 2'1

4

œ

2 4

œ

" #

Èx x

2 x

ˆ 2x ‰ 2

† ˆ 2x ‰ † $ dx œ '1

4

2 x#

† Èx dx

† $ dx œ 2'1 x"Î# dx 4

dx œ 2'1 x"Î# dx œ 2 2x"Î# ‘ " %

4

Ê (xß y) œ ˆ 73 ß "# ‰ is the center of mass.

(c)

29. The mass of a horizontal strip is dm œ $ dA œ $ L dy, where L is the width of the triangle at a distance of y above its base on the x-axis as shown in the figure in the text. Also, by similar triangles we have Ê Lœ

b h

(h  y). Thus, Mx œ ' µ y dm œ '0 $ y ˆ bh ‰ (h  y) dy œ h

œ

$b h

Š h# 

$

h$ 3‹

œ

$b h

#

h# 2‹

Šh 

œ $ bh# ˆ "#  3" ‰ œ œ

$ bh 2

. So y œ

Mx M

$ bh# 6

œ

$b h

# ˆ 2 ‰ Š $bh 6 ‹ $ bh

œ

h 3

œ

hy h

'0h ahy  y# b dy œ $hb ’ hy#

; M œ ' dm œ '0 $ ˆ hb ‰ (h  y) dy œ h

L b

$b h

#



h

y$ 3 “!

'0h ah  yb dy œ $hb ’hy  y2 “ h

Ê the center of mass lies above the base of the

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

#

!

Section 6.4 Moments and Centers of Mass triangle one-third of the way toward the opposite vertex. Similarly the other two sides of the triangle can be placed on the x-axis and the same results will occur. Therefore the centroid does lie at the intersection of the medians, as claimed. 30. From the symmetry about the y-axis it follows that x œ 0. It also follows that the line through the points (!ß !) and (!ß $) is a median Ê y œ "3 (3  0) œ 1 Ê (xß y) œ (!ß ").

31. From the symmetry about the line x œ y it follows that x œ y. It also follows that the line through the points (!ß !) and ˆ "# ß "# ‰ is a median Ê y œ x œ 23 † ˆ "#  0‰ œ 3" Ê (xß y) œ ˆ "3 ß 3" ‰ . 32. From the symmetry about the line x œ y it follows that x œ y. It also follows that the line through the point (!ß !) and ˆ #a ß #a ‰ is a median Ê y œ x œ 32 ˆ #a  0‰ œ 3" a Ê (xß y) œ ˆ 3a ß 3a ‰ . 33. The point of intersection of the median from the vertex (0ß b) to the opposite side has coordinates ˆ!ß #a ‰ Ê y œ (b  0) † "3 œ b3 and x œ ˆ #a  !‰ † 32 œ 3a Ê (xß y) œ ˆ 3a ß b3 ‰ .

34. From the symmetry about the line x œ

a #

it follows that

xœ It also follows that the line through the points a ˆ # ß !‰ and ˆ #a ß b‰ is a median Ê y œ "3 (b  0) œ b3 a #.

Ê (xß y) œ ˆ #a ß b3 ‰ .

35. y œ x"Î# Ê dy œ

" #

x"Î# dx

Ê ds œ È(dx)#  (dy)# œ É1  Mx œ $ '0 Èx É1  2

œ $ '0 Éx  2

dx œ

" ‰$Î# 4

œ

2$ 3

œ

2$ ˆ 9 ‰$Î# 3 ’ 4

’ˆ2 

" 4



 ˆ 4" ‰

" 4x

" 4x

dx

2$ 3

$Î# ’ˆx  4" ‰ “

dx ;

# !

ˆ 4" ‰$Î# “ $Î#

“œ

2$ 3

"‰ ˆ 27 8  8 œ

13$ 6

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

391

392

Chapter 6 Applications of Definite Integrals

36. y œ x$ Ê dy œ 3x# dx Ê dx œ É(dx)#  a3x# dxb# œ È1  9x% dx; Mx œ $ '0 x$ È1  9x% dx; 1

" 36

[u œ 1  9x% Ê du œ 36x$ dx Ê

du œ x$ dx;

x œ 0 Ê u œ 1, x œ 1 Ê u œ 10] Ä Mx œ $ '1

10

" 36

u"Î# du œ

$ 36

 23 u$Î# ‘ "! œ "

$ 54

ˆ10$Î#  1‰

37. From Example 6 we have Mx œ '0 a(a sin ))(k sin )) d) œ a# k'0 sin# ) d) œ 1

œ

a# k #

) 

sin 2) ‘ 1 # !

œ

a# k 1 #

1

'01 (1  cos 2)) d)

; My œ '0 a(a cos ))(k sin )) d) œ a# k '0 sin ) cos ) d) œ 1

1

M œ '0 ak sin ) d) œ ak[ cos )]1! œ 2ak. Therefore, x œ 1

a# k #

My M

œ 0 and y œ

Mx M

a# k #

1

csin# )d ! œ 0;

#

" ‰ œ Š a 2k1 ‹ ˆ 2ak œ

a1 4

Ê ˆ!ß a41 ‰

is the center of mass. 38. Mx œ ' µ y dm œ '0 (a sin )) † $ † a d) 1

œ '0 aa# sin )b a1  k kcos )kb d) 1

œ a# '0 (sin ))(1  k cos )) d) 1Î2

 a# '1Î2 (sin ))(1  k cos )) d) 1

œ a# '0 sin ) d)  a# k'0 sin ) cos ) d)  a# '1Î2 sin ) d)  a# k '1Î2 sin ) cos ) d) 1Î2

1Î2

1Î#

#

1

 a# k ’ sin# ) “

œ a# [ cos )]!

1Î# !

1

#

 a# [ cos )]11Î#  a# k ’ sin# ) “

1 1Î#

œ a [0  (1)]  a k ˆ "#  0‰  a# [(1)  0]  a# k ˆ0  "# ‰ œ a#  #

#

a# k #

 a# 

œ 2a#  a# k œ a# (2  k); 1 1 M œ'µ x dm œ ' (a cos )) † $ † a d) œ ' aa# cos )b a1  k kcos )kb d) y

0

0

œa

'0

œ a#

'01Î2 cos ) d)  a# k '

#

1Î2

#

(cos ))(1  k cos )) d)  a 1Î2

0

#

œ a [sin

1Î# ) ]!



œ a# (1  0) 

a# k #

a# k #

a# k #

) 

'1Î2 (cos ))(1  k cos )) d) 1

2) ‰ 2) ‰ ˆ 1  cos d)  a# '1Î2 cos ) d)  a# k'1Î2 ˆ 1  cos d) # #

sin 2) ‘ 1Î# # !

1

 a# [sin )]11Î# 

1

a# k #

ˆ 1#  0‰  (!  0)‘  a# (0  1) 

) 

a# k #

sin 2) ‘ 1 # 1Î#

(1  0)  ˆ 1#  0‰‘ œ a# 

a# k 1 4

 a# 

M œ '0 $ † a d) œ a'0 (1  k kcos )k) d) œ a '0 (1  k cos )) d)  a'1Î2 (1  k cos )) d) 1

1

1Î#

œ a[)  k sin )]! œ

a1 #

1Î2

a# k 1 4

œ 0;

1

 a[)  k sin )]11Î# œ a ˆ 1#  k‰  0‘  a (1  0)  ˆ 1#  k‰‘

 ak  a ˆ 1#  k‰ œ a1  2ak œ a(1  2k). So x œ

My M

œ 0 and y œ

Mx M

œ

a# (2  k) a(1  #k)

œ

a(2  k) 1  #k

 ka ‰ Ê ˆ0ß 2a 1  #k is the center of mass.

39. Consider the curve as an infinite number of line segments joined together. From the derivation of arc length we have that the length of a particular segment is ds œ È(dx)#  (dy)# . This implies that Mx œ ' $ y ds, My œ ' $ x ds and M œ ' $ ds. If $ is constant, then x œ yœ

Mx M

' y ds

œ ' ds œ

' y ds length

My M

' x ds

œ ' ds œ

' x ds length

and

.

40. Applying the symmetry argument analogous to the one used in Exercise 13, we find that x œ 0. The typical

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 6.5 Areas of Surfaces of Revolution and the Theorems of Pappus x#

a vertical strip has center of mass: (µ x ßµ y ) œ Œxß 2 4p  , length: a 

mass: dm œ $ dA œ $ Ša  œ

$ #

2

%

&

#

œ $ ’ax  8a$ Èpa 3

2

Èpa œ 2 † $ ’ax  È Mx M

œŠ

Èpa

2

Èpa

x$ 12p “ !

œ

3 5

Èpa

8a# $Èpa 5

2$ paÈpa 12p ‹

œ 2$ Š2aÈpa 

8a# $ Èpa 3 ‹ Š 8a$È 5 pa ‹

2

x& 80p# “ 0

œ 2 † #$ ’a# x 

"6 ‰ ‰ œ 2a# $ Èpa ˆ 8080 œ 2a# $ Èpa ˆ 64 80 œ

x$ 12p “ c2 pa

. So y œ

c2Èpa

#

16 ‰ 80

width: dx, area: dA œ Ša 

dx. Thus, Mx œ ' µ y dm œ 'c2Èpa "# Ša 

#Èpa x x 'c22ÈÈpapa Ša#  16p ‹ dx œ #$ ’a# x  80p “

œ 2a# $ Èpa ˆ1 

œ

x# 4p ‹

x# 4p ,

x# 4p ‹ Ša



x# 4p ‹ $

œ 4a$ Èpa ˆ1 

dx,

dx 2& p# a# Èpa ‹ 80p#

œ $ Š2a# Èpa 

; M œ ' dm œ $

x# 4p ‹

2

Èpa

'

c2Èpa

4 ‰ 12

Ša 

x# 4p ‹

dx

œ 4a$ Èpa ˆ 121#4 ‰

a, as claimed.

41. Since the density is constant, its value will not affect our answers, so we can set $ œ ". 1Î2  ! A generalization of Example 6 yields M œ ' µ y dm œ ' a# sin ) d) œ a# [ cos )]1Î2  ! 1Î2  !

1Î#  !

x

1Î2  !

œ a#  cos ˆ 1#  !‰  cos ˆ 1#  !‰‘ œ a# (sin !  sin !) œ 2a# sin !; M œ ' dm œ '1Î#  ! a d) œ a[)]11ÎÎ22  !! œ a ˆ 1#  !‰  ˆ 1#  !‰‘ œ 2a!. Thus, y œ Ê c œ 2a sin !. Then y œ

a(2a sin !) 2a!

œ

ac s ,

Mx M

œ

2a# sin ! 2a!

œ

a sin ! !

lim

! Ä !b

(b)

sin !  ! cos ! !  ! cos !

! f(!)

¸

d h

œ

a sin ! ! sin !  ! cos ! !  ! cos ! .

a(sin !  ! cos !) a(!  ! cos !)

œ

œ a cos !  d Ê d œ

0.4 0.664879

0.6 0.662615

0.8 0.659389

1.0 0.655145

6.5 AREAS OF SURFACES OF REVOLUTION AND THE THEOREMS OF PAPPUS 1. (a)

dy dx

#

% œ sec# x Ê Š dy dx ‹ œ sec x

Ê S œ 21'0

1Î4

a(sin !  ! cos !) . !

The graphs below suggest that

2 3.

0.2 0.666222

c #

as claimed.

42. (a) First, we note that y œ (distance from origin to AB)  d Ê Moreover, h œ a  a cos ! Ê

. Now s œ a(2!) and a sin ! œ

(b)

(tan x) È1  sec% x dx

(c) S ¸ 3.84

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

393

394 2. (a)

Chapter 6 Applications of Definite Integrals dy dx

#

(b)

2 œ 2x Ê Š dy dx ‹ œ 4x

Ê S œ 21'0 x# È1  4x# dx 2

(c) S ¸ 53.23

3. (a) xy œ 1 Ê x œ Ê S œ 21'1

2

" y

" y

Ê

dx dy

#

œ  y"# Ê Š dx dy ‹ œ

" y%

(b)

È1  y% dy

(c) S ¸ 5.02

4. (a)

dx dy

#

# œ cos y Ê Š dx dy ‹ œ cos y

(b)

Ê S œ 21'0 (sin y) È1  cos# y dy 1

(c) S ¸ 14.42

# 5. (a) x"Î#  y"Î# œ 3 Ê y œ ˆ3  x"Î# ‰ "Î# ‰ ˆ ˆ Ê dy  "# x"Î# ‰ dx œ 2 3  x #

"Î# ‰ ˆ Ê Š dy dx ‹ œ 1  3x

(b)

#

# # Ê S œ 21'1 ˆ3  x"Î# ‰ É1  a1  3x"Î# b dx 4

(c) S ¸ 63.37

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 6.5 Areas of Surfaces of Revolution and the Theorems of Pappus dx dy

6. (a)

#

"Î# ‰ ˆ œ 1  y"Î# Ê Š dx dy ‹ œ 1  y

#

395

(b)

# Ê S œ 21 '1 ˆy  2Èy‰ É1  a1  y"Î# b dx 2

(c) S ¸ 51.33

dx dy

7. (a)

#

(b)

# œ tan y Ê Š dx dy ‹ œ tan y

Ê S œ 21'0 Š'0 tan t dt‹ È1  tan# y dy 1Î3

y

œ 21'0 Š'0 tan t dt‹ sec y dy 1Î3

y

(c) S ¸ 2.08

dy dx

8. (a)

#

(b)

# œ Èx#  1 Ê Š dy dx ‹ œ x  1

È5

Ê S œ 21'1 Š'1 Èt#  1 dt‹ È1  ax#  1b dx

È5

x

œ 21'1 Š'1 Èt#  1 dt‹ x dx x

(c) S ¸ 8.55

9. y œ œ

x #

1È5 #

Ê

dy dx

' ˆ x ‰ É1  œ "# ; S œ 'a 21y Ê1  Š dy dx ‹ dx Ê S œ 0 21 #

x #

4

" 4

dx œ

1È5 #

'04 x dx

%

# ’ x# “ œ 41È5; Geometry formula: base circumference œ 21(2), slant height œ È4#  2# œ 2È5

!

Ê Lateral surface area œ

10. y œ

#

b

Ê x œ 2y Ê

dx dy

" #

(41) Š2È5‹ œ 41È5 in agreement with the integral value

# È È ' È # ' œ 2; S œ 'c 21x Ê1  Š dx dy ‹ dy œ 0 21 † 2y 1  2 dy œ 41 5 0 y dy œ 21 5 cy d ! #

d

2

2

#

œ 21È5 † 4 œ 81È5; Geometry formula: base circumference œ 21(4), slant height œ È4#  2# œ 2È5 Ê Lateral surface area œ " (81) Š2È5‹ œ 81È5 in agreement with the integral value #

11.

dy dx

' œ "# ; S œ 'a 21yÊ1  Š dy dx ‹ dx œ 1 21 b

#

3

(x  1) #

É1  ˆ "# ‰# dx œ

1È5 #

'13 (x  1) dx

œ

1È5 #

1È5 #

#

’ x#  x“

$ "

È ˆ 9#  3‰  ˆ "#  1‰‘ œ 1 # 5 (4  2) œ 31È5; Geometry formula: r" œ "#  "# œ 1, r# œ 3#  "# œ 2, œ slant height œ È(2  1)#  (3  1)# œ È5 Ê Frustum surface area œ 1(r"  r# ) ‚ slant height œ 1(1  2)È5

œ 31È5 in agreement with the integral value

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

396

Chapter 6 Applications of Definite Integrals

12. y œ

x #



" #

Ê x œ 2y  1 Ê

dx œ 2; S œ 'c 21x Ê1  Š dy ‹ dy œ '1 21(2y  1)È1  4 dy œ 21È5 '1 (2y  1) dy #

d

dx dy

2

#

2

œ 21È5 cy#  yd " œ 21È5 [(4  2)  (1  1)] œ 41È5; Geometry formula: r" œ 1, r# œ 3, slant height œ È(2  1)#  (3  1)# œ È5 Ê Frustum surface area œ 1(1  3)È5 œ 41È5 in agreement with the integral value 13.

dy dx

#

x# 3

œ

’u œ 1 

x% 9

Ê S œ '0

2

x% 9

Ê Š dy dx ‹ œ Ê du œ

4 9

x œ 0 Ê u œ 1, x œ 2 Ê u œ Ä S œ 21 '1

25Î9

14.

œ

1 3

dy dx

œ

" 1 2 4 du œ # 3 1 ˆ 12527 ‰ œ 98811 3 27 #

Ê S œ '3Î4 21Èx É1  œ 21'3Î4 Éx  15Î4

15.

œ

’ˆ 15 4

œ

41 3

(8  1) œ

dy dx



" (2  2x) # È2x  x#

œ



ˆ 43



dx;

dx;

#&Î*

u$Î# ‘ "

" 4x

dx

$Î# dx œ 21 ’ 23 ˆx  4" ‰ “

" 4

" ‰$Î# 4

41 3

x$ 9

du œ

x% 9

" 4x

x"Î# Ê Š dy dx ‹ œ 15Î4

É1 

25 ‘ 9

u"Î# †

ˆ 125 ‰ 27  1 œ " #

" 4

x$ dx Ê

21 x$ 9

" ‰$Î# “ 4

"&Î% $Î%

41 3

$ ’ˆ 24 ‰

Ê Š dy dx ‹ œ

(1  x)# 2x  x#

œ

 1“

281 3

œ

#

1x È2x  x#

Ê S œ '0 5 21È2x  x# É1  1Þ5 Þ

œ 21'0 5 È2x  1Þ5 Þ

(1  x)# 2x  x#

È x#  1  2x  x# x# 2x È 2x  x#

dx

dx

œ 21'0 5 dx œ 21[x]"Þ& !Þ& œ 21 1Þ5 Þ

16.

dy dx

" 2È x  1

œ

#

dy Ê Š dx ‹ œ

" 4(x  1)

Ê S œ '1 21Èx  1 É1  5

œ 21'1 É(x  1)  5

" 4

" 4(x  1)

dx

dx œ 21'1 Éx  5

&

$Î# œ 21 ’ 23 ˆx  54 ‰ “ œ

17.

œ

41 3

œ

1 6

dx dy

‰$Î#  ’ˆ 25 4

5 4

41 ˆ 5 ‰$Î#  3 ’ 5 4 " $ $ ˆ 94 ‰$Î# “ œ 431 Š 52$  32$ ‹

(125  27) œ

981 6

œ

dx ˆ1  45 ‰$Î# “

491 3

% ' œ y# Ê Š dx dy ‹ œ y Ê S œ 0 #

1

u œ 1  y% Ê du œ 4y$ dy Ê

" 4

21 y$ 3

È1  y% dy;

du œ y$ dy; y œ 0

Ê u œ 1, y œ 1 Ê u œ 2d Ä S œ '1 21 ˆ "3 ‰ u"Î# ˆ 4" du‰ 2

œ

1 6

'12 u"Î# du œ 16  32 u$Î# ‘ #" œ 19 ŠÈ8  1‹

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 6.5 Areas of Surfaces of Revolution and the Theorems of Pappus 18. x œ ˆ "3 y$Î#  y"Î# ‰ Ÿ 0, when 1 Ÿ y Ÿ 3. To get positive area, we take x œ  ˆ "3 y$Î#  y"Î# ‰ Ê

dx dy

#

œ  "# ˆy"Î#  y"Î# ‰ Ê Š dx dy ‹ œ

" 4

ay  2  y" b

Ê S œ  '1 21 ˆ "3 y$Î#  y"Î# ‰ É1  4" ay  2  y" b dy 3

œ 21'1 ˆ 3" y$Î#  y"Î# ‰ É 4" ay  2  y" b dy 3

Éay"Î#  y"Î# b#

œ 21'1 ˆ "3 y$Î#  y"Î# ‰ 3

œ 1'1 ˆ "3 y#  3

2 3

dx dy

œ

" È 4 y

œ 41 '0

15Î4

œ

20.

dx dy

81 3

œ

3

$

y  1‰ dy œ 1 ’ y9 

œ  19 (18  1  3) œ 19.

dy œ 1'1 y"Î# ˆ 3" y  1‰ Šy"Î# 

#

#

Ê Š dx dy ‹ œ

Ê S œ '0

15Î4

" 4 y

5È 5 8 ‹

œ

81 3

#

" È2y  1

Ê Š dx dy ‹ œ

Š 40

È 5 5 È 5 ‹ 8

œ

È

È5

1 12

‹œ

#

41 È 2 3

" 2y  1

$Î#

’1$Î#  ˆ 58 ‰

“œ

#

 1 dy œ ÊŠy' 

" #



" 16y' ‹

2

È2

È2

dy dx

œ

" #

aa#  x# b

Ê S œ 21'ca Èa#  x# É1  a

$Î#

œ

21 r h

dy dx

#

#

É h h# r

25. y œ cos x Ê

œ

41 È 2 3

5È 5 ‹ 8È 8

Š1 

21 40

" #



" 16y' ‹

dy

dy œ 21'1 ˆy%  "4 y# ‰ dy 2

" 4y$ ‹

(8 † 31  5) œ

2531 20

È2

x ax#  1b dx œ 21'0 ax$  xb dx œ 21 ’ x4 

"Î#

x# aa #  x # b

(2x) œ

x È a#  x#

%

#

Ê Š dy dx ‹ œ

È# x# # “!

œ 21 ˆ 44  22 ‰ œ 41

x# aa #  x # b

dx œ 21'ca Èaa#  x# b  x# dx œ 21'ca a dx œ 21a[x]ca a a

a

r h

#

Ê Š dy dx ‹ œ

r# h#

Ê S œ 21 '0

h

r h

x É1 

r# h#

dx œ 21'0

h

r h

#

#

x É h h# r dx

'0h x dx œ 2h1r Èh#  r# ’ x# “ h œ 2h1r Èh#  r# Š h# ‹ œ 1rÈh#  r# #

#

dy dx

 5$Î# “

1

œ 21a[a  (a)] œ (21a)(2a) œ 41a# x Ê

 1‰

È2

23. y œ Èa#  x# Ê

r h

" 3

Ê dy œ xÈx#  2 dx Ê ds œ È1  a2x#  x% b dx Ê S œ 21'0 x È1  2x#  x% dx

$Î#

œ 21'0 xÉax#  1b# dx œ 21'0

24. y œ



dy œ 21'5Î8 È(2y  1)  1 dy

2

#

ax#  2b

" 9

È(4  y)  1 dy

 5$Î# “ œ  831 ’ˆ 45 ‰

dy; S œ '1 21y ds œ 21'1 y Šy$ 

" 4y$ ‹

"

" 3

 1‰‘ œ 1 ˆ3 

 1 dy œ ÊŠy' 

"‰ "‰ ˆ " " ‰‘ œ 21 ˆ 31 œ 21 ’ y5  4" y" “ œ 21 ˆ 32 5  8  5  4 5  8 œ

22. y œ

15Î4

15 ‰$Î# 4

1

" 4y$ ‹

dy œ Šy$ 

&

dy œ 41'0

" 3

Š16È2  5È5‹

21. ds œ Èdx#  dy# œ ÊŠy$  " 4y$ ‹

3

351È5 3

"

5 Š 8†2 8†22È 2

dy œ 1 '1 ˆ 3" y  1‰ (y  1) dy

 3‰  ˆ "9 

9 3

" 4y

21 † 2È4  y É1 

Ê S œ '5Î8 21È2y  1 É1 

" 2y1

1

œ ÊŠy$ 

"

È5  y dy œ 41  23 (5  y)$Î# ‘ "&Î% œ  831 ’ˆ5  !

Š 5È 5 

41 È 2 3

 y“ œ 1 ˆ 27 9 

161 9

œ 21'5Î8 È2 y"Î# dy œ 21È2  23 y$Î# ‘ &Î) œ œ

$

y# 3

" ‹ y"Î#

#

0

#

# È1  sin# x dx ' œ  sin x Ê Š dy dx ‹ œ sin x Ê S œ 21 c1Î2 (cos x) #

1Î2

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

397

398

Chapter 6 Applications of Definite Integrals

26. y œ ˆ1  x#Î$ ‰

$Î#

Ê

dy dx

œ

Ê S œ 2'0 21 ˆ1  x#Î$ ‰ 1

3 #

ˆ1  x#Î$ ‰"Î# ˆ 23 x"Î$ ‰ œ 

$Î#

#

ˆ1x#Î$ ‰"Î# x"Î$

Ê Š dy dx ‹ œ

1x#Î$ x#Î$

œ

" x#Î$

1

$Î# " É1  ˆ x#Î$  1‰ dx œ 41'0 ˆ1  x#Î$ ‰ Èx#Î$ dx 1

$Î# œ 41'0 ˆ1  x#Î$ ‰ x"Î$ dx; u œ 1  x#Î$ Ê du œ  23 x"Î$ dx Ê  32 du œ x"Î$ dx; 1

! x œ 0 Ê u œ 1, x œ 1 Ê u œ 0d Ä S œ 41'1 u$Î# ˆ 3# du‰ œ 61  25 u&Î# ‘ " œ 61 ˆ0  25 ‰ œ 0

121 5

# # # È16#  y# 27. The area of the surface of one wok is S œ 'c 21x Ê1  Š dx dy ‹ dy. Now, x  y œ 16 Ê x œ #

d

Ê

dx dy

œ c7

#

y È16#  y#

Ê Š dx dy ‹ œ

c7

; S œ 'c16 21È16#  y# É1 

y# 16#  y#

y# 16#  y#

c7

dy œ 21'c16 Èa16#  y# b  y# dy

œ 21'c16 16 dy œ 321 † 9 œ 2881 ¸ 904.78 cm# . The enamel needed to cover one surface of one wok is

V œ S † 0.5 mm œ S † 0.05 cm œ (904.78)(0.05) cm$ œ 45.24 cm$ . For 5000 woks, we need 5000 † V œ 5000 † 45.24 cm$ œ (5)(45.24)L œ 226.2L Ê 226.2 liters of each color are needed. 28. y œ Èr#  x# Ê œ 21'a

abh

œ 21'a

2x È r#  x #

œ

Èar#  x# b  x# dx œ 21r' a

29. y œ ÈR#  x# Ê abh

œ  "#

dy dx

dy dx

œ  "#

2x È R #  x#

x Èr#  x#

abh

œ

abh

30. (a) x#  y# œ 45# Ê x œ È45#  y# Ê 45

x# r#  x # ;

S œ 21 'a

abh

Èr#  x# É1 

x# r#  x#

dx

dx œ 21rh, which is independent of a. #

x È R #  x#

ÈaR#  x# b  x# dx œ 21R ' a

S œ 'c22Þ5 21 È45#  y# É1 

#

Ê Š dx dy ‹ œ

y# 45#  y#

dx Ê Š dy ‹ œ

x# R #  x# ;

S œ 21'a

abh

ÈR#  x# É1 

x# R #  x#

dx

dx œ 21Rh dx dy

œ

y È45# y#

#

Ê Š dx dy ‹ œ

y# 45#  y#

;

dy œ 21 '22Þ5 Èa45#  y# b  y# dy œ 21 † 45'22Þ5 dy 45

45

œ (21)(45)(67.5) œ 60751 square feet (b) 19,085 square feet dy ' È1  1 dx œ 21 ' (x)È2 dx  21' xÈ2 dx 31. y œ x Ê Š dy dx ‹ œ 1 Ê Š dx ‹ œ 1 Ê S œ 21 c1 kxk c1 0 #

# œ 2È21 ’ x# “

32.

dy dx

œ

x# 3

!

2

#

"

!

#

4 9

0

#  2È21 ’ x# “ œ 2È21 ˆ0  "# ‰  2È21(2  0) œ 5È21

Ê Š dy dx ‹ œ

Ê du œ

2

x% 9

Ê by symmetry of the graph that S œ 2 'cÈ3 21 Š x9 ‹ É1  0

$

x% 9

dx; ’u œ 1 

x$ dx Ê  "4 du œ  x9 dx; x œ È3 Ê u œ 2, x œ 0 Ê u œ 1“ Ä S œ 41'2 u"Î# ˆ "4 ‰ du 1

$

" œ 1'2 u"Î# du œ 1  23 u$Î# ‘ # œ 1 Š 23  23 È8‹ œ 1

È3

È3

21 3

ŠÈ8  1‹ . If the absolute value bars are dropped the

integral for S œ 'cÈ3 21f(x) ds will equal zero since 'cÈ3 21 Š x9 ‹ É1  $

x% 9

dx is the integral of an odd function

over the symmetric interval È3 Ÿ x Ÿ È3.

33.

dx dt

x% 9

œ  sin t and

dy dt

#

È( sin t)#  (cos t)# œ 1 Ê S œ ' 21y ds ‰  Š dy œ cos t Ê Êˆ dx dt dt ‹ œ #

œ '0 21(2  sin t)(1) dt œ 21 c2t  cos td #!1 œ 21[(41  1)  (0  1)] œ 81# 21

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 6.5 Areas of Surfaces of Revolution and the Theorems of Pappus 34.

dx dt

œ t"Î# and

È3

dy dt

œ '0 21 ˆ 23 t$Î# ‰ É t

#

" t

dt œ

È3

'0

#

21 ˆ 23 t$Î# ‰ É t #

f(t) œ 21 ˆ 23 t$Î# ‰ É t Ê

35.

dx dt

È3

'0

F(t) dt œ

œ 1 and

È2

dy dt

#

281 9

" t

41 3

È3

'0

1 t

Ê S œ ' 21x ds

tÈt#  1 dt; cu œ t#  1 Ê du œ 2t dt; t œ 0 Ê u œ 1,

'14 231 Èu du œ  491 u$Î# ‘ %" œ 2891

’t œ È3 Ê u œ 4“ Ä Note:

#

#

Èt  t" œ É t ‰  Š dy œ t"Î# Ê Êˆ dx dt dt ‹ œ

1 t

dt is an improper integral but limb f(t) exists and is equal to 0, where tÄ!

. Thus the discontinuity is removable: define F(t) œ f(t) for t  0 and F(0) œ 0

. #

#

# È2‹ œ Ét#  2È2 t  3 Ê S œ ' 21x ds ‰  Š dy œ t  È2 Ê Êˆ dx dt dt ‹ œ Ê1  Št  #

œ 'cÈ2 21 Št  È2‹ Ét#  2È2 t  3 dt; ’u œ t#  2È2 t  3 Ê du œ Š2t  2È2‹ dt; t œ È2 Ê u œ 1,

* t œ È2 Ê u œ 9“ Ä '1 1Èu du œ  23 1u$Î# ‘ " œ 9

36.

dx dt

œ aa1  cos tb and

dy dt

21 3

(27  1) œ

521 3

#

#

‰  Š dy Éc aa1  cos tb d#  aa sin tb# œ a sin t Ê Êˆ dx dt dt ‹ œ

œ Èa2  2 a2 cos t  a2 cos2 t  a2 sin2 t œ È2a2  2a2 cos t œ aÈ2È1  cos t Ê S œ ' 21y ds œ '0 21 aa1  cos tb † aÈ2È1  cos t dt œ 2È2 1 a2 '0 a1  cos tb3/2 dt 21

37.

dx dt

œ 2 and

21

dy dt

È2#  1# œ È5 Ê S œ ' 21y ds œ ' 21(t  1)È5 dt ‰  Š dy œ 1 Ê Êˆ dx dt dt ‹ œ 0 #

#

1

"

#

œ 21È5 ’ t2  t“ œ 31È5. Check: slant height is È5 Ê Area is 1(1  2)È5 œ 31È5 . !

38.

dx dt

œ h and

dy dt

Èh#  r# Ê S œ ' 21y ds œ ' 21rtÈh#  r# dt ‰  Š dy œ r Ê Êˆ dx dt dt ‹ œ 0

œ 21rÈh#  r#

#

#

1

'01 t dt œ 21rÈh#  r# ’ t2 “ " œ 1rÈh#  r# . #

!

Check: slant height is Èh#  r# Ê Area is

1rÈh#  r# . 39. (a) An equation of the tangent line segment is (see figure) y œ f(mk )  f w (mk )(x  mk ). When x œ xkc1 we have r" œ f(mk )  f w (mk )(x51  mk ) œ f(mk )  f w (mk ) ˆ ?#xk ‰ œ f(mk )  f w (mk ) when x œ xk we have r# œ f(mk )  f w (mk )(x5  mk ) k œ f(mk )  f w (mk ) ?x # ;

(b) L#k œ (?xk )#  (r#  r" )#

;

#

 ˆf w (mk ) ?#xk ‰‘ œ (?xk )#  [f w (mk )?xk ]# Ê Lk œ È(?xk )#  [f w (mk )?xk ]# , as claimed (c) From geometry it is a fact that the lateral surface area of the frustum obtained by revolving the tangent œ (?xk )#  f w (mk )

?x k #

?x k #

line segment about the x-axis is given by ?Sk œ 1(r"  r# )Lk œ 1[2f(mk )] Éa?xk b#  [f w (mk )?xk ]# using parts (a) and (b) above. Thus, ?Sk œ 21f(mk ) È1  [f w (mk )]# ?xk .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

399

400

Chapter 6 Applications of Definite Integrals

! ?Sk œ lim ! 21f(mk ) È1  [f w (mk )]# ?xk œ ' 21f(x) È1  [f w (x)]# dx (d) S œ n lim Ä_ nÄ_ a kœ1 kœ1 n

n

È3

40. S œ 'a 21f(x) dx œ '0 b

21 †

x È3

b

dx œ

1 È3

È3

c x# d ! œ

31 È3

œ È31

41. The centroid of the square is located at (#ß #). The volume is V œ (21) ayb (A) œ (21)(2)(8) œ 321 and the surface area is S œ (21) ayb (L) œ (21)(2) Š4È8‹ œ 32È21 (where È8 is the length of a side). 42. The midpoint of the hypotenuse of the triangle is ˆ 3# ß 3‰ Ê y œ 2x is an equation of the median Ê the line y œ 2x contains the centroid. The point ˆ 3# ß $‰ is 3È 5 #

units from the origin Ê the x-coordinate of the

# centroid solves the equation Ɉx  3# ‰  (2x  3)#

œ

È5 #

Ê ˆx#  3x  94 ‰  a4x#  12x  9b œ

5 4

Ê 5x#  15x  9 œ 1 Ê x#  3x  2 œ (x  2)(x  1) œ 0 Ê x œ 1 since the centroid must lie inside the triangle Ê y œ 2. By the Theorem of Pappus, the volume is V œ (distance traveled by the centroid)(area of the region) œ 21 a5  xb  "# (3)(6)‘ œ (21)(4)(9) œ 721

43. The centroid is located at (#ß !) Ê V œ (21) axb (A) œ (21)(2)(1) œ 41# 44. We create the cone by revolving the triangle with vertices (0ß 0), (hß r) and (hß 0) about the x-axis (see the accompanying figure). Thus, the cone has height h and base radius r. By Theorem of Pappus, the lateral surface area swept out by the hypotenuse L is given by S œ 21yL œ 21 ˆ r ‰ Èh#  r# #

œ 1rÈr#  h# . To calculate the volume we need the position of the centroid of the triangle. From the diagram we see that the centroid lies on the line y œ œ

" 3

Éh# 

r# 4

#

r 2h

#

# x. The x-coordinate of the centroid solves the equation É(x  h)#  ˆ 2hr x  #r ‰ #

#

Ê Š 4h4h# r ‹ x#  Š 4h 2h r ‹ x 

inside the triangle Ê y œ

r 2h

47. V œ 21 yA Ê

4 3



2 ar#  4h# b 9

œ0 Ê xœ

2h 3

or

4h 3

Ê xœ

x œ 3r . By the Theorem of Pappus, V œ 21 ˆ 3r ‰‘ ˆ "# hr‰ œ

45. S œ 21 y L Ê 41a# œ a21yb (1a) Ê y œ 46. S œ 213 L Ê 21 ˆa 

r# 4

2a ‰‘ (1a) 1

2a 1,

since the centroid must lie

1r# h.

and by symmetry x œ 0

œ 21a# (1  2)

1ab# œ a21yb ˆ 1#ab ‰ Ê y œ

48. V œ 213A Ê V œ 21 ˆa 

" 3

2h 3 ,

4a ‰‘ 1a# Š # ‹ 31

œ

4b 31

and by symmetry x œ 0

1a$ (31  4) 3

49. V œ 213 A œ (21)(area of the region) † (distance from the centroid to the line y œ x  a). We must find the 4a ‰ distance from ˆ0ß 31 to y œ x  a. The line containing the centroid and perpendicular to y œ x  a has slope 1 and contains the point ˆ!ß 34a1 ‰ . This line is y œ x  34a1 . The intersection of y œ x  a and y œ x  34a1 is the point ˆ 4a 613a1 ß 4a 613a1 ‰ . Thus, the distance from the centroid to the line y œ x  a is Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 6.6 Work Ɉ 4a 613a1 ‰#  ˆ 34a1 

4a 61



3a1 ‰# 61

œ

È2 (4a  3a1) 61

Ê V œ (21) Š

È2 (4a  3a1) # ‹ Š 1#a ‹ 61

œ

È2 1a$ (4  31) 6

‰ 50. The line perpendicular to y œ x  a and passing through the centroid ˆ!ß 2a 1 has equation y œ x  intersection of the two perpendicular lines occurs when x  a œ x 

Ê xœ

2a 1

2a  a1 21

Ê yœ

2a ‰# #

a(21) È 21

#

the distance from the centroid to the line y œ x  a is Ɉ 2a 2 1a  0‰  ˆ 2a 2 1a 

œ

2a 1 . The 2a  a1 21 . Thus

.

1 ) Therefore, by the Theorem of Pappus the surface area is S œ 21 ’ a(2 “ (1a) œ È21a# (2  1). È 21

51. From Example 4 and Pappus's Theorem for Volumes we have the moment about the x-axis is Mx œ y M #

œ ˆ 34a1 ‰ Š 1#a ‹ œ

2a$ 3

.

6.6 WORK 1. The force required to stretch the spring from its natural length of 2 m to a length of 5 m is F(x) œ kx. The work done by F is W œ '0 F(x) dx œ k '0 x dx œ 3

3

k #

$

cx# d ! œ

9k # .

This work is equal to 1800 J Ê

k œ 1800

9 #

Ê k œ 400 N/m 2. (a) We find the force constant from Hooke's Law: F œ kx Ê k œ

Ê kœ

F x

800 4

œ 200 lb/in.

(b) The work done to stretch the spring 2 inches beyond its natural length is W œ '0 kx dx 2

œ 200 '0 x dx œ 200 ’ x# “ œ 200(2  0) œ 400 in † lb œ 33.3 ft † lb 2

#

# !

(c) We substitute F œ 1600 into the equation F œ 200x to find 1600 œ 200x Ê x œ 8 in. 3. We find the force constant from Hooke's law: F œ kx. A force of 2 N stretches the spring to 0.02 m N Ê 2 œ k † (0.02) Ê k œ 100 m . The force of 4 N will stretch the rubber band y m, where F œ ky Ê y œ Ê yœ

4N N 100 m

œ 100 '0

0Þ04

Ê y œ 0.04 m œ 4 cm. The work done to stretch the rubber band 0.04 m is W œ '0

F k

0Þ04

#

x dx œ 100 ’ x# “

!Þ!%

œ

!

(100)(0.04)# #

kx dx

œ 0.08 J

4. We find the force constant from Hooke's law: F œ kx Ê k œ

F x

Ê kœ

90 1

Ê k œ 90

N m. &

The work done to

‰ stretch the spring 5 m beyond its natural length is W œ '0 kx dx œ 90 '0 x dx œ 90 ’ x# “ œ (90) ˆ 25 # œ 1125 J 5

5

#

!

5. (a) We find the spring's constant from Hooke's law: F œ kx Ê k œ

F x

œ

21,714 8 5

œ

21,714 3

Ê k œ 7238

(b) The work done to compress the assembly the first half inch is W œ '0 kx dx œ 7238 '0 0Þ5

#

œ 7238 ’ x# “

!Þ& !

#

œ (7238) (0.5) # œ

(7238)(0.25) #

1Þ0

1Þ0

Þ

Þ

#

¸ 2714 in † lb 6. First, we find the force constant from Hooke's law: F œ kx Ê k œ compresses the scale x œ scale this far is W œ '0

1Î8

in, he/she must weigh F œ kx œ #

kx dx œ 2400 ’ x# “

"Î) !

x dx

¸ 905 in † lb. The work done to compress the assembly the

second half inch is: W œ '0 5 kx dx œ 7238 '0 5 x dx œ 7238 ’ x# “

" 8

lb in

0Þ5

œ

2400 2†64

F x

2,400 ˆ 8" ‰

"Þ! !Þ&

œ

œ

150 " ‰ ˆ 16

7238 #

c1  (0.5)# d œ

(7238)(0.75) #

œ 16 † 150 œ 2,400

lb in .

If someone

œ 300 lb. The work done to compress the

œ 18.75 lb † in. œ

25 16

ft † lb

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

401

402

Chapter 6 Applications of Definite Integrals

7. The force required to haul up the rope is equal to the rope's weight, which varies steadily and is proportional to x, the length of the rope still hanging: F(x) œ 0.624x. The work done is: W œ '0 F(x) dx œ '0 0.624x dx 50

#

œ 0.624 ’ x# “

&! !

50

œ 780 J

8. The weight of sand decreases steadily by 72 lb over the 18 ft, at 4 lb/ft. So the weight of sand when the bag is x ft off the ground is Faxb œ "%%  %x. The work done is: W œ 'a F(x) dx œ '0 a"%%  %xbdx œ c144x  2x# d ! œ 1944 ft † lb b

18

")

9. The force required to lift the cable is equal to the weight of the cable paid out: F(x) œ (4.5)(180  x) where x is the position of the car off the first floor. The work done is: W œ '0

180

œ 4.5 ’180x 

")! x# # “!

180# # ‹

œ 4.5 Š180# 

œ

4.5†180# #

F(x) dx œ 4.5'0

180

(180  x) dx

œ 72,900 ft † lb

10. Since the force is acting toward the origin, it acts opposite to the positive x-direction. Thus F(x) œ  xk# . The b work done is W œ 'a  xk# dx œ k 'a  x"# dx œ k  x" ‘ a œ k ˆ b"  "a ‰ œ b

b

k(a  b) ab

11. The force against the piston is F œ pA. If V œ Ax, where x is the height of the cylinder, then dV œ A dx Ê Work œ ' F dx œ ' pA dx œ 'ap

ap# ßV# b " ßV" b

p dV.

12. pV"Þ% œ c, a constant Ê p œ cV"Þ% . If V" œ 243 in$ and p" œ 50 lb/in$ , then c œ (50)(243)"Þ% œ 109,350 lb. ‘ ˆ 3#"!Þ%  Thus W œ '243 109,350V"Þ% dV œ  109,350 œ  109,350 0.4 0.4V!Þ% #%$ $#

32

" ‰ #43!Þ%

ˆ 4"  9" ‰ œ  109,350 0.4

œ  (109,350)(5) (0.4)(36) œ 37,968.75 in † lb. Note that when a system is compressed, the work done by the system is negative. 13. Let r œ the constant rate of leakage. Since the bucket is leaking at a constant rate and the bucket is rising at a constant rate, the amount of water in the bucket is proportional to a#!  xb, the distance the bucket is being raised. The leakage rate of the water is 0.8 lb/ft raised and the weight of the water in the bucket is F œ 0.8a#!  xb. So: W œ '0 0.8a#!  xb dx œ 0.8 ’20x  20

#! x# # “!

œ 160 ft † lb.

14. Let r œ the constant rate of leakage. Since the bucket is leaking at a constant rate and the bucket is rising at a constant rate, the amount of water in the bucket is proportional to a#!  xb, the distance the bucket is being raised. The leakage rate of the water is 2 lb/ft raised and the weight of the water in the bucket is F œ 2a#!  xb. So: W œ '0 2a#!  xb dx œ 2 ’20x  20

#! x# # “!

œ 400 ft † lb.

Note that since the force in Exercise 14 is 2.5 times the force in Exercise 13 at each elevation, the total work is also 2.5 times as great.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 6.6 Work

403

15. We will use the coordinate system given. (a) The typical slab between the planes at y and y  ?y has a volume of ?V œ (10)(12) ?y œ 120 ?y ft$ . The force F required to lift the slab is equal to its weight: F œ 62.4 ?V œ 62.4 † 120 ?y lb. The distance through which F must act is about y ft, so the work done lifting the slab is about ?W œ force ‚ distance œ 62.4 † 120 † y † ?y ft † lb. The work it takes to lift all 20

the water is approximately W ¸ ! ?W 0 20

œ ! 62.4 † 120y † ?y ft † lb. This is a Riemann sum for 0

the function 62.4 † 120y over the interval 0 Ÿ y Ÿ 20. The work of pumping the tank empty is the limit of these sums: W œ '0 62.4 † 120y dy œ (62.4)(120) ’ y# “ 20

#

#! !

‰ œ (62.4)(120)(200) œ 1,497,600 ft † lb œ (62.4)(120) ˆ 400 #

5 ‰ (b) The time t it takes to empty the full tank with ˆ 11 –hp motor is t œ

W †lb 250 ftsec

œ

1,497,600 ft†lb †lb 250 ftsec

œ 5990.4 sec

œ 1.664 hr Ê t ¸ 1 hr and 40 min (c) Following all the steps of part (a), we find that the work it takes to lower the water level 10 ft is W œ '0 62.4 † 120y dy œ (62.4)(120) ’ y# “ 10

#

œ 1497.6 sec œ 0.416 hr ¸ 25 min (d) In a location where water weighs 62.26

"! !

‰ œ 374,400 ft † lb and the time is t œ œ (62.4)(120) ˆ 100 #

W †lb 250 ftsec

lb ft$ :

a) W œ (62.26)(24,000) œ 1,494,240 ft † lb. b) t œ 1,494,240 œ 5976.96 sec ¸ 1.660 hr Ê t ¸ 1 hr and 40 min 250 In a location where water weighs 62.59

lb ft$

a) W œ (62.59)(24,000) œ 1,502,160 ft † lb b) t œ 1,502,160 œ 6008.64 sec ¸ 1.669 hr Ê t ¸ 1 hr and 40.1 min 250 16. We will use the coordinate system given. (a) The typical slab between the planes at y and y  ?y has a volume of ?V œ (20)(12) ?y œ 240 ?y ft$ . The force F required to lift the slab is equal to its weight: F œ 62.4 ?V œ 62.4 † 240 ?y lb. The distance through which F must act is about y ft, so the work done lifting the slab is about ?W œ force ‚ distance 20

œ 62.4 † 240 † y † ?y ft † lb. The work it takes to lift all the water is approximately W ¸ ! ?W 10 20

œ ! 62.4 † 240y † ?y ft † lb. This is a Riemann sum for the function 62.4 † 240y over the interval 10

10 Ÿ y Ÿ 20. The work it takes to empty the cistern is the limit of these sums: W œ '10 62.4 † 240y dy 20

#

œ (62.4)(240) ’ y# “ (b) t œ

W †lb 275 ftsec

œ

#!

œ (62.4)(240)(200  50) œ (62.4)(240)(150) œ 2,246,400 ft † lb

"! 2,246,400 ft†lb 275

¸ 8168.73 sec ¸ 2.27 hours ¸ 2 hr and 16.1 min

(c) Following all the steps of part (a), we find that the work it takes to empty the tank halfway is W œ '10 62.4 † 240y dy œ (62.4)(240) ’ y# “ 15

#

Then the time is t œ

W †lb 275 ftsec

œ

936,000 #75

"& "!

œ (62.4)(240) ˆ 225 # 

100 ‰ #

‰ œ 936,000 ft. œ (62.4)(240) ˆ 125 #

¸ 3403.64 sec ¸ 56.7 min

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

404

Chapter 6 Applications of Definite Integrals lb ft$ :

(d) In a location where water weighs 62.26

a) W œ (62.26)(240)(150) œ 2,241,360 ft † lb. b) t œ 2,241,360 œ 8150.40 sec œ 2.264 hours ¸ 2 hr and 15.8 min 275 ‰ œ 933,900 ft † lb; t œ 933,900 c) W œ (62.26)(240) ˆ 125 # #75 œ 3396 sec ¸ 0.94 hours ¸ 56.6 min lb ft$

In a location where water weighs 62.59

a) W œ (62.59)(240)(150) œ 2,253,240 ft † lb. b) t œ 2,253,240 œ 8193.60 sec œ 2.276 hours ¸ 2 hr and 16.56 min 275 ‰ œ 938,850 ft † lb; t œ 938,850 c) W œ (62.59)(240) ˆ 125 # 275 ¸ 3414 sec ¸ 0.95 hours ¸ 56.9 min #

17. The slab is a disk of area 1x# œ 1ˆ y# ‰ , thickness ˜y, and height below the top of the tank a"!  yb. So the work to pump #

the oil in this slab, ˜W, is 57a"!  yb1ˆ y# ‰ . The work to pump all the oil to the top of the tank is W œ '0

10

571 # 4 a"!y

 y$ bdy œ

571 4

$

’ "!$y 

"! y% % “!

œ 11,8751 ft † lb ¸ 37,306 ft † lb. #

18. Each slab of oil is to be pumped to a height of 14 ft. So the work to pump a slab is a"%  yba1bˆ y# ‰ and since the tank is half full and the volume of the original cone is V œ "$ 1r# h œ "$ 1a&# ba"!b œ with half the volume the cone is filled to a height y, œ

571 "%y$ 4 ’ $



$ È &!! y% “ % !

#&!1 '

#&!1 $

ft3 , half the volume œ $ È &!!

$ œ $" 1 y% y Ê y œ È &!! ft. So W œ '0 #

#&!1 '

ft3 , and

571 # 4 a"%y

 y$ b dy

¸ 60,042 ft † lb. #

‰ ?y 19. The typical slab between the planes at y and and y  ?y has a volume of ?V œ 1(radius)# (thickness) œ 1 ˆ 20 # œ 1 † 100 ?y ft$ . The force F required to lift the slab is equal to its weight: F œ 51.2 ?V œ 51.2 † 1001 ?y lb Ê F œ 51201 ?y lb. The distance through which F must act is about (30  y) ft. The work it takes to lift all the 30

30

kerosene is approximately W ¸ ! ?W œ ! 51201(30  y) ?y ft † lb which is a Riemann sum. The work to pump the 0

0

tank dry is the limit of these sums: W œ '0 51201(30  y) dy œ 51201 ’30y  30

¸ 7,238,229.48 ft † lb

$! y# # “!

‰ œ (5120)(4501) œ 51201 ˆ 900 #

20. (Alternate Solution) Each method must pump all of the water the 15 ft to the base of the tank. Pumping to the rim requires all the water to be pumped an additional 6 feet. Pumping into the bottom requires that the water be pumped an average of 3 additional feet. Thus pumping through the valve requires È$ fta%1b6 ft3 a'#Þ% lb/ft3 b ¸ 14,115 ft † lb less work and thus less time. 21. (a) Follow all the steps of Example 5 but make the substitution of 64.5 W œ '0

8

œ

64.51 4

64.51†8$ 3

(10  y)y# dy œ

64.51 4

$

’ 10y 3 

%

y 4

)

“ œ !

64.51 4

$

Š 103†8 

lb ft$

8% 4‹

for 57

lb ft$ .

Then,

1‰ ‰ œ ˆ 64.5 a8$ b ˆ 10 4 3 2

œ 21.51 † 8$ ¸ 34,582.65 ft † lb

(b) Exactly as done in Example 5 but change the distance through which F acts to distance ¸ (13  y) ft. Then W œ '0

8

571 4

(13  y)y# dy œ

571 4

œ (191) a8# b (7)(2) ¸ 53.482.5 ft † lb

$

’ 13y 3 

) y% 4 “!

œ

571 4

$

Š 133†8 

8% 4‹

‰ œ ˆ 5741 ‰ a8$ b ˆ 13 3 2 œ

571†8$ †7 3 †4

22. The typical slab between the planes of y and y?y has a volume of about ?V œ 1(radius)# (thickness) # œ 1 ˆÈy‰ ?y œ xy ?y m$ . The force F(y) is equal to the slab's weight: F(y) œ 10,000 mN$ † ?V œ 110,000y ?y N. The height of the tank is 4# œ 16 m. The distance through which F(y) must act to lift the slab to the level of the top of the tank is about (16  y) m, so the work done lifting the slab is about

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 6.6 Work

405

?W œ 10,0001y(16  y) ?y N † m. The work done lifting all the slabs from y œ 0 to y œ 16 to the top is 16

approximately W ¸ ! 10,0001y(16  y)?y. Taking the limit of these Riemann sums, we get 0

W œ '0 10,0001y(16  y) dy œ 10,0001'0 a16y  y# b dy œ 10,0001 ’ 16y #  16

œ

16

10,000†1†16$ 6

#

"' y$ 3 “!

$

œ 10,0001 Š 16# 

16$ 3 ‹

¸ 21,446,605.9 J

23. The typical slab between the planes at y and y?y has a volume of about ?V œ 1(radius)# (thickness) # œ 1 ˆÈ25  y# ‰ ?y m$ . The force F(y) required to lift this slab is equal to its weight: F(y) œ 9800 † ?V #

œ 98001 ˆÈ25  y# ‰ ?y œ 98001 a25  y# b ?y N. The distance through which F(y) must act to lift the slab to the level of 4 m above the top of the reservoir is about (4  y) m, so the work done is approximately ?W ¸ 98001 a25  y# b (4  y) ?y N † m. The work done lifting all the slabs from y œ 5 m to y œ 0 m is 0

approximately W ¸ ! 98001 a25  y# b (4  y) ?y N † m. Taking the limit of these Riemann sums, we get c5

W œ 'c5 98001 a25  y# b (4  y) dy œ 98001 'c5 a100  25y  4y#  y$ b dy œ 98001 ’100C  0

0

25†25 #

œ 98001 ˆ500 



† 125 

4 3

625 ‰ 4

25 #

y#  34 y$ 

¸ 15,073,099.75 J

24. The typical slab between the planes at y and y?y has a volume of about ?V œ 1(radius)# (thickness) # œ 1 ˆÈ100  y# ‰ ?y œ 1 a100  y# b ?y ft$ . The force is F(y) œ 56ft$lb † ?V œ 561 a100  y# b ?y lb. The distance through which F(y) must act to lift the slab to the level of 2 ft above the top of the tank is about (12  y) ft, so the work done is ?W ¸ 561 a100  y# b (12  y) ?y lb † ft. The work done lifting all the slabs 10

from y œ 0 ft to y œ 10 ft is approximately W ¸ ! 561 a100  y# b (12  y) ?y lb † ft. Taking the limit of these 0

Riemann sums, we get W œ '0 561 a100  y b (12  y) dy œ 561'0 a100  y# b (12  y) dy 10

10

#

œ 561'0 a1200  100y  12y#  y$ b dy œ 561 ’1200C  10

œ 561 ˆ12,000 

10,000 #

 4 † 1000 

10,000 ‰ 4

100y# #



12y$ 3



"! y% 4 “!

œ (561) ˆ12  5  4  5# ‰ (1000) ¸ 967,611 ft † lb.

It would cost (0.5)(967,611) œ 483,805¢ œ $4838.05. Yes, you can afford to hire the firm. 25. F œ m œ

" #

dv dt

œ mv

by the chain rule Ê W œ 'x mv x#

dv dx #

"

m cv# (x# )  v (x" )d œ

26. weight œ 2 oz œ

" #

weight 32

œ

" 8

3#

œ

" #56

28. weight œ 1.6 oz œ 0.1 lb Ê m œ " 8

x# "

dv ‰ dx

dx œ m  "# v# (x)‘ x" x#

" slugs; W œ ˆ "# ‰ ˆ #56 slugs‰ (160 ft/sec)# ¸ 50 ft † lb

hr 1 min 5280 ft 27. 90 mph œ 901 hrmi † 601 min † 60 sec † 1 mi œ 132 ft/sec; m œ 0.3125 lb ‰ # W œ ˆ "# ‰ ˆ 32 ft/sec# (132 ft/sec) ¸ 85.1 ft † lb

29. weight œ 2 oz œ

dx œ m'x ˆv

mv##  "# mv"# , as claimed.

lb; mass œ

2 16

dv dx

lb Ê m œ

" 8

32

0.1 lb 32 ft/sec#

slugs œ

œ " #56

" 3 #0

0.3125 lb 32 ft/sec#

œ

0.3125 32

slugs;

slugs; W œ ˆ "# ‰ ˆ 3"#0 slugs‰ (280 ft/sec)# œ 122.5 ft † lb

slugs; 124 mph œ

(124)(5280) (60)(60)

¸ 181.87 ft/sec;

" W œ ˆ "# ‰ ˆ 256 slugs‰ (181.87 ft/sec)# ¸ 64.6 ft † lb

30. weight œ 14.5 oz œ 31. weight œ 6.5 oz œ

14.5 16

6.5 16

lb Ê m œ

lb Ê m œ

14.5 (16)(32)

6.5 (16)(32)

"4.5 slugs; W œ ˆ "# ‰ Š (16)(32) slugs‹ (88 ft/sec)# ¸ 109.7 ft † lb

6.5 slugs; W œ ˆ "# ‰ Š (16)(32) slugs‹ (132 ft/sec)# ¸ 110.6 ft † lb

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

! y% 4 “ &

406

Chapter 6 Applications of Definite Integrals

32. F œ (18 lb/ft)x Ê W œ '0 18x dx œ c9x# d ! 1Î6



" 8

32

œ

" #56

"Î6

slugs and v" œ 0 ft/sec. Thus,

1 4

œ

1 4

ft † lb. Now W œ È2 4

È2 4 ‹

 (16) Š

È2 4 ‹

1 4

ft † lb,

sec when the bearing is at the top of its path. È2 4

The height the bearing reaches is s œ 8È2 t  16t# Ê at t œ Š8È2‹ Š

mv#  "# mv"# , where W œ

" ft † lb. œ ˆ #" ‰ ˆ #56 slugs‰ v# Ê v œ 8È2 ft/sec. With v œ 0

at the top of the bearing's path and v œ 8È2  32t Ê t œ #

" #

the bearing reaches a height of

œ 2 ft

33. (a) From the diagram, rayb œ '!  x œ '!  É&!#  ay  325b# for 325 Ÿ y Ÿ 375 ft. (b) The volume of a horizontal slice of the funnel # is ˜V ¸ 1rayb‘ ˜y #

œ 1”'!  É&!#  ay  325b# • ˜y (c) The work required to lift the single slice of water is ˜W ¸ 62.4˜Va$(&  yb #

œ 62.4a$(&  yb1”'!  É&!#  ay  325b# • ˜y. The total work to pump our the funnel is W #

œ '325 62.4a375  yb1”'!  É50#  ay  325b# • dy 375

¸ 6.3358 † 10( ft † lb. 34. (a) From the result in Example 6, the work to pump out the throat is 1,353,869,354 ft † lb. Therefor, the total work required to pump out the throat and the funnel is 1,353,869,354  63,358,000 œ 1,417227,354 ft † lb. (b) In horsepower-hours, the work required to pump out the glory hole is 1,417227,354 œ 715.8. Therefore, it would take 1.98†106 715.8 hp†h 1000 hp

œ 0.7158 hours ¸ 43 minutes.

35. We imagine the milkshake divided into thin slabs by planes perpendicular to the y-axis at the points of a partition of the interval [!ß (]. The typical slab between the planes at y and y  ?y has a volume of about #

17.5 ‰ ?V œ 1(radius)# (thickness) œ 1 ˆ y14 ?y in$ . The force F(y) required to lift this slab is equal to its

weight: F(y) œ

4 9

?V œ

41 9

#

17.5 ‰ ˆ y14 ?y oz. The distance through which F(y) must act to lift this slab to

the level of 1 inch above the top is about (8  y) in. The work done lifting the slab is about 17.5)# ?W œ ˆ 491 ‰ (y14 (8  y) ?y in † oz. The work done lifting all the slabs from y œ 0 to y œ 7 is # 7

approximately W œ ! 0

41 9†14#

(y  17.5)# (8  y) ?y in † oz which is a Riemann sum. The work is the limit of

these sums as the norm of the partition goes to zero: W œ '0

7

œ

41 9†14#

œ

41 9†14#

'07 a2450  26.25y  27y#  y$ b dy œ 9†4141 ’

7% 4

$

9†7 

26.25 #

41 9†14#

%

#

(y  17.5)# (8  y) dy

’ y4  9y$ 

26.25 #

y#  2450y“

( !

#

† 7  2450 † 7“ ¸ 91.32 in † oz

36. We fill the pipe and the tank. To find the work required to fill the tank follow Example 6 with radius œ 10 ft. Then ?V œ 1 † 100 ?y ft$ . The force required will be F œ 62.4 † ?V œ 62.4 † 1001 ?y œ 62401 ?y lb. The distance through which F must act is y so the work done lifting the slab is about ?W" œ 62401 † y † ?y lb † ft. The work it takes to

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 6.7 Fluid Pressures and Forces 385

385

360

360

lift all the water into the tank is: W" ¸ ! ?W" œ ! 62401 † y † ?y lb † ft. Taking the limit we end up with W" œ '360 62401y dy œ 62401 ’ y# “ 385

#

$)& $'!

62401 #

œ

c385#  360# d ¸ 182,557,949 ft † lb 4 #

To find the work required to fill the pipe, do as above, but take the radius to be Then ?V œ 1 †

" 36

$

?y ft and F œ 62.4 † ?V œ

integration: W# ¸ ! ?W# Ê W# œ '0 360

360

0

62.4 36

62.41 36

" 6

in œ

ft.

?y. Also take different limits of summation and

1y dy œ

62.41 36

#

$'!

#

1 ‰ 360 œ ˆ 62.4 Š # ‹ ¸ 352,864 ft † lb. 36

’ y# “

!

The total work is W œ W"  W# ¸ 182,557,949  352,864 ¸ 182,910,813 ft † lb. The time it takes to fill the W tank and the pipe is Time œ 1650 ¸ 182,910,813 ¸ 110,855 sec ¸ 31 hr 1650 37. Work œ '6 370 000

35ß780ß000 ß

1000 MG r#

ß

dr œ 1000 MG '6 370 000

35ß780ß000 ß

ß

" œ (1000) a5.975 † 10#% b a6.672 † 10"" b Š 6,370,000 

$&ß()!ß!!!

œ 1000 MG  "r ‘ 'ß$(!ß!!!

dr r#

" 35,780,000 ‹

¸ 5.144 ‚ 10"! J

38. (a) Let 3 be the x-coordinate of the second electron. Then r# œ (3  1)# Ê W œ 'c1 F(3) d3 0

œ 'c1 a23(3‚101)# b d3 œ  ’ 233‚10" “

#* !

#*

0

"

œ a23 ‚ 10#* b ˆ1  #" ‰ œ 11.5 ‚ 10#*

(b) W œ W"  W# where W" is the work done against the field of the first electron and W# is the work done against the field of the second electron. Let 3 be the x-coordinate of the third electron. Then r#" œ (3  1)# and r## œ (3  1)# Ê W" œ '3

5

œ a23 ‚ 10

b ˆ "4

#*

"‰ #



œ

23 4

23‚10#* r#"

‚ 10

d3 œ '3

#*

5

23‚10#* (3  ")#

, and W# œ '

d3 œ 23 ‚ 10#* ’ 3 " " “

23‚10#* r## 3

&

œ 23 ‚ 10#* ’ 3 " " “ œ a23 ‚ 10#* b ˆ 6"  4" ‰ œ $

#* ‰ #* ‰ W œ W"  W# œ ˆ 23  ˆ 23 œ 4 ‚ 10 12 ‚ 10

23 3

5

23‚10#* 12

d3 œ '

23‚10#* # 3 (3  " ) 5

(3  2) œ

23 12

& $

d3

‚ 10#* . Therefore

‚ 10#* ¸ 7.67 ‚ 10#* J

6.7 FLUID PRESSURES AND FORCES 1. To find the width of the plate at a typical depth y, we first find an equation for the line of the plate's right-hand edge: y œ x  5. If we let x denote the width of the right-hand half of the triangle at depth y, then x œ 5  y and the total width is L(y) œ 2x œ 2(5  y). The depth of the strip is (y). The force exerted by the c2

c2

water against one side of the plate is therefore F œ 'c5 w(y) † L(y) dy œ 'c5 62.4 † (y) † 2(5  y) dy c2

œ 124.8 'c5 a5y  y# b dy œ 124.8  5# y#  "3 y$ ‘ & œ 124.8 ˆ 5# † 4  #

œ (124.8) ˆ 105 # 

117 ‰ 3

" 3

† 8‰  ˆ 5# † 25 

" 3

† 125‰‘

œ (124.8) ˆ 315 6 234 ‰ œ 1684.8 lb

2. An equation for the line of the plate's right-hand edge is y œ x  3 Ê x œ y  3. Thus the total width is L(y) œ 2x œ 2(y  3). The depth of the strip is (2  y). The force exerted by the water is F œ 'c3 w(2  y)L(y) dy œ 'c3 62.4 † (2  y) † 2(3  y) dy œ 124.8'c3 a6  y  y# b dy œ 124.8 ’6y  0

0

œ (124.8) ˆ18 

9 #

0

y# #



! y$ 3 “ $

‰  9‰ œ (124.8) ˆ 27 # œ 1684.8 lb

3. Using the coordinate system of Exercise 4, we find the equation for the line of the plate's right-hand edge is y œ x  3 Ê x œ y  3. Thus the total width is L(y) œ 2x œ 2(y  3). The depth of the strip changes to (4  y) Ê F œ 'c3 w(4  y)L(y) dy œ 'c3 62.4 † (4  y) † 2(y  3) dy œ 124.8'c3 a12  y  y# b dy 0

œ 124.8 ’12y 

0

y# #



! y$ “ 3 $

œ (124.8) ˆ36 

0

9 #

‰  9‰ œ (124.8) ˆ 45 # œ 2808 lb

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

407

408

Chapter 6 Applications of Definite Integrals

4. Using the coordinate system of Exercise 4, we see that the equation for the line of the plate's right-hand edge remains the same: y œ x  3 Ê x œ 3  y and L(y) œ 2x œ 2(y  3). The depth of the strip changes to (y) Ê F œ 'c3 w(y)L(y) dy œ 'c3 62.4 † (y) † 2(y  3) dy œ 124.8'c3 ay#  3yb dy œ 124.8 ’ y3  3# y# “ 0

0

œ (124.8) ˆ 27 3 

œ

27 ‰ #

0

(124.8)(27)(2  3) 6

$

! $

œ 561.6 lb

5. Using the coordinate system of Exercise 4, we find the equation for the line of the plate's right-hand edge to be y œ 2x  4 Ê x œ y # 4 and L(y) œ 2x œ y  4. The depth of the strip is (1  y). (a) F œ 'c4 w(1  y)L(y) dy œ 'c4 62.4 † (1  y)(y  4) dy œ 62.4 'c4 a4  3y  y# b dy œ 62.4 ’4y  0

0

œ (62.4) ’(4)(4) 

(3)(16) #

(b) F œ (64.0) ’(4)(4) 

0



(3)(16) #

64 3 “



œ (62.4) ˆ16  24 

64 3 “

œ

(64.0)(120  64) 3

64 ‰ 3

œ

(62.4)(120  64) 3

3y# #



! y$ 3 “ %

œ 1164.8 lb

¸ 1194.7 lb

6. Using the coordinate system given, we find an equation for the line of the plate's right-hand edge to be y œ 2x  4 Ê x œ 4#y and L(y) œ 2x œ 4  y. The depth of the strip is (1  y) Ê F œ '0 w(1  y)(4  y) dy 1

œ 62.4'0 ay#  5y  4b dy œ 62.4 ’ y3  1

$

œ (62.4) ˆ "3 

5 #

5y# #

 4y“

 4‰ œ (62.4) ˆ 2  156  24 ‰ œ

"

! (62.4)(11) 6

œ 114.4 lb

7. Using the coordinate system given in the accompanying figure, we see that the total width is L(y) œ 63 and the depth of the strip is (33.5  y) Ê F œ '0 w(33.5  y)L(y) dy 33

œ '0

33

64 1 #$

64 ‰ † (33.5  y) † 63 dy œ ˆ 12 (63)'0 (33.5  y) dy $ 33

$$ y# # “!

64 ‰ œ ˆ 12 (63) ’33.5y  $

œ

(64)(63)(33)(67  33) (#) a12$ b

‰ ’(33.5)(33)  œ ˆ 641#†63 $

33# # “

œ 1309 lb

8. (a) Use the coordinate system given in the accompanying ‰ figure. The depth of the strip is ˆ 11 6  y ft Ê F œ '0

11Î6

‰ w ˆ 11 6  y (width) dy

œ (62.4)(width)'0

11Î6

ˆ 11 ‰ 6  y dy

œ (62.4)(width) ’ 11 6 y

""Î' y# # “!

#

‰ † "# “ Ê Fend œ (62.4)(2) ˆ 121 ‰ ˆ "# ‰ ¸ 209.73 lb and Fside œ (62.4)(4) ˆ 121 ‰ ˆ "# ‰ ¸ 419.47 lb œ (62.4)(width) ’ˆ 11 6 36 36 (b) Use the coordinate system given in the accompanying figure. Find Y from the condition that the entire volume of the water is conserved (no spilling): 11 6 †2†4œ 2†2†Y 11 ‰ Ê Y œ 3 ft. The depth of a typical strip is ˆ 11 3  y ft and the total width is L(y) œ 2 ft. Thus, F œ '0

113

‰ w ˆ 11 3  y L(y) dy

11 ‰ œ '0 (62.4) ˆ 11 3  y † 2 dy œ (62.4)(2) ’ 3 y  113

""Î$ y# # “!

‰# “ œ œ (62.4)(2) ’ˆ "# ‰ ˆ 11 3

(62.4)(12") 9

force doubles.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

¸ 838.93 lb Ê the fluid

Section 6.7 Fluid Pressures and Forces 9. Using the coordinate system given in the accompanying figure, we see that the right-hand edge is x œ È1  y# so the total width is L(y) œ 2x œ 2È1  y# and the depth of the strip is (y). The force exerted by the water is therefore F œ 'c1 w † (y) † 2È1  y# dy 0

œ 62.4'c1 È1  y# d a1  y# b œ 62.4 ’ 23 a1  y# b 0

$Î# !



"

œ (62.4) ˆ 23 ‰ (1  0) œ 416 lb

10. Using the same coordinate system as in Exercise 15, the right-hand edge is x œ È3#  y# and the total width is L(y) œ 2x œ 2È9  y# . The depth of the strip is (y). The force exerted by the milk is therefore F œ 'c3 w † (y) † 2È9  y# dy œ 64.5'c3 È9  y# d a9  y# b œ 64.5 ’ 23 a9  y# b 0

0

$Î# !



œ (64.5)(18) œ 1161 lb

$

œ (64.5) ˆ 23 ‰ (27  0)

11. The coordinate system is given in the text. The right-hand edge is x œ Èy and the total width is L(y) œ 2x œ 2Èy. (a) The depth of the strip is (2  y) so the force exerted by the liquid on the gate is F œ '0 w(2  y)L(y) dy 1

" œ '0 50(2  y) † 2Èy dy œ 100 '0 (2  y)Èy dy œ 100'0 ˆ2y"Î#  y$Î# ‰ dy œ 100  43 y$Î#  25 y&Î# ‘ ! 1

1

1

‰ œ 100 ˆ 43  25 ‰ œ ˆ 100 15 (20  6) œ 93.33 lb

2‰ (b) We need to solve 160 œ '0 w(H  y) † 2Èy dy for h. 160 œ 100 ˆ 2H 3  5 Ê H œ 3 ftÞ 1

12. Use the coordinate system given in the accompanying figure. The total width is L(y) œ 1. (a) The depth of the strip is (3  1)  y œ (2  y) ft. The force exerted by the fluid in the window is F œ '0 w(2  y)L(y) dy œ 62.4 '0 (2  y) † 1 dy œ (62.4) ’2y  1

1

" y# # “!

œ (62.4) ˆ2  "# ‰ œ

(62.4)(3) #

œ 93.6 lb

(b) Suppose that H is the maximum height to which the tank can be filled without exceeding its design limitation. This means that the depth of a typical strip is (H  1)  y and the force is F œ '0 w[(H  1)  y]L(y) dy œ Fmax , where 1

Fmax œ 312 lb. Thus, Fmax œ w'0 [(H  1)  y] † 1 dy œ (62.4) ’(H  1)y 

" y# # “!

1

œ (62.4) ˆH  3# ‰

‰ (2H  3) œ 93.6  62.4H. Then Fmax œ 93.6  62.4H Ê 312 œ 93.6  62.4H Ê H œ œ ˆ 62.4 #

405.6 62.4

œ 6.5 ft

13. Suppose that h is the maximum height. Using the coordinate system given in the text, we find an equation for the line of the end plate's right-hand edge is y œ 5# x Ê x œ 25 y. The total width is L(y) œ 2x œ 45 y and the depth of the typical horizontal strip at level y is (h  y). Then the force is F œ '0 w(h  y)L(y) dy œ Fmax , h

where Fmax œ 6667 lb. Hence, Fmax œ w'0 (h  y) † 45 y dy œ (62.4) ˆ 45 ‰ ' ahy  y# b dy h

h

0

œ

# (62.4) ˆ 45 ‰ ’ hy#



h

y$ 3 “0

$

œ (62.4) ˆ 45 ‰ Š h# 

$

h 3

‰ œ $Ɉ 54 ‰ ˆ 6667 10.4 ¸ 9.288 ft. The volume of water which the tank can hold is V œ Height œ h and

" #

(Base) œ

2 5

$

max ‰ ‹ œ (62.4) ˆ 45 ‰ ˆ "6 ‰ h$ œ (10.4) ˆ 45 ‰ h$ Ê h œ Ɉ 54 ‰ ˆ F10.4

" #

(Base)(Height) † 30, where

h Ê V œ ˆ 25 h# ‰ (30) œ 12h# ¸ 12(9.288)# ¸ 1035 ft$ .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

409

410

Chapter 6 Applications of Definite Integrals

14. (a) After 9 hours of filling there are V œ 1000 † 9 œ 9000 cubic feet of water in the pool. The level of the water V is h œ Area , where Area œ 50 † 30 œ 1500 Ê h œ 9000 1500 œ 6 ft. The depth of the typical horizontal strip at level y is then (6  y) for the coordinate system given in the text. An equation for the drain plate's right-hand edge is y œ x Ê total width is L(y) œ 2x œ 2y. Thus the force against the drain plate is F œ '0 w(6  y)L(y) dy œ 62.4 '0 (6  y) † 2y dy œ (62.4)(2)'0 a6y  y# b œ (62.4)(2) ’ 6y#  1

1

1

#

œ (124.8) ˆ3  "3 ‰ œ (124.8) ˆ 83 ‰ œ 332.8 lb

" y$ 3 “!

(b) Suppose that h is the maximum height. Then, the depth of a typical strip is (h  y) and the force F œ '0 w(h  y)L(y) dy œ Fmax , where Fmax œ 520 lb. Hence, Fmax œ (62.4)'0 (h  y) † 2y dy 1

1

œ 124.8'0 ahy  y# b dy œ (124.8) ’ hy#  1

Êhœ

27 3

#

" y$ 3 “!

œ (124.8) ˆ h#  "3 ‰ œ (20.8)(3h  2) Ê

520 20.8

œ 3h  2

œ 9 ft

15. The pressure at level y is p(y) œ w † y Ê the average pressure is p œ œ

# ˆ wb ‰ Š b# ‹

œ

" b

'0b p(y) dy œ b" '0b w † y dy œ b" w ’ y# “ b #

0

wb #

. This is the pressure at level

b #

, which

is the pressure at the middle of the plate. 16. The force exerted by the fluid is F œ '0 w(depth)(length) dy œ '0 w † y † a dy œ (w † a)'0 y dy œ (w † a) ’ y# “ b

œ

# w Š ab# ‹

œ

ˆ wb ‰ # (ab)

b

b

#

b 0

œ p † Area, where p is the average value of the pressure (see Exercise 21).

17. When the water reaches the top of the tank the force on the movable side is 'c2 (62.4) ˆ2È4  y# ‰ (y) dy 0

œ (62.4)'c2 a4  y# b 0

"Î#

(2y) dy œ (62.4) ’ 23 a4  y# b

$Î# !



#

œ (62.4) ˆ 23 ‰ ˆ4$Î# ‰ œ 332.8 ft † lb. The force

compressing the spring is F œ 100x, so when the tank is full we have 332.8 œ 100x Ê x ¸ 3.33 ft. Therefore the movable end does not reach the required 5 ft to allow drainage Ê the tank will overflow. 18. (a) Using the given coordinate system we see that the total width is L(y) œ 3 and the depth of the strip is (3  y).

Thus, F œ '0 w(3  y)L(y) dy œ '0 (62.4)(3  y) † 3 dy 3

3

œ (62.4)(3)'0 (3  y) dy œ (62.4)(3) ’3y  3

$ y# # “!

œ (62.4)(3) ˆ9  9# ‰ œ (62.4)(3) ˆ 9# ‰ œ 842.4 lb

(b) Find a new water level Y such that FY œ (0.75)(842.4 lb) œ 631.8 lb. The new depth of the strip is (Y  y) and Y is the new upper limit of integration. Thus, FY œ '0 w(Y  y)L(y) dy Y

œ 62.4'0 (Y  y) † 3 dy œ (62.4)(3)'0 (Y  y) dy œ (62.4)(3) ’Yy  Y

Y

Y

y# # “0

œ (62.4)(3) ŠY# 

Y# # ‹

#

2FY È6.75 ¸ 2.598 ft. So, ?Y œ 3  Y œ (62.4)(3) Š Y# ‹ . Therefore, Y œ É (62.4)(3) œ É 1263.6 187.2 œ

¸ 3  2.598 ¸ 0.402 ft ¸ 4.8 in 19. Use a coordinate system with y œ 0 at the bottom of the carton and with L(y) œ 3.75 and the depth of a typical strip being (7.75  y). Then F œ '0

7Þ75

' ‰ w(7.75  y)L(y) dy œ ˆ 64.5 12$ (3.75) 0

7Þ75

‰ (7.75  y) dy œ ˆ 64.5 12$ (3.75) ’7.75y 

#

(7.75) ‰ œ ˆ 64.5 ¸ 4.2 lb 12$ (3.75) #

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

(Þ(& y# # “!

Chapter 6 Practice Exercises

411

57 ‰ 20. The force against the base is Fbase œ pA œ whA œ w † h † (length)(width) œ ˆ 12 (10)(5.75)(3.5) ¸ 6.64 lb. $

To find the fluid force against each side, use a coordinate system with y œ 0 at the bottom of the can, so that the depth of a of ‰ of ‰ ˆ 57 ‰ ˆ width typical strip is (10  y): F œ '0 w(10  y) ˆ width the side dy œ 12$ the side ’10y  10

"! y# # “!

57 ‰ ˆ width of ‰ ˆ 100 ‰ 57 ‰ 57 ‰ œ ˆ 12 Ê Fend œ ˆ 12 (50)(3.5) ¸ 5.773 lb and Fside œ ˆ 12 (50)(5.75) ¸ 9.484 lb $ $ $ the side #

21. (a) An equation of the right-hand edge is y œ

x Ê xœ

3 #

2 3

y and L(y) œ 2x œ

4y 3

. The depth of the strip

is (3  y) Ê F œ '0 w(3  y)L(y) dy œ '0 (62.4)(3  y) ˆ 43 y‰ dy œ (62.4) † ˆ 43 ‰'0 a3y  y# b dy 3

3

$ y$ 3 “!

œ (62.4) ˆ 43 ‰ ’ 3# y# 

œ (62.4) ˆ 43 ‰  27 # 

3

27 ‘ 3

‰ œ (62.4) ˆ 34 ‰ ˆ 27 6 œ 374.4 lb

(b) We want to find a new water level Y such that FY œ

" #

(374.4) œ 187.2 lb. The new depth of the strip is

(Y  y), and Y is the new upper limit of integration. Thus, FY œ '0 w(Y  y)L(y) dy Y

œ 62.4'0 (Y  y) ˆ 43 y‰ dy œ (62.4) ˆ 43 ‰'0 aYy  y# b dy œ (62.4) ˆ 43 ‰ ’Y † Y

Y

œ (62.4) ˆ 29 ‰ Y$ . Therefore Y$ œ

9FY 2†(62.4)

œ

(9)(187.2) 124.8

y# #



Y

y$ 3 “!

$

œ (62.4) ˆ 34 ‰ Š Y2 

Y$ 3 ‹

$ $È Ê Y œ É (9)(187.2) 13.5 ¸ 2.3811 ft. So, 124.8 œ

?Y œ 3  Y ¸ 3  2.3811 ¸ 0.6189 ft ¸ 7.5 in. to the nearest half inch. (c) No, it does not matter how long the trough is. The fluid pressure and the resulting force depend only on depth of the water. ‰ 22. The area of a strip of the face of height ?y and parallel to the base is 100ˆ 26 24 † ?y, where the factor of

26 24

inclination of the face of the dam. With the origin at the bottom of the dam, the force on the face is then: ‰ F œ '0 w(24  y)a100bˆ 26 24 dy œ '('! ’#%y  24

#%

y# # “!

œ '('!Š#%# 

#%# # ‹

œ 1,946,880 lb.

CHAPTER 6 PRACTICE EXERCISES # 1. A(x) œ 14 (diameter)# œ 14 ˆÈx  x# ‰ œ 14 ˆx  2Èx † x#  x% ‰ ; a œ 0, b œ 1

Ê V œ 'a A(x) dx œ b

œ

1 4

œ

1 4†70

#

’ x#  74 x(Î# 

È3 4

x& 5 “!

(35  40  14) œ

2. A(x) œ œ

1 4 "

" #

'01 ˆx  2x&Î#  x% ‰ dx 1 4

œ

ˆ "# 

4 7

 5" ‰

91 280

(side)# ˆsin 13 ‰ œ

È3 4

ˆ2Èx  x‰#

ˆ4x  4xÈx  x# ‰ ; a œ 0, b œ 4

Ê V œ 'a A(x) dx œ

È3 4

b

œ

È3 4

œ

32È3 4

’2x#  85 x&Î#  ˆ1 

8 5

'04 ˆ4x  4x$Î#  x# ‰ dx

% x$ 3 “!

 32 ‰ œ

8È 3 15

œ

È3 4

ˆ32 

8†32 5



(15  24  10) œ

64 ‰ 3

8È 3 15

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

accounts for the

412

Chapter 6 Applications of Definite Integrals

3. A(x) œ œ

1 4

1 4

(diameter)# œ

1 4

(2 sin x  2 cos x)#

† 4 asin# x  2 sin x cos x  cos# xb

œ 1(1  sin 2x); a œ

1 4

,bœ

51 4

Ê V œ 'a A(x) dx œ 1 '1Î4 (1  sin 2x) dx 51Î4

b

œ 1 x 

cos 2x ‘ &1Î% # 1Î%

œ 1 ’Š 541 

cos 5#1 #

cos 1# #

‹  Š 14 

‹“ œ 1 # #

#

%

4. A(x) œ (edge)# œ ŒŠÈ6  Èx‹  0 œ ŠÈ6  Èx‹ œ 36  24È6 Èx  36x  4È6 x$Î#  x# ; a œ 0, b œ 6 Ê V œ 'a A(x) dx œ '0 Š36  24È6 Èx  36x  4È6 x$Î#  x# ‹ dx b

6

œ ’36x  24È6 † 23 x$Î#  18x#  4È6 † 25 x&Î#  œ 216  576  648  5. A(x) œ

(diameter)# œ

1 4

 72 œ 360 

Š2Èx 

x# 4‹

#

œ

1728 5

œ

1 4

œ 216  16 † È6 È6 † 6  18 † 6#  58 È6 È6 † 6# 

18001728 5

Š4x  x&Î# 

œ

6$ 3

72 5

x% 16 ‹ ;

a œ 0, b œ 4 Ê V œ 'a A(x) dx b

'04 Š4x  x&Î#  16x ‹ dx œ 14 ’2x#  27 x(Î#  5x†16 “ % œ 14 ˆ32  32 † 87  25 † 32‰ %

œ

1 4

œ

321 4

ˆ1 

6. A(x) œ œ

1 4

1728 5

' x$ 3 “!

È3 4

" #

8 7

 25 ‰ œ

81 35

&

(35  40  14) œ

(edge)# sin ˆ 13 ‰ œ

È3 4

!

721 35

2Èx  ˆ2Èx‰‘#

ˆ4Èx‰# œ 4È3 x; a œ 0, b œ 1

Ê V œ 'a A(x) dx œ '0 4È3 x dx œ ’2È3 x# “ b

1

" !

œ 2È3

7. (a) .3=5 7/>29. :

V œ 'a 1R# (x) dx œ 'c1 1 a3x% b dx œ 1 'c1 9x) dx b

1

1

#

"

œ 1 cx* d " œ 21

(b) =2/66 7/>29. : shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x a3x% b dx œ 21 † 3'0 x& dx œ 21 † 3 ’ x6 “ œ 1 b

1

1

'

!

Note: The lower limit of integration is 0 rather than 1. (c) =2/66 7/>29. : shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ 21'c1 (1  x) a3x% b dx œ 21 ’ 3x5  b

1

"

&

(d) A+=2/< 7/>29. :

" x' 2 “ "

œ 21 ˆ 35  "# ‰  ˆ 35  "# ‰‘ œ

R(x) œ 3, r(x) œ 3  3x% œ 3 a1  x% b Ê V œ 'a 1 cR# (x)  r# (x)d dx œ 'c1 1 ’9  9 a1  x% b “ dx b

1

œ 91 'c1 c1  a1  2x%  x) bd dx œ 91 'c1 a2x%  x) b dx œ 91 ’ 2x5  1

1

&

" x* 9 “ "

#

œ 181  25  9" ‘ œ

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

21†13 5

œ

261 5

121 5

Chapter 6 Practice Exercises 8. (a) A+=2/< 7/>29. : R(x) œ

, r(x) œ

4 x$

" #

# # # & Ê V œ 'a 1cR# (x)  r# (x)d dx œ '1 1 ’ˆ x4$ ‰  ˆ "# ‰ “ dx œ 1  16  x4 ‘ " 5 x b

2

"‰ " ˆ 16 " ‰‘ œ 1 ˆ 10 œ 1 ˆ 5†16  32  #   5  4

(b) =2/66 7/>29. :

V œ 21'1 x ˆ x4$  "# ‰ dx œ 21 ’4x"  2

(c) =2/66 7/>29. :

" #

# x# 4 “"



 4" ‰ œ

16 5

1 20

(2  10  64  5) œ

b

2

4 x

x

(d) A+=2/< 7/>29. :

# x# 4 “"

571 #0

œ 21 ˆ 4#  1‰  ˆ4  4" ‰‘ œ 21 ˆ 54 ‰ œ

shell ‰ shell V œ 21'a ˆ radius Š height ‹ dx œ 21'1 (2  x) ˆ x4$  "# ‰ dx œ 21'1 ˆ x8$ 

œ 21 ’ x4# 

413

2

4 x#

51 #

 1  x# ‰ dx

œ 21 (1  2  2  1)  ˆ4  4  1  4" ‰‘ œ

31 #

V œ 'a 1cR# (x)  r# (x)d dx b

# œ 1 '1 ’ˆ 7# ‰  ˆ4  2

dx

œ

491 4

 161'1 a1  2x$  x' b dx

œ

491 4

 161 ’x  x# 

œ

491 4 491 4 491 4

 161 ˆ2  4"  5†"3# ‰  ˆ1  1  5" ‰‘ "  161 ˆ 4"  160  5" ‰

œ œ 9.

4 ‰# x$ “

2



161 160

# x& 5 “"

(40  1  32) œ

491 4



711 10

1031 20

œ

(a) .3=5 7/>29. :

V œ 1 '1 ŠÈx  1‹ dx œ 1'1 (x  1) dx œ 1 ’ x#  x“ #

5

5

#

‰ ˆ" ‰‘ œ 1 ˆ 24 ‰ œ 1 ˆ 25 # 5  # 1 #  4 œ 81

& "

(b) A+=2/< 7/>29. :

R(y) œ 5, r(y) œ y#  1 Ê V œ 'c 1 cR# (y)  r# (y)d dy œ 1 'c2 ’25  ay#  1b “ dy d

2

œ 1'c2 a25  y%  2y#  1b dy œ 1 'c2 a24  y%  2y# b dy œ 1 ’24y  2

2

œ 321 ˆ3 

2 5

 "3 ‰ œ

321 15

(45  6  5) œ

10881 15

#

y& 5

 23 y$ “

# #

œ 21 ˆ24 † 2 

(c) .3=5 7/>29. : R(y) œ 5  ay#  1b œ 4  y#

Ê V œ 'c 1R# (y) dy œ 'c2 1 a4  y# b dy d

2

#

œ 1 'c2 a16  8y#  y% b dy 2

œ 1 ’16y 

8y$ 3

œ 641 ˆ1 

2 3



# y& 5 “ #

 "5 ‰ œ

œ 21 ˆ32 

641 15

64 3



(15  10  3) œ

32 ‰ 5 5121 15

10. (a) =2/66 7/>29. :

shell ‰ shell V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21y Šy  d

4

œ 21'0 Šy#  4

œ

21 1#

† 64 œ

y$ 4‹

321 3

$

dy œ 21 ’ y3 

%

y% 16 “ !

y# 4‹

dy

œ 21 ˆ 64 3 

64 ‰ 4

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

32 5



2 3

† 8‰

414

Chapter 6 Applications of Definite Integrals

(b) =2/66 7/>29. : shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x ˆ2Èx  x‰ dx œ 21'0 ˆ2x$Î#  x# ‰ dx œ 21 ’ 45 x&Î#  b

4

œ 21 ˆ 45 † 32 

64 ‰ 3

œ

4

1281 15

% x$ 3 “!

(c) =2/66 7/>29. :

shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21(4  x) ˆ2Èx  x‰ dx œ 21'0 ˆ8x"Î#  4x  2x$Î#  x# ‰ dx b

4

$Î# œ 21 ’ 16  2x#  54 x&Î#  3 x

œ 641 ˆ1  45 ‰ œ

641 5

4

% x$ 3 “!

œ 21 ˆ 16 3 † 8  32 

(d) =2/66 7/>29. :

shell ‰ shell V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21(4  y) Šy  d

4

œ 21'0 Š4y  2y#  4

y$ 4‹

y# 4‹ %

y% 16 “ !

dy œ 21 ’2y#  23 y$ 

4 5

† 32 

64 ‰ 3

œ 641 ˆ 34  1 

dy œ 21'0 Š4y  y#  y#  4

œ 21 ˆ32 

2 3

4 5

y$ 4‹

 32 ‰

dy

† 64  16‰ œ 321 ˆ2 

321 3

 1‰ œ

8 3

11. .3=5 7/>29. : R(x) œ tan x, a œ 0, b œ

1 3

Ê V œ 1 '0 tan# x dx œ 1'0 asec# x  1b dx œ 1[tan x  x]! 1Î3

12. .3=5 7/>29. :

1Î3

1Î$

V œ 1'0 (2  sin x)# dx œ 1 '0 a4  4 sin x  sin# xb dx œ 1'0 ˆ4  4 sin x  1

œ 1 4x  4 cos x 

1

x #



sin 2x ‘ 1 4 !

1

œ 1 ˆ41  4 

1 #

 0‰  (0  4  0  0)‘ œ

œ

1cos 2x ‰ dx # 9 1 1 ˆ #  8‰ œ 1#

1 Š3È31‹ 3

(91  16)

13. (a) .3=5 7/>29. :

V œ 1'0 ax#  2xb dx œ 1'0 ax%  4x$  4x# b dx œ 1 ’ x5  x%  43 x$ “ œ 1 ˆ 32 5  16  2

œ

161 15

2

#

(6  15  10) œ

#

&

!

161 15

32 ‰ 3

(b) A+=2/< 7/>29. :

V œ '0 1’1#  ax#  2x  "b “ dx œ '0 1 dx  '0 1 ax  "b% dx œ #1  ’1 2

2

#

2

(c) =2/66 7/>29. :

# ax"b& & “!

œ #1  1 †

# &

œ

)1 &

shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ 21'0 (2  x) c ax#  2xbd dx œ 21'0 (2  x) a2x  x# b dx b

2

2

œ 21'0 a4x  2x#  2x#  x$ b dx œ 21'0 ax$  4x#  4xb dx œ 21 ’ x4  43 x$  2x# “ œ 21 ˆ4  2

œ

21 3

2

(36  32) œ

#

%

!

81 3

32 3

 8‰

(d) A+=2/< 7/>29. :

V œ 1 '0 c2  ax#  2xbd dx  1'0 2# dx œ 1'0 ’4  4 ax#  2xb  ax#  2xb “ dx  81 2

2

#

2

#

œ 1'0 a4  4x#  8x  x%  4x$  4x# b dx  81 œ 1'0 ax%  4x$  8x  4b dx  81 2

&

2

#

‰ œ 1 ’ x5  x%  4x#  4x“  81 œ 1 ˆ 32 5  16  16  8  81 œ !

1 5

(32  40)  81 œ

721 5

14. .3=5 7/>29. :

V œ 21'0 4 tan# x dx œ 81'0 asec# x  1b dx œ 81[tan x  x]! 1Î4

1Î4

1Î%

œ 21(4  1)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley



401 5

œ

321 5

Chapter 6 Practice Exercises 15. The material removed from the sphere consists of a cylinder and two "caps." From the diagram, the height of the cylinder #

is 2h, where h#  ŠÈ$‹ œ ## , i.e. h œ ". Thus #

Vcyl œ a#hb1ŠÈ$‹ œ '1 ft$ . To get the volume of a cap, use the disk method and x#  y# œ ## : Vcap œ '" 1x# dy 2

œ '" 1a%  y# bdy œ 1’%y  2

œ 1ˆ8  83 ‰  ˆ%  "3 ‰‘ œ

# y3 3 “"

&1 3

ft$ . Therefore,

Vremoved œ Vcyl  #Vcap œ '1 

"!1 3

#)1 3

œ

ft$ .

16. We rotate the region enclosed by the curve y œ É12 ˆ1 

4x# ‰ 121

and the x-axis around the x-axis. To find the

11Î2

volume we use the .3=5 method: V œ 'a 1R# (x) dx œ 'c11Î2 1 ŠÉ12 ˆ1  b

œ 121'c11Î2 Š1  11Î2

4x# 121 ‹

œ 1321 ˆ1  "3 ‰ œ 17. y œ x"Î# 

x$Î# 3

Ê

ˆ4 

" #

œ

#

x"Î#  "# x"Î# Ê Š dy dx ‹ œ

" 4

œ '1

8

dx dy

È9x#Î$  4 3x"Î$

œ

5 12

2 3

#

4

4

ˆ2 

14 ‰ 3

#

x"Î$ Ê Š dx dy ‹ œ

œ

4x#Î$ 9

" #

ˆx"Î#  x"Î# ‰ dx œ

" #

2x"Î#  23 x$Î# ‘ % "

10 3 dx Ê L œ '1 Ê1  Š dy ‹ dy œ '1 É1  #

8

8

4 9x#Î$

dy

'1 È9x#Î$  4 ˆx"Î$ ‰ dx; u œ 9x#Î$  4 Ê du œ 6y"Î$ dy; x œ 1 40 " ' "  2 $Î# ‘ %! Ä L œ 18 u"Î# du œ 18 œ #"7 40$Î#  13$Î# ‘ ¸ 7.634 3 u "$ 13

dx œ

x œ 8 Ê u œ 40d 19. y œ

" #

† 8‰  ˆ2  23 ‰‘ œ

18. x œ y#Î$ Ê

8

" 3

x'Î&  58 x%Î& Ê

dx

ˆ x"  2  x‰ Ê L œ ' É1  4" ˆ x"  2  x‰ dx 1

4

2 3

4x# 121 ‹

œ 881 ¸ 276 in$

4

" #

11Î2

dx œ 1 '11Î2 12 Š1 

4 ‰ 11 ˆ 4 ‰ ˆ 11 ‰ “ œ 1321 ’1  ˆ 363 œ 241 ’ 11 Š 4 ‹“ 2  363 #

# Ê L œ '1 É 4" ˆ x"  2  x‰ dx œ '1 É 4" ax"Î#  x"Î# b dx œ '1

œ

#

$

4x$ 363 “ ""Î#

dx œ 121 ’x 

2641 3

dy dx

""Î#

4x# ‰ 121 ‹

#

" #

œ

dy dx

x"Î&  "# x"Î& Ê Š dy dx ‹ œ

" 4

Ê u œ 13,

ˆx#Î&  2  x#Î& ‰

# Ê L œ '1 É1  4" ax#Î&  2  x#Î& b dx Ê L œ '1 É 4" ax#Î&  2  x#Î& b dx œ ' É 4" ax"Î&  x"Î& b dx 32

32

32

1

œ '1

32

œ

" 48

20. x œ

" #

ˆx

"Î&

x

"Î& ‰

(1260  450) œ

" 1#

y$ 

" y

Ê

" % œ '1 É 16 y  2

" #

dx œ œ

1710 48

dx dt



5 4

$# x%Î& ‘ "

#

œ

" 4



" y%

dy œ '1 ÊŠ 4" y# 

y# 

" y#

x

'Î&

dx dy

8 œ ˆ 12  "# ‰  ˆ 1"#  1‰ œ

21.

" 5 # 6 285 8

dx Ê Š dy ‹ œ

2

7 1#

œ 5 sin t  5 sin 5t and



dy dt

" #

œ

" y# ‹

" 16 #

œ

" #

ˆ 65

y% 

" #

'

†2 



" y%

5 4



ˆ 56



5 ‰‘ 4

œ

" #

ˆ 315 6 

" % Ê L œ '1 Ê1  Š 16 y 

dy œ '1 Š 4" y#  2

†2

%‰

2

" y# ‹

dy œ ’ 1"# y$  y" “

" #



75 ‰ 4

" y% ‹

dy

# "

13 12

#

‰  Š dy œ 5 cos t  5 cos 5t Ê Êˆ dx dt dt ‹

#

œ Éa5 sin t  5 sin 5tb#  a5 cos t  5 cos 5tb# œ 5Èsin# 5t  #sin t sin 5t  sin# t  cos# t  #cos t cos 5t  cos# 5t œ &È#  #asin t sin 5t  cos t cos 5 tb œ 5È#a"  cos %tb œ 5É%ˆ "# ‰a"  cos %tb œ "!Èsin# #t œ "!lsin #tl œ "!sin #t (since ! Ÿ t Ÿ 1# ) Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

415

416

Chapter 6 Applications of Definite Integrals Ê Length œ '!

1 Î2

22.

dx dt

œ 3t2  12t and

1Î#

"!sin #t dt œ c5 cos #td ! dy dt

œ a&ba"b  a&ba"b œ "! #

#

‰  Š dy Éa3t2  12tb#  a3t2  12tb# œ È288t#  "8t4 œ 3t2  12t Ê Êˆ dx dt dt ‹ œ

œ 3È2 ktkÈ16  t2 Ê Length œ '! 3È2 ktkÈ16  t2 dt œ 3È2'! t È16  t2 dt; ’u œ 16  t2 Ê du œ 2t dt "

"

3È 2 2

Ê "# du œ t dt; t œ 0 Ê u œ 16; t œ 1 Ê u œ 17“; œ

23.

dx d)

3È 2 2

† 23 Ša17b3/2  64‹ œ È2Ša17b3/2  64‹ ¸ 8.617.

œ $ sin ) and

Ê Length œ '!

dy d)

$1Î2

#

24. x œ t and y œ œ'

'16"7 Èu du œ 3È2 2  23 u3/2 ‘1617 œ 3È2 2 Š 23 a17b3/2  23 a16b3/2 ‹

t$ 3

$ d) œ $'!

$1Î2

d) œ $ˆ $#1  !‰ œ

 t, È3 Ÿ t Ÿ È3 Ê

È3

È 3

#

#

‰  Š dy Éa$ sin )b#  a$ cos )b# œ È$asin# )  cos# )b œ $ œ $ cos ) Ê Êˆ dx d) d) ‹ œ

Èt%  #t#  " dt œ

'

dx dt

*1 #

œ 2t and

dy dt

È3

È 3

Èt%  2t#  " dt œ

œt

'

#

 " Ê Length œ '

È3

È 3

È3

È 3

Éat#  "b# dt œ

Éa2tb#  at#  "b# dt

È

'È33 at#  "b dt œ ’ t3  t“ 3

È3 È 3

œ 4È3 25. Intersection points: 3  x# œ 2x# Ê 3x#  3 œ 0 Ê 3(x  1)(x  1) œ 0 Ê x œ 1 or x œ 1. Symmetry suggests that x œ 0. The typical @/3-+6 strip has # # # center of mass: (µ x ßµ y ) œ Šxß 2x  a3  x b ‹ œ Šxß x  3 ‹ , #

#

#

#

#

length: a3  x b  2x œ 3 a1  x b, width: dx, area: dA œ 3 a1  x# b dx, and mass: dm œ $ † dA œ 3$ a1  x# b dx Ê the moment about the x-axis is µ y dm œ œ

3 #

3 #

$ ax#  3b a1  x# b dx œ &

$ ’ x5 

œ 3$ ’x 

2x$ 3

" x$ 3 “ "

 3x“

" "

3 #

$ ax%  2x#  3b dx Ê Mx œ ' µ y dm œ

œ 3$ ˆ 5" 

2 3

 3‰ œ

œ 6$ ˆ1  "3 ‰ œ 4$ Ê y œ

Mx M

œ

3$ 15

(3  10  45) œ

32$ 5 †4 $

œ

8 5

32$ 5

3 #

$ 'c1 ax%  2x#  3b dx "

; M œ ' dm œ 3$ 'c1 a1  x# b dx "

. Therefore, the centroid is (xß y) œ ˆ!ß 85 ‰ .

26. Symmetry suggests that x œ 0. The typical @/3-+6 # strip has center of mass: (µ x ßµ y ) œ Šxß x# ‹ , length: x# , width: dx, area: dA œ x# dx, mass: dm œ $ † dA œ $ x# dx Ê the moment about the x-axis is µ y dm œ #$ x# † x# dx x% dx Ê Mx œ ' µ y dm œ

œ

$ #

œ

2$ 10

a2& b œ

32$ 5

$ #

; M œ ' dm œ $

'c22 x% dx œ 10$ cx& d ## 'c22 x# dx œ $ ’ x3 “ # $

#

œ

2$ 3

a2$ b œ

16$ 3

Ê yœ

Mx M

œ

32†$ †3 5†16†$

œ

centroid is(xß y) œ ˆ!ß 65 ‰ .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

6 5

. Therefore, the

Chapter 6 Practice Exercises

417

27. The typical @/3-+6 strip has: center of mass: (µ x ßµ y ) œ Œxß

#

4  x4 #

 , length: 4 

area: dA œ Š4  œ $ Š4 

x# 4‹

x# 4 ‹dx,

width: dx,

mass: dm œ $ † dA

dx Ê the moment about the x-axis is #

Š4  x4 ‹

µ y dm œ $ †

x# 4,

x# 4‹

Š4 

#

$ #

dx œ

moment about the y-axis is µ x dm œ $ Š4  œ

$ 2

’16x 

% x& 5†16 “ !

$ #

œ

64 

#

œ

16†$ †3 32†$

œ

Mx M

and y œ

3 2

œ

dx. Thus, Mx œ ' µ y dm œ

4

4

My M

x$ 4‹

‹ † x dx œ $ Š4x 

x 4

œ $ (32  16) œ 16$ ; M œ ' dm œ $ '0 Š4  Ê xœ

dx; the

; My œ ' µ x dm œ $ '0 Š4x 

128$ 5

œ

64 ‘ 5

x% 16 ‹

Š16 

128†$ †3 5†32†$

x# 4‹

œ

dx œ $ ’4x 

12 5

% x$ 12 “ !

x$ 4‹

dx œ $ ’2x# 

œ $ ˆ16 

64 ‰ 1#

$ #

'04 Š16  16x ‹ dx %

% x% 16 “ !

32$ 3

œ

‰ . Therefore, the centroid is (xß y) œ ˆ 3# ß 12 5 .

28. A typical 29+6 strip has: # center of mass: (µ x ßµ y ) œ Š y # 2y ß y‹ , length: 2y  y# , width: dy, area: dA œ a2y  y# b dy, mass: dm œ $ † dA œ $ a2y  y# b dy; the moment about the x-axis is µ y dm œ $ † y † a2y  y# b dy œ $ a2y#  y$ b ; the moment # about the y-axis is µ x dm œ $ † ay  2yb † a2y  y# b dy #

œ a4y  y b dy Ê Mx œ ' µ y dm œ $ '0 a2y#  y$ b dy $ #

#

œ $ ’ 23 y$  œ

$ #

ˆ 43†8



Mx M

2

%



œ

# y% 4 “!

32 ‰ 5

4†$ †3 3†4†$

œ

œ $ ˆ 23 † 8  32$ 15

16 ‰ 4

œ $ ˆ 16 3 

16 ‰ 4

œ

$ †16 12

œ

4$ 3

; My œ ' µ x dm œ

$ #

'02 a4y#  y% b dy œ #$ ’ 34 y$  y5 “ # &

$ ; M œ ' dm œ $ '0 a2y  y# b dy œ $ ’y#  y3 “ œ $ ˆ4  83 ‰ œ

#

2

!

!

4$ 3

Ê xœ

My M

œ

$ †32†3 15†$ †4

œ

œ 1. Therefore, the centroid is (xß y) œ ˆ 85 ß 1‰ .

29. A typical horizontal strip has: center of mass: (µ x ßµ y ) œ Šy

#

 2y # ß y‹ ,

length: 2y  y# , width: dy,

area: dA œ a2y  y# b dy, mass: dm œ $ † dA œ (1  y) a2y  y# b dy Ê the moment about the x-axis is µ y dm œ y(1  y) a2y  y# b dy # œ a2y  2y$  y$  y% b dy œ a2y#  y$  y% b dy; the moment about the y-axis is # µ x dm œ Š y  2y ‹ (1  y) a2y  y# b dy œ " a4y#  y% b (1  y) dy œ #

Ê Mx œ ' µ y dm œ '0 a2y#  y$  y% b dy œ ’ 23 y$  2

œ

16 60

œ

" #

" #

#

(20  15  24) œ $

Š 4†32  2% 

2& 5



4 15

(11) œ

2' 6‹

‰ ˆ 38 ‰ œ œ ˆ 44 15

44 40

œ

11 10

y$ 3



; My œ ' µ x dm œ '0

2

œ 4 ˆ 43  2 

œ '0 a2y  y#  y$ b dy œ ’y#  2

44 15

y% 4



4 5

" #

# y& 5 “!

œ ˆ4 

8 3



16 ‰ 4

œ ˆ 16 3 

œ

8 3

24 5

area: dA œ

x$Î#



32 ‰ 5

œ 16 ˆ "3  " #

dx, mass: dm œ $ † dA œ $ †

x$Î#

 25 ‰

’ 43 y$  y% 

y& 5

2

Ê xœ

My M

‰ ˆ 83 ‰ œ œ ˆ 24 5

9 5

‰ . Therefore, the center of mass is (xß y) œ ˆ 95 ß 11 10 .

3

" 4

; M œ ' dm œ '0 (1  y) a2y  y# b dy

30. A typical vertical strip has: center of mass: (µ x ßµ y ) œ ˆxß 2x3$Î# ‰ , length: 3

16 4

a4y#  4y$  y%  y& b dy œ

 86 ‰ œ 4 ˆ2  45 ‰ œ

# y% 4 “!

a4y#  4y$  y%  y& b dy

3 x$Î#

, width: dx,

dx Ê the moment about the x-axis is

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

and y œ

Mx M



# y' 6 “!

8 5

and

418

Chapter 6 Applications of Definite Integrals

µ y dm œ

9$ 2x$

3 † $ x$Î# dx œ

3 #x$Î#

(a) Mx œ $ '1

9

M œ $ '1

9

(b) Mx œ '1

9

" #

9$ #

ˆ x9$ ‰ dx œ

#

*

20$ 9

’ x# “ œ "

*

ˆ x9$ ‰ dx œ

9 #

*

dx.

*

My M

œ

12$ 4$

œ 3 and y œ

Mx M

œ

ˆ 209$ ‰ 4$

œ

5 9

* 3 ‰ 3 ‰  "x ‘ * œ 4; My œ ' x# ˆ $Î# dx œ 2x$Î# ‘ " œ 52; M œ '1 x ˆ x$Î# dx " x 1 9

œ 6 x"Î# ‘ " œ 12 Ê x œ 31. S œ 'a 21y Ê1  Š dy dx ‹ dx; #

b

3$ x"Î#

3 ‰ ; My œ $ '1 x ˆ x$Î# dx œ 3$ 2x"Î# ‘ " œ 12$ ; 9

dx œ 6$ x"Î# ‘ " œ 4$ Ê x œ

3 x$Î# x #

3 dx; the moment about the y-axis is µ x dm œ x † $ x$Î# dx œ

My M

dy dx

œ

œ

13 3

and y œ

Mx M

9

œ

" 3

#

" È2x  1

Ê Š dy dx ‹ œ

Ê S œ '0 21È2x  1 É1  3

" #x  1

" #x  1

dx

2 È ' Èx  1 dx œ 2È21  2 (x  1)$Î# ‘ $ œ 2È21 † 2 (8  1) œ œ 21'0 È2x  1 É 2x 2x1 dx œ 2 21 0 3 3 ! 3

3

32. S œ 'a 21y Ê1  Š dy dx ‹ dx; #

b

œ

1 6

dy dx

% ' œ x# Ê Š dy dx ‹ œ x Ê S œ 0 21 † #

1

x$ 3

È1  x% dx œ

1 6

281È2 3

'01 È1  x% a4x$ b dx

'01 È1  x% d a1  x% b œ 16 ’ 32 a1  x% b$Î# “ " œ 19 ’2È2  1“ !

33. S œ 'c 21x Ê1  Š dx dy ‹ dy; #

d

dx dy

œ

ˆ "# ‰ (4  2y) È4y  y#

2y È4y  y#

œ

#

Ê 1  Š dx dy ‹ œ

4y  y#  4  4y  y# 4y  y#

œ

4 4y  y#

Ê S œ '1 21 È4y  y# É 4y 4 y# dy œ 41'1 dx œ 41 2

2

34. S œ 'c 21x Ê1  Š dx dy ‹ dy; #

d

œ 1'2 È4y  1 dy œ 6

35. x œ

t# #

1 4

dx dy

œ

*

36. x œ t# 

" 2t

761 3

" È2

1

œ 21 Š2 

(125  27) œ

œ t and

ŸtŸ1 Ê

Ê Surface Area œ '1ÎÈ2 21 ˆt#  1

dx dt

1 6

dy dt

1 6

" 4y

œ

Ê S œ '2 21Èy † 6

4y  1 4y

(98) œ

È4y  1 È4y

dy

491 3

È5

œ 2 Ê Surface Area œ '0 21(2t)Èt#  4 dt œ '4 21u"Î# du 9

, where u œ t#  4 Ê du œ 2t dt; t œ 0 Ê u œ 4, t œ È5 Ê u œ 9

and y œ 4Èt ,

œ 21 '1ÎÈ2 ˆt# 

#

Ê 1  Š dx dy ‹ œ 1 

 23 (4y  1)$Î# ‘ ' œ #

and y œ 2t, 0 Ÿ t Ÿ È5 Ê

œ 21  23 u$Î# ‘ % œ

1 2È y

" ‰ˆ 2t 2t

" ‰ 2t#



"‰ #t

dx dt

œ 2t 

ʈ2t 

" ‰# 2t#

dt œ 21 '1ÎÈ2 ˆ2t$  1

" 2t#

and

dy dt

œ

2 Èt

 Š È2 t ‹ dt œ 21 '1ÎÈ2 ˆt#  #

3 #

1

" ‰ Ɉ 2t #t



" ‰# #t#

dt

"

 4" t$ ‰ dt œ 21  2" t%  3# t  8" t# ‘ "ÎÈ#

3È 2 4 ‹

37. The equipment alone: the force required to lift the equipment is equal to its weight Ê F" (x) œ 100 N.

The work done is W" œ 'a F" (x) dx œ '0 100 dx œ [100x]%! ! œ 4000 J; the rope alone: the force required b

40

to lift the rope is equal to the weight of the rope paid out at elevation x Ê F# (x) œ 0.8(40  x). The work done is W# œ 'a F# (x) dx œ '0 0.8(40  x) dx œ 0.8 ’40x  b

40

the total work is W œ W"  W# œ 4000  640 œ 4640 J

%! x# # “!

œ 0.8 Š40# 

40# # ‹

œ

(0.8)(1600) #

œ 640 J;

38. The force required to lift the water is equal to the water's weight, which varies steadily from 8 † 800 lb to 8 † 400 lb over the 4750 ft elevation. When the truck is x ft off the base of Mt. Washington, the water weight is x‰ F(x) œ 8 † 800 † ˆ 2†24750 œ (6400) ˆ1  †4750

x ‰ 9500

lb. The work done is W œ 'a F(x) dx b

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 6 Practice Exercises œ '0

4750

6400 ˆ1 

x ‰ 9500

dx œ 6400 ’x 

œ 22,800,000 ft † lb

%(&! x# 2†9500 “ !

œ 6400 Š4750 

4750# 4†4750 ‹

419

œ ˆ 34 ‰ (6400)(4750)

39. Force constant: F œ kx Ê 20 œ k † 1 Ê k œ 20 lb/ft; the work to stretch the spring 1 ft is W œ '0 kx dx œ k'0 x dx œ ’20 x# “ œ 10 ft † lb; the work to stretch the spring an additional foot is 1

1

#

! # x# 20 ’ # “ "

W œ '1 kx dx œ k '1 x dx œ 2

"

2

œ 20 ˆ 4#  "# ‰ œ 20 ˆ 3# ‰ œ 30 ft † lb

40. Force constant: F œ kx Ê 200 œ k(0.8) Ê k œ 250 N/m; the 300 N force stretches the spring x œ œ

300 250

F k

œ 1.2 m; the work required to stretch the spring that far is then W œ '0 F(x) dx œ '0 250x dx 1Þ2

1Þ2

œ [125x# ]!"Þ# œ 125(1.2)# œ 180 J 41. We imagine the water divided into thin slabs by planes perpendicular to the y-axis at the points of a partition of the interval [0ß 8]. The typical slab between the planes at y and y  ?y has a volume of about ?V œ 1(radius)# (thickness) # œ 1 ˆ 54 y‰ ?y œ 25161 y# ?y ft$ . The force F(y) required to lift this slab is equal to its weight: F(y) œ 62.4 ?V œ

(62.4)(25) 16

1y# ?y lb. The distance through which F(y)

must act to lift this slab to the level 6 ft above the top is about (6  8  y) ft, so the work done lifting the slab is about ?W œ

(62.4)(25) 16

1y# (14  y) ?y ft † lb. The work done

lifting all the slabs from y œ 0 to y œ 8 to the level 6 ft above the top is approximately 8

W¸! !

(62.4)(25) 16

1y# (14  y) ?y ft † lb so the work to pump the water is the limit of these Riemann sums as the norm of

the partition goes to zero: W œ '0

8

œ

(62.4) ˆ 25161 ‰ Š 14 3

$

†8 

8% 4‹

(62.4)(25) (16)

1y# (14  y) dy œ

(62.4)(25)1 16

'08 a14y#  y$ b dy œ (62.4) ˆ 25161 ‰ ’ 143 y$  y4 “ ) %

!

¸ 418,208.81 ft † lb

42. The same as in Exercise 41, but change the distance through which F(y) must act to (8  y) rather than (6  8  y). Also change the upper limit of integration from 8 to 5. The integral is: W œ '0

5

(62.4)(25)1 16

y# (8  y) dy œ (62.4) ˆ 25161 ‰'0 a8y#  y$ b dy œ (62.4) ˆ 25161 ‰ ’ 83 y$  5

œ (62.4) ˆ 25161 ‰ Š 38 † 5$ 

5% 4‹

& y% 4 “!

¸ 54,241.56 ft † lb

43. The tank's cross section looks like the figure in Exercise 41 with right edge given by x œ #

horizontal slab has volume ?V œ 1(radius)# (thickness) œ 1 ˆ #y ‰ ?y œ slab is its weight: F(y) œ 60 †

1 4

1 4

10

22,500 ft†lb 275 ft†lb/sec

y œ y# . A typical

y# ?y. The force required to lift this

y# ?y. The distance through which F(y) must act is (2  10  y) ft, so the

work to pump the liquid is W œ 60'0 1(12  y) Š y4 ‹ dy œ 151 ’ 12y 3  to empty the tank is

5 10

#

$

"! y% 4 “!

œ 22,5001 ft † lb; the time needed

¸ 257 sec

44. A typical horizontal slab has volume about ?V œ (20)(2x)?y œ (20) ˆ2È16  y# ‰ ?y and the force required to lift this slab is its weight F(y) œ (57)(20) ˆ2È16  y# ‰ ?y. The distance through which F(y) must act is (6  4  y) ft, so the work to pump the olive oil from the half-full tank is

W œ 57'c4 (10  y)(20) ˆ2È16  y# ‰ dy œ 2880 'c4 10È16  y# dy  1140'c4 a16  y# b 0

0

0

"Î#

(2y) dy

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

420

Chapter 6 Applications of Definite Integrals œ 22,800 † (area of a quarter circle having radius 4)  23 (1140) ’a16  y# b

$Î# !



œ 335,153.25 ft † lb

%

œ (22,800)(41)  48,640

strip 45. F œ 'a W † Š depth ‹ † L(y) dy Ê F œ 2 '0 (62.4)(2  y)(2y) dy œ 249.6'0 a2y  y# b dy œ 249.6 ’y#  b

2

2

# y$ 3 “!

œ (249.6) ˆ4  83 ‰ œ (249.6) ˆ 43 ‰ œ 332.8 lb strip 46. F œ 'a W † Š depth ‹ † L(y) dy Ê F œ '0 75 ˆ 56  y‰ (2y  4) dy œ 75'0 ˆ 53 y  5Î6

b

5Î6

10 3

 2y#  4y‰ dy

7 7 # 2 $ ‘ &Î' 50 ‰ 25 ‰ 125 ‰‘ #‰ ˆ 18 œ 75 '0 ˆ 10 dy œ 75  10  ˆ 67 ‰ ˆ 36  ˆ 32 ‰ ˆ 216 3  3 y  2y 3 y  6 y  3 y ! œ (75) 5Î6

œ (75) ˆ 25 9 

175 216



250 ‰ 3†#16

‰ œ ˆ 9†75 #16 (25 † 216  175 † 9  250 † 3) œ

strip 47. F œ 'a W † Š depth ‹ † L(y) dy Ê F œ 62.4'0 (9  y) Š2 † b

4

%

œ 62.4 6y$Î#  25 y&Î# ‘ ! œ (62.4) ˆ6 † 8 

2 5

Èy 2 ‹

(75)(3075) 9†#16

¸ 118.63 lb.

dy œ 62.4'0 ˆ9y"Î#  3y$Î# ‰ dy 4

‰ (48 † 5  64) œ † 32‰ œ ˆ 62.4 5

(62.4)(176) 5

œ 2196.48 lb

strip 48. Place the origin at the bottom of the tank. Then F œ '0 W † Š depth ‹ † L(y) dy, h œ the height of the mercury column, h

strip depth œ h  y, L(y) œ 1 Ê F œ '0 849(h  y) " dy œ (849)'0 (h  y) dy œ 849’hy  h

œ

849 # 2 h .

Now solve

849 # 2 h

h

h

y# # “!

œ 849 Šh# 

h# #‹

œ 40000 to get h ¸ 9.707 ft. The volume of the mercury is s2 h œ 12 † 9.707 œ 9.707 ft$ Þ

49. F œ w" '0 (8  y)(2)(6  y) dy  w# 'c6 (8  y)(2)(y  6) dy œ 2w" '0 a48  14y  y# b dy  2w# '6 a48  2y  y# b dy 6

0

œ 2w" ’48y  7y# 

' y$ 3 “!

6

 2w# ’48y  y# 

! y$ 3 “ '

0

œ 216w"  360w#

50. (a) F œ 62.4'0 (10  y) ˆ8  y6 ‰  ˆ y6 ‰‘ dy 6

œ

6

62.4 3

' a240  34y  y# b dy 0

œ

62.4 3

’240y  17y# 

œ 18,720 lb.

' y$ 3 “!

œ

62.4 3

(1440  612  72)

(b) The centroid ˆ 72 ß 3‰ of the parallelogram is located at the intersection of y œ

6 7

x and y œ  65 x 

36 5 .

The centroid of

the triangle is located at (7ß 2). Therefore, F œ (62.4)(7)(36)  (62.4)(8)(6) œ (300)(62.4) œ 18,720 lb CHAPTER 6 ADDITIONAL AND ADVANCED EXERCISES 1. V œ 1 'a cf(x)d# dx œ b#  ab Ê 1'a cf(t)d# dt œ x#  ax for all x  a Ê 1 [f(x)]# œ 2x  a Ê f(x) œ „ É 2x1 a b

x

2. V œ 1 '0 [f(x)]# dx œ a#  a Ê 1 '0 [f(t)]# dt œ x#  x for all x  a Ê 1[f(x)]# œ 2x  1 Ê f(x) œ „ É 2x1 1 a

x

3. s(x) œ Cx Ê '0 È1  [f w (t)]# dt œ Cx Ê È1  [f w (x)]# œ C Ê f w (x) œ ÈC#  1 for C   1 x

Ê f(x) œ '0 ÈC#  1 dt  k. Then f(0) œ a Ê a œ 0  k Ê f(x) œ '0 ÈC#  1 dt  a Ê f(x) œ xÈC#  1  a, x

x

where C   1.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 6 Additional and Advanced Exercises

421

4. (a) The graph of f(x) œ sin x traces out a path from (!ß !) to (!ß sin !) whose length is L œ '0 È1  cos# ) d). !

The line segment from (0ß 0) to (!ß sin !) has length È(!  0)#  (sin !  0)# œ È!#  sin# !. Since the shortest distance between two points is the length of the straight line segment joining them, we have ! immediately that ' È1  cos# ) d)  È!#  sin# ! if 0  ! Ÿ 1 . #

0

(b) In general, if y œ f(x) is continuously differentiable and f(0) œ 0, then '0 È1  [f w (t)]# dt  È!#  f # (!) !

for !  0. 5. From the symmetry of y œ 1  xn , n even, about the y-axis for 1 Ÿ x Ÿ 1, we have x œ 0. To find y œ MMx , we n use the vertical strips technique. The typical strip has center of mass: (µ x ßµ y ) œ ˆxß 1 2 x ‰ , length: 1  xn , width: dx, area: dA œ a1  xn b dx, mass: dm œ 1 † dA œ a1  xn b dx. The moment of the strip about the 1 1 n # n # " nb1 2n b 1 x-axis is µ y dm œ a1  x b dx Ê M œ ' a1  x b dx œ 2' " a1  2xn  x2n b dx œ x  2x  x ‘ #

œ1

2 n1



" #n  1

œ

x c1 # (n  1)(2n  1)  2(2n  ")  (n  1) (n  1)(#n  1)

œ

0 # 2n#  3n  1  4n  2  n  1 (n  1)(#n  1)

Also, M œ 'c1 dA œ 'c1 a1  xn b dx œ 2 '0 a1  xn b dx œ 2 x  1



Mx M

œ

1

#

2n (n  1)(2n  1)



1

(n  1) 2n

œ

n 2n  1

xn b 1 ‘ " n1 !

n1

œ

2n# (n  1)(#n  1)

œ 2 ˆ1 

" ‰ n1

#n  1 !

. œ

2n n1.

Therefore,

Ê ˆ!ß #n n 1 ‰ is the location of the centroid. As n Ä _, y Ä

" #

so

the limiting position of the centroid is ˆ!ß "# ‰ . 6. Align the telephone pole along the x-axis as shown in the accompanying figure. The slope of the top length of pole is 9 ‰ ˆ 14.5 " 81  81 œ 8"1 † 40 † (14.5  9) œ 815.5 †40 40 11 ‰ y œ 891  8111†80 x œ 8"1 ˆ9  80 x is an

œ

11 81†80 .

Thus,

equation of the

line representing the top of the pole. Then, My œ 'a x † 1y# dx œ 1 '0 x  8"1 ˆ9  b

40

11 80

# x‰‘ dx

b 11 ‰# '040 x ˆ9  80 x dx; M œ 'a 1y# dx 40 40 ‰‘# dx œ 64"1 ' ˆ9  11 ‰# dx. œ 1 '0  8"1 ˆ9  11 80 x 80 x 0

œ

" 641

My M

Thus, x œ

¸

129,700 5623.3

¸ 23.06 (using a calculator to compute

the integrals). By symmetry about the x-axis, y œ 0 so the center of mass is about 23 ft from the top of the pole. 7. (a) Consider a single vertical strip with center of mass (µ x ßµ y ). If the plate lies to the right of the line, then µ µ  b) $ dA Ê the plate's first moment the moment of this strip about the line x œ b is (x  b) dm œ (x about x œ b is the integral ' (x  b)$ dA œ ' $ x dA  ' $ b dA œ My  b$ A. (b) If the plate lies to the left of the line, the moment of a vertical strip about the line x œ b is ab  µ x b dm œ ab  µ x b $ dA Ê the plate's first moment about x œ b is ' (b  x)$ dA œ ' b$ dA  ' $ x dA œ b$ A  My . 8. (a) By symmetry of the plate about the x-axis, y œ 0. A typical vertical strip has center of mass: (µ x ßµ y ) œ (xß 0), length: 4Èax, width: dx, area: 4Èax dx, mass: dm œ $ dA œ kx † 4Èax dx, for some a proportionality constant k. The moment of the strip about the y-axis is M œ ' µ x dm œ ' 4kx# Èax dx y

œ 4kÈa'0 x&Î# dx œ 4kÈa  27 x(Î# ‘ 0 œ 4ka"Î# † 27 a(Î# œ a

a

œ 4kÈa'0 x$Î# dx œ 4kÈa  25 x&Î# ‘ 0 œ 4ka"Î# † 25 a&Î# œ a

a

8ka 7

%

8ka$ 5

0

. Also, M œ ' dm œ '0 4kxÈax dx a

. Thus, x œ

My M

œ

8ka% 7



5 8ka$

œ

5 7

a

‰ Ê (xß y) œ ˆ 5a 7 ß 0 is the center of mass. y#

# # a (b) A typical horizontal strip has center of mass: (µ x ßµ y ) œ Œ 4a # ß y œ Š y 8a4a ß y‹ , length: a 

width: dy, area: Ša 

y# 4a ‹

dy, mass: dm œ $ dA œ kyk Ša 

y# 4a ‹

dy. Thus, Mx œ ' µ y dm

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

y# 4a

,

422

Chapter 6 Applications of Definite Integrals œ 'c2a y kyk Ša  2a

œ 'c2a Šay#  0

%

32a& 20a

œ  8a3 

y# 4a ‹

0

dy  '0 Šay#  2a

y% 4a ‹ 8a% 3



dy œ 'c2a y# Ša 



#

œ

%

&

'c2a a16a y  y b dy 

œ

" 32a#

’8a% † 4a# 

64a' 6 “

" 32a#

'0

2a

" 32a#

2a

#

c2a

" 3 #a #

a16a% y  y& b dy œ 64a' 6 “

" 16a#

œ

’8a% y#  32a' 3 ‹

Š32a' 

œ

œ2†

16a% 4 ‹

#

Š2a † 4a 

" #a

œ

! y' 6 “ #a



1 3#a#

’8a% y# 

† 32 a32a' b œ

4 3

#a y' 6 “!

a% ;

'c2a2a kyk a4a#  y# b dy

" 4a

#a

#

dy

" 16a#

%

" 4a

#a y& “ #0a !

y# 4a ‹

kyk Ša 

'c02a a4a# y  y$ b dy  4a" '02a a4a# y  y$ b dy œ 4a" ’2a# y#  y4 “ !

" 4a



#

 4a# 8a ‹

 ’ 3a y$ 

' kyk a16a%  y% b dy

#

’8a% † 4a# 

M œ ' dm œ 'c2a kyk Š 4a 4ay ‹ dy œ

y& #0a “ #a

dy

2a

#

" 3 #a #

#

y# 4a ‹

!

dy œ ’ 3a y$ 

'c2a2a kyk ay#  4a# b Š 4a 4a y ‹ dy œ 32a" 

2a

2a

" 8a

0

dy  '0 y# Ša 

œ 0; My œ ' µ x dm œ 'c2a Š y

32a& #0a

œ

œ

y% 4a ‹

y# 4a ‹

%

%

$

a8a  4a b œ 2a . Therefore, x œ



" 4a

’2a# y# 

œ ˆ 34 a% ‰ ˆ 2a"$ ‰ œ

My M

#a y% 4 “!

2a 3

and

œ 0 is the center of mass.

Mx M

9. (a) On [0ß a] a typical @/3-+6 strip has center of mass: (µ x ßµ y ) œ Šx,

È b #  x #  È a#  x# ‹, #

length: Èb#  x#  Èa#  x# , width: dx, area: dA œ ŠÈb#  x#  Èa#  x# ‹ dx, mass: dm œ $ dA œ $ ŠÈb#  x#  Èa#  x# ‹ dx. On [aß b] a typical @/3-+6 strip has center of mass: È # # (µ x ßµ y ) œ Šxß b # x ‹ , length: Èb#  x# , width: dx, area: dA œ Èb#  x# dx,

mass: dm œ $ dA œ $ Èb#  x# dx. Thus, Mx œ ' µ y dm œ '0

a

" #

ŠÈb#  x#  Èa#  x# ‹ $ ŠÈb#  x#  Èa#  x# ‹ dx  'a

b

" #

Èb#  x# $ Èb#  x# dx

œ

$ #

'0a cab#  x# b  aa#  x# bd dx  #$ 'ab ab#  x# b dx œ #$ '0a ab#  a# b dx  #$ 'ab ab#  x# b dx

œ

$ #

cab#  a# b xd !  #$ ’b# x 

œ

$ #

aab#  a$ b  #$ Š 23 b$  ab# 

a

b

x$ 3 “a

œ a$ 3‹

$ #

b$ 3‹

cab#  a# b ad  #$ ’Šb$ 

œ

$ b$ 3



$ a$ 3

œ $ Šb

$

 a$ 3 ‹;

a$ 3 ‹“

 Š b# a 

My œ ' µ x dm

œ '0 x$ ŠÈb#  x#  Èa#  x# ‹ dx  'a x$ Èb#  x# dx a

b

œ $ '0 x ab#  x# b a

œ

$ #



2 ab #  x # b 3

$Î#

dx  $ '0 x aa#  x# b a

"Î# a

$ 2 aa • #”

#

$Î#

 x# b 3

# $Î#

#

œ  ’ab  a b

# $Î#

 ab b

a

dx  $ 'a x ab#  x# b

$ 2 ab • #”

b

#

!

0

$ 3

"Î#

# $Î#

$ 3

“  ’0  aa b

• a

$ 3

“  ’0  ab#  a# b #

#

$Î#

We calculate the mass geometrically: M œ $ A œ $ Š 14b ‹  $ Š 14a ‹ œ œ

$ ab $  a $ b 3

yœ (b) lim

œ

Mx M 4

b Ä a 31



4 $1 ab#  a# b

4 aa# abb# b 31(ab)

Ša

#

 ab  b# ‹ ab

œ

4 31

$

$

a Š bb#  a# ‹ œ

dx

b

$Î#

 x# b 3

"Î#

4 (b  a) aa#  ab  b# b 31 (b  a)(b  a)

“œ

$1 4

$ b$ 3



$ a$ 3

œ

$ ab $  a $ b 3

ab#  a# b . Thus, x œ

œ Mx ; My M

œ

4 aa#  ab  b# b 31(a  b)

2a 1

2a ‰ Ê (xß y) œ ˆ 2a 1 ß 1 is the limiting

; likewise

. œ ˆ 341 ‰ Š a

#

 a#  a# ‹ aa

#

œ ˆ 341 ‰ Š 3a 2a ‹ œ

position of the centroid as b Ä a. This is the centroid of a circle of radius a (and we note the two circles coincide when b œ a).

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 6 Additional and Advanced Exercises 10. Since the area of the traingle is 36, the diagram may be labeled as shown at the right. The centroid of the triangle is ˆ 3a , 24 ‰ a . The shaded portion is 144  36 œ 108. Write ax, yb for the centroid of the remaining region. The centroid of the whole square is obviously a6, 6b. Think of the square as a sheet of uniform density, so that the centroid of the square is the average of the centroids of the two regions, weighted by area: 'œ

$'ˆ 3a ‰  "!)axb "%%

and ' œ

‰ $'ˆ 24 a  "!)ayb "%%

which we solve to get x œ ) 

a *

and y œ

)a a  " b . a

Set

x œ 7 in. (Given). It follows that a œ *, whence y œ œ

7 "*

'% *

in. The distances of the centroid ax, yb from the other sides are easily computed. (Note that if we set y œ 7 in.

above, we will find x œ 7 "* .) 11. y œ 2Èx Ê ds œ É "x  1 dx Ê A œ '0 2Èx É "x  1 dx œ 3

4 3

(1  x)$Î# ‘ $ œ !

28 3

12. This surface is a triangle having a base of 21a and a height of 21ak. Therefore the surface area is " # # # (21a)(21ak) œ 21 a k. d# x dt#

13. F œ ma œ t# Ê

œaœ

t# m

Ê vœ

x œ 0 when t œ 0 Ê C" œ 0 Ê x œ W œ ' F dx œ '0

Ð12mhÑ"Î%

œ

(12mh)$Î# 18m

œ

F(t) †

12mh†È12mh 18m

œ

2h 3

dx dt

dx t$ dt œ 3m  C; v œ 0 when t œ 0 Ê t% "Î% . 12m . Then x œ h Ê t œ (12mh)

dt œ '0

Ð12mhÑ"Î%

† 2È3mh œ

14. Converting to pounds and feet, 2 lb/in œ

t# †

t$ 3m

dt œ

4h 3

È3mh



12 in 1 ft

2 lb 1 in

" 3m

'

’ t6 “

Ð12mh)"Î%

0

Cœ0 Ê

dx dt

œ

t$ 3m

Ê xœ

The work done is

" ‰ œ ˆ 18m (12mh)'Î%

œ 24 lb/ft. Thus, F œ 24x Ê W œ '0

1Î2

24x dx

"Î# " " ‰ œ c12x# d ! œ 3 ft † lb. Since W œ "# mv!#  "# mv"# , where W œ 3 ft † lb, m œ ˆ 10 lb‰ ˆ 3# ft/sec # " œ 320 slugs, and v" œ 0 ft/sec, we have 3 œ ˆ #" ‰ ˆ 3#"0 v#! ‰ Ê v!# œ 3 † 640. For the projectile height, s œ 16t#  v! t (since s œ 0 at t œ 0) Ê ds dt œ v œ 32t  v! . At the top of the ball's path, v œ 0 Ê #

and the height is s œ 16 ˆ 3v#! ‰  v! ˆ 3v#! ‰ œ

v!# 64

œ

3†640 64

œ 30 ft.

15. The submerged triangular plate is depicted in the figure at the right. The hypotenuse of the triangle has slope 1 Ê y  (2) œ (x  0) Ê x œ (y  2) is an equation of the hypotenuse. Using a typical horizontal strip, the fluid strip strip pressure is F œ ' (62.4) † Š depth ‹ † Š length ‹ dy

c2

c2

œ 'c6 (62.4)(y)[(y  2)] dy œ 62.4 'c6 ay#  2yb dy $

œ 62.4 ’ y3  y# “

# '

‰‘ œ (62.4) ˆ 83  4‰  ˆ 216 3  36

‰ œ (62.4) ˆ 208 3  32 œ

(62.4)(112) 3

t% 12m

¸ 2329.6 lb

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley



v! 3#

 C" ;

423

424

Chapter 6 Applications of Definite Integrals

16. Consider a rectangular plate of length j and width w. The length is parallel with the surface of the fluid of weight density =. The force on one side of the plate is F œ ='cw (y)(j) dy œ =j ’ y# “ 0

#

!

œ

w

=jw# #

. The = w

average force on one side of the plate is Fav œ œ

= w

#

’ y# “

!

=w #

œ

w

. Therefore the force

'c0w (y)dy

=jw# #

‰ œ ˆ =w # (jw) œ (the average pressure up and down) † (the area of the plate). 17. (a) We establish a coordinate system as shown. A typical horizontal strip has: center of pressure: (µ x ßµ y ) b ˆ ‰ œ # ß y , length: L(y) œ b, width: dy, area: dA

œ b dy, pressure: dp œ = kyk dA œ =b kyk dy 0 0 Ê Fx œ ' µ y dp œ 'ch y † =b kyk dy œ =b 'ch y# dy $

œ =b ’ y3 “

!

œ =b ’0  Š 3h ‹“ œ

=bh$ 3

'c0h = kyk L(y) dy œ =b 'c0h

F œ ' dp œ œ

$

h

# ! =b ’ y# “ h

œ =b ’0 

h# #“

=bh# #

œ

;

y dy $

. Thus, y œ

œ

Fx F

Š =3bh ‹

#

Š =bh # ‹

œ

2h 3

Ê the distance below the surface is

(b) A typical horizontal strip has length L(y). By similar triangles from the figure at the right,

L(y) b

œ

y  a h

Ê L(y) œ  bh (y  a). Thus, a typical strip has center of pressure: (µ x ßµ y ) œ (µ x ß y), length: L(y) œ  bh (y  a), width: dy, area: dA œ  bh (y  a) dy, pressure: dp œ = kyk dA œ =(y) ˆ bh ‰ (y  a) dy œ =b ay#  ayb dy Ê F œ ' µ y dp h

x

a

œ 'cÐahÑ y † %

=b h

#

ay  ayb dy œ

'ÐaahÑ

=b h

a ay$ 3 “ cÐahÑ

ay$  ay# b dy

œ

=b h

’ y4 

œ

=b h

’Š a4 

œ œ

=b 12h =b 12h

œ

=bh 12

œ

=b h

’Š 3a 

œ

=b h

’a

œ

=b 6h

a6a# h  6ah#  2h$  6a# h  3ah# b œ

œ

%

a% 3‹

%

 Š (a 4 h) 

a(a  h)$ ‹“ 3

œ

=b h

’a

%

 (a  h)% 4



a%  a(a  h)$ “ 3

c3 aa%  aa%  4a$ h  6a# h#  4ah$  h% bb  4 aa%  a aa$  3a# h  3ah#  h$ bbd a12a$ h  12a# h#  4ah$  12a$ h  18a# h#  12ah$  3h% b œ a6a#  8ah  3h# b ; F œ ' dp œ ' = kyk L(y) dy œ $

$

a$ #‹

$

 Š (a 3 h) 

 3a# h  3ah#  h$  a$ 3

ˆ 1=#bh ‰ a6a#  8ah  3h# b ˆ =6bh ‰ (3a  2h)

6a#  8ah  3h# 6a  4h



a(a  h)# ‹“ #

œ

=b h

a$  aa$  2a# h  ah# b “ #

‰ 6a œ ˆ " # Š

#

=b 6h

 8ah  3h# ‹ 3a  2h

$

’ (a  h)3

œ

=b 6h

 a$

a

=b 12h

a6a# h#  8ah$  3h% b

=b h

'cÐahÑ



a$  a(a  h)# “ 2

ay#  ayb dy œ

=b h

$

’ y3 

c2 a3a# h  3ah#  h$ b  3 a2a# h  ah# bd

a3ah#  2h$ b œ

=bh 6

(3a  2h). Thus, y œ

Ê the distance below the surface is

.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Fx F

a ay# 2 “ ÐahÑ

2 3

h.

CHAPTER 7 TRANSCENDENTAL FUNCTIONS 7.1 INVERSE FUNCTIONS AND THEIR DERIVATIVES 1. Yes one-to-one, the graph passes the horizontal test. 2. Not one-to-one, the graph fails the horizontal test. 3. Not one-to-one since (for example) the horizontal line y œ # intersects the graph twice. 4. Not one-to-one, the graph fails the horizontal test. 5. Yes one-to-one, the graph passes the horizontal test 6. Yes one-to-one, the graph passes the horizontal test 7. Domain: 0  x Ÿ 1, Range: 0 Ÿ y

9. Domain: 1 Ÿ x Ÿ 1, Range:  1# Ÿ y Ÿ

8. Domain: x  1, Range: y  0

1 #

10. Domain: _  x  _, Range:  1#  y Ÿ

11. The graph is symmetric about y œ x.

(b) y œ È1  x# Ê y# œ 1  x# Ê x# œ 1  y# Ê x œ È1  y# Ê y œ È1  x# œ f " (x)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

1 #

426

Chapter 7 Transcendental Functions

12. The graph is symmetric about y œ x.



" x

Ê xœ

" y

Ê yœ

" x

œ f " (x)

13. Step 1: y œ x#  1 Ê x# œ y  1 Ê x œ Èy  1 Step 2: y œ Èx  1 œ f " (x) 14. Step 1: y œ x# Ê x œ Èy, since x Ÿ !. Step 2: y œ Èx œ f " (x) 15. Step 1: y œ x$  1 Ê x$ œ y  1 Ê x œ (y  1)"Î$ Step 2: y œ $Èx  1 œ f " (x) 16. Step 1: y œ x#  2x  1 Ê y œ (x  1)# Ê Èy œ x  1, since x   1 Ê x œ 1  Èy Step 2: y œ 1  Èx œ f " (x) 17. Step 1: y œ (x  1)# Ê Èy œ x  1, since x   1 Ê x œ Èy  1 Step 2: y œ Èx  1 œ f " (x) 18. Step 1: y œ x#Î$ Ê x œ y$Î# Step 2: y œ x$Î# œ f " (x) 19. Step 1: y œ x& Ê x œ y"Î& Step 2: y œ &Èx œ f " (x); Domain and Range of f " : all reals; &

f af " (x)b œ ˆx"Î& ‰ œ x and f " (f(x)) œ ax& b

"Î&

œx

"Î%

œx

20. Step 1: y œ x% Ê x œ y"Î% Step 2: y œ %Èx œ f " (x); Domain of f " : x   0, Range of f " : y   0; %

f af " (x)b œ ˆx"Î% ‰ œ x and f " (f(x)) œ ax% b

21. Step 1: y œ x$  1 Ê x$ œ y  1 Ê x œ (y  1)"Î$ Step 2: y œ $Èx  1 œ f " (x); Domain and Range of f " : all reals; $

f af " (x)b œ ˆ(x  1)"Î$ ‰  1 œ (x  1)  1 œ x and f " (f(x)) œ aax$  1b  1b

"Î$

œ ax$ b

"Î$

œx

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 7.1 Inverse Functions and Their Derivatives 22. Step 1: y œ

" #

x

" #

Ê

7 #

"

xœy

7 #

Ê x œ 2y  7

Step 2: y œ 2x  7 œ f (x); Domain and Range of f " : all reals; f af " (x)b œ "# (2x  7)  7# œ ˆx  7# ‰  23. Step 1: y œ Step 2: y œ

" x#

Ê x# œ

" y

" Èx

œ f " (x)

Ê xœ

7 #

œ x and f " (f(x)) œ 2 ˆ "# x  7# ‰  7 œ (x  7)  7 œ x

" Èy

Domain of f " : x  0, Range of f " : y  0; f af " (x)b œ "" # œ "" œ x and f " (f(x)) œ Š Èx ‹

24. Step 1: y œ

" x$

Ê x$ œ

" x"Î$ "

Step 2: y œ Domain of f f af " (x)b œ

Šx‹

" y

Ê xœ

(c)

26. (a) y œ

" 5

" $ ax"Î$ b

" x"

œ

œ 2,

df " dx ¹ xœ1

x7 Ê

df ¸ dx xœ1

(c)

œ x since x  0

" y"Î$

œ x and f " (f(x)) œ ˆ x"$ ‰

" 5

œ

" df "

œ 5,

dx

¹

œ 4,

df " dx ¹ xœ3

œ ˆ x" ‰

"

œx

(b) x #



3 #

xœy7

xœ$%Î&

"Î$

" #

"

(b)

(x) œ 5x  35

œ5

27. (a) y œ 5  4x Ê 4x œ 5  y Ê x œ 54  y4 Ê f " (x) œ df ¸ dx xœ1Î#

" Š "x ‹

: x Á 0, Range of f " : y Á 0;

Ê x œ 5y  35 Ê f (c)

œ

œ $É x" œ f " (x);

25. (a) y œ 2x  3 Ê 2x œ y  3 Ê x œ y#  3# Ê f " (x) œ df ¸ dx xœ1

" É x"#

œ

(b) 5 4



x 4

" 4

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

427

428

Chapter 7 Transcendental Functions " #

28. (a) y œ 2x# Ê x# œ Ê xœ (c)

df ¸ dx xœ&

" È2

(b)

y

Èy Ê f

"

(x) œ

È x#

œ 4xk xœ5 œ 20,

df " dx ¹ xœ&0

œ

" #È 2

x"Î# ¹

xœ50

" #0

œ

$ $ 29. (a) f(g(x)) œ ˆ $Èx‰ œ x, g(f(x)) œ Èx$ œ x

w

#

w

(b)

w

(c) f (x) œ 3x Ê f (1) œ 3, f (1) œ 3; gw (x) œ 3" x#Î$ Ê gw (1) œ 3" , gw (1) œ

" 3

(d) The line y œ 0 is tangent to f(x) œ x$ at (!ß !); the line x œ 0 is tangent to g(x) œ $Èx at (0ß 0)

30. (a) h(k(x)) œ

" 4

ˆ(4x)"Î$ ‰$ œ x,

k(h(x)) œ Š4 † (c) hw (x) œ w

k (x) œ

x$ 4‹

"Î$

(b)

œx

#

3x w w 4 Ê h (2) œ 3, h (2) 4 #Î$ Ê kw (2) œ "3 , 3 (4x)

œ 3; kw (2) œ

(d) The line y œ 0 is tangent to h(x) œ

x$ 4

" 3

at (!ß !);

the line x œ 0 is tangent to k(x) œ (4x)"Î$ at (!ß !)

œ 3x#  6x Ê

31.

df dx

33.

df " dx ¹ x œ 4

df " dx ¹ x œ f(3)

df " dx ¹ x œ f(2)

œ

35. (a) y œ mx Ê x œ

" m

œ

(b) The graph of y œ f 36. y œ mx  b Ê x œ

y m

"

df dx

º

œ

xœ2

"

df dx

œ

º

xœ3

" ˆ 3" ‰

œ3

y Ê f " (x) œ "

" 9

œ

" m

œ 2x  4 Ê

32.

df dx

34.

dg" dx ¹x œ 0

b m

dg" dx ¹ x œ f(0)

œ

"

dg dx

º

œ

xœ0

"

df dx

º

œ

xœ5

œ

" 6

" 2

x

(x) is a line through the origin with slope



œ

df " dx ¹ x œ f(5)

Ê f " (x) œ

" m

x

b m;

" m.

the graph of f " (x) is a line with slope

" m

and y-intercept  mb .

37. (a) y œ x  1 Ê x œ y  1 Ê f " (x) œ x  1 (b) y œ x  b Ê x œ y  b Ê f " (x) œ x  b (c) Their graphs will be parallel to one another and lie on opposite sides of the line y œ x equidistant from that line.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 7.1 Inverse Functions and Their Derivatives 38. (a) y œ x  1 Ê x œ y  1 Ê f " (x) œ 1  x; the lines intersect at a right angle (b) y œ x  b Ê x œ y  b Ê f " (x) œ b  x; the lines intersect at a right angle (c) Such a function is its own inverse.

39. Let x" Á x# be two numbers in the domain of an increasing function f. Then, either x"  x# or x"  x# which implies f(x" )  f(x# ) or f(x" )  f(x# ), since f(x) is increasing. In either case, f(x" ) Á f(x# ) and f is one-to-one. Similar arguments hold if f is decreasing. 40. f(x) is increasing since x#  x" Ê

" 3

x# 

5 6



" 3

x"  56 ;

df dx

œ

" 3

41. f(x) is increasing since x#  x" Ê 27x$#  27x"$ ; y œ 27x$ Ê x œ df dx

œ 81x# Ê

df " dx

œ

" ¸ 81x# 13 x"Î$

œ

" 9x#Î$

œ

" 9

df " dx

Ê " 3

œ

df dx

œ 24x# Ê

dx

œ

" ¸ 24x# 12 Ð1xÑ"Î$

œ

œ3

y"Î$ Ê f " (x) œ

" 3

x"Î$ ;

x#Î$

42. f(x) is decreasing since x#  x" Ê 1  8x$#  1  8x"$ ; y œ 1  8x$ Ê x œ df "

" ˆ "3 ‰

" 6("  x)#Î$

" #

(1  y)"Î$ Ê f " (x) œ

" #

(1  x)"Î$ ;

œ  "6 (1  x)#Î$

43. f(x) is decreasing since x#  x" Ê (1  x# )$  (1  x" )$ ; y œ (1  x)$ Ê x œ 1  y"Î$ Ê f " (x) œ 1  x"Î$ ; df dx

œ 3(1  x)# Ê

df " dx

œ

" 3(1  x)# ¹ 1cx"Î$ &Î$

44. f(x) is increasing since x#  x" Ê x# df dx

œ

5 3

x#Î$ Ê

df " dx

œ

5 3

" ¹ x#Î$ x$Î&

œ

3 5x#Î&

œ

" 3x#Î$

œ  "3 x#Î$

&Î$

 x" ; y œ x&Î$ Ê x œ y$Î& Ê f " (x) œ x$Î& ; œ

3 5

x#Î&

45. The function g(x) is also one-to-one. The reasoning: f(x) is one-to-one means that if x" Á x# then f(x" ) Á f(x# ), so f(x" ) Á f(x# ) and therefore g(x" ) Á g(x# ). Therefore g(x) is one-to-one as well. 46. The function h(x) is also one-to-one. The reasoning: f(x) is one-to-one means that if x" Á x# then f(x" ) Á f(x# ), so f(x"" ) Á f(x"# ) , and therefore h(x" ) Á h(x# ). 47. The composite is one-to-one also. The reasoning: If x" Á x# then g(x" ) Á g(x# ) because g is one-to-one. Since g(x" ) Á g(x# ), we also have f(g(x" )) Á f(g(x# )) because f is one-to-one. Thus, f ‰ g is one-to-one because x" Á x# Ê f(g(x" )) Á f(g(x# )). 48. Yes, g must be one-to-one. If g were not one-to-one, there would exist numbers x" Á x# in the domain of g with g(x" ) œ g(x# ). For these numbers we would also have f(g(x" )) œ f(g(x# )), contradicting the assumption that f ‰ g is one-to-one.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

429

430

Chapter 7 Transcendental Functions

49. The first integral is the area between f(x) and the x-axis over a Ÿ x Ÿ b. The second integral is the area between f(x) and the y-axis for f(a) Ÿ y Ÿ f(b). The sum of the integrals is the area of the larger rectangle with corners at (0ß 0), (bß 0), (bß f(b)) and (0ß f(b)) minus the area of the smaller rectangle with vertices at (0ß 0), (aß 0), (aß f(a)) and (0ß f(a)). That is, the sum of the integrals is bf(b)  af(a).

50. f w axb œ

acx  dba  aax  bbc acx  db#

œ

ad  bc . acx  db#

Thus if ad  bc Á !, f w axb is either always positive or always negative. Hence faxb is

either always increasing or always decreasing. If follows that faxb is one-to-one if ad  bc Á !. 51. (g ‰ f)(x) œ x Ê g(f(x)) œ x Ê gw (f(x))f w (x) œ 1 52. W(a) œ 'f(a) 1 ’af " (y)b  a# “ dy œ 0 œ 'a 21x[f(a)  f(x)] dx œ S(a); Ww (t) œ 1’af " (f(t))b  a# “ f w (t) f(a)

a

#

#

œ 1 at#  a# b f w (t); also S(t) œ 21f(t)'a x dx  21'a xf(x) dx œ c1f(t)t#  1f(t)a# d  21'a xf(x) dx t

t

t

Ê Sw (t) œ 1t# f w (t)  21tf(t)  1a# f w (t)  21tf(t) œ 1 at#  a# b f w (t) Ê Ww (t) œ Sw (t). Therefore, W(t) œ S(t) for all t − [aß b]. 53-60. Example CAS commands: Maple: with( plots );#53 f := x -> sqrt(3*x-2); domain := 2/3 .. 4; x0 := 3; Df := D(f); # (a) plot( [f(x),Df(x)], x=domain, color=[red,blue], linestyle=[1,3], legend=["y=f(x)","y=f '(x)"], title="#53(a) (Section 7.1)" ); q1 := solve( y=f(x), x ); # (b) g := unapply( q1, y ); m1 := Df(x0); # (c) t1 := f(x0)+m1*(x-x0); y=t1; m2 := 1/Df(x0); # (d) t2 := g(f(x0)) + m2*(x-f(x0)); y=t2; domaing := map(f,domain); # (e) p1 := plot( [f(x),x], x=domain, color=[pink,green], linestyle=[1,9], thickness=[3,0] ): p2 := plot( g(x), x=domaing, color=cyan, linestyle=3, thickness=4 ): p3 := plot( t1, x=x0-1..x0+1, color=red, linestyle=4, thickness=0 ): p4 := plot( t2, x=f(x0)-1..f(x0)+1, color=blue, linestyle=7, thickness=1 ): p5 := plot( [ [x0,f(x0)], [f(x0),x0] ], color=green ): display( [p1,p2,p3,p4,p5], scaling=constrained, title="#53(e) (Section 7.1)" ); Mathematica: (assigned function and values for a, b, and x0 may vary) If a function requires the odd root of a negative number, begin by loading the RealOnly package that allows Mathematica to do this. See section 2.5 for details. (1) œ '0 ect dt œ lim

bÄ_

" 3

x$ ln (ax)  9" x$  C

'0b ect dt œ

lim cect d b0 œ lim  e"b  (1)‘ œ 0  1 œ 1

bÄ_

bÄ_

(b) u œ tx , du œ xtxc1 dt; dv œ ect dt, v œ ect ; x œ fixed positive real _

_

Ê >(x  1) œ '0 tx et dt œ lim ctx et d b0  x '0 tx1 et dt œ lim ˆ beb  0x e! ‰  x>(x) œ x>(x) bÄ_

x

bÄ_

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 8 Additional and Advanced Exercises (c) >(n  1) œ n>(n) œ n!: n œ 0: >(0  1) œ >(1) œ 0!; n œ k: Assume >(k  1) œ k! n œ k  1: >(k  1  1) œ (k  1) >(k  1) œ (k  1)k! œ (k  1)! Thus, >(n  1) œ n>(n) œ n! for every positive integer n.

for some k  0; from part (b) induction hypothesis definition of factorial

x n n 50. (a) >(x) ¸ ˆ xe ‰ É 2x1 and n>(n) œ n! Ê n! ¸ n ˆ ne ‰ É 2n1 œ ˆ ne ‰ È2n1

(b)

n 10 20 30 40 50 60

ˆ ne ‰n È2n1 3598695.619 2.4227868 ‚ 10") 2.6451710 ‚ 10$# 8.1421726 ‚ 10%( 3.0363446 ‚ 10'% 8.3094383 ‚ 10)"

calculator 3628800 2.432902 ‚ 10") 2.652528 ‚ 10$# 8.1591528 ‚ 10%( 3.0414093 ‚ 10'% 8.3209871 ‚ 10)"

(c)

n 10

ˆ ne ‰n È2n1 3598695.619

ˆ ne ‰n È2n1 e1Î12n 3628810.051

calculator 3628800

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

583

584

Chapter 8 Techniques of Integration

NOTES:

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

CHAPTER 9 FURTHER APPLICATIONS OF INTEGRATION 9.1 SLOPE FIELDS AND SEPARABLE DIFFERENTIAL EQUATIONS 1. (a) y œ ex Ê y w œ ex Ê 2y w  3y œ 2 aex b  3ex œ ex (b) y œ ex  e3xÎ2 Ê y w œ ex  3# e3xÎ2 Ê 2y w  3y œ 2 ˆex  3# e3xÎ2 ‰  3 aex  e3xÎ2 b œ ex (c) y œ ex  Ce3xÎ2 Ê y w œ ex  3# Ce3xÎ2 Ê 2y w  3y œ 2 ˆex  3# Ce3xÎ2 ‰  3 aex  Ce3xÎ2 b œ ex 2. (a) y œ  "x Ê y w œ

" x#

(b) y œ  x " 3 Ê y w œ (c) y œ 3. y œ

" xC

'1x

" x

et t

Ê yw œ

#

œ ˆ x" ‰ œ y# " (x  3)#

" (x  C)#

#

œ ’ (x " 3) “ œ y# #

œ  x " C ‘ œ y#

dt Ê yw œ  x"# '1

x t e

t

dt  ˆ x" ‰ ˆ ex ‰ Ê x# y w œ '1

x t e

x

t

dt  ex œ x Š x"

'1x et

t

dt‹  ex œ xy  ex

Ê x# y w  xy œ ex 4. y œ

" È 1  x%

'1x È1  t% dt $

Ê y w œ Š 12xx% ‹ Š È

" 1  x%

Ê y w œ  #" –

' x È1  t% dt  È "

4x$ $— 1 È Š 1  x% ‹

'1x È1  t% dt‹  1

1  x%

ŠÈ 1  x% ‹

$

Ê y w œ Š 12xx% ‹ y  1 Ê y w 

2x$ 1  x%

†yœ1

5. y œ ecx tan" a2ex b Ê y w œ ecx tan" a2ex b  ecx ’ 1  a"2ex b# “ a2ex b œ ecx tan" a2ex b  Ê y w œ y 

2 1  4e2x

Ê yw  y œ

2 1  4e2x

2 1  4e2x

; y( ln 2) œ ecÐ ln 2Ñ tan" a2e ln 2 b œ 2 tan" 1 œ 2 ˆ 14 ‰ œ

1 #

# # # # # 6. y œ (x  2) ex Ê y w œ ex  ˆ2xex ‰ (x  2) Ê y w œ ex  2xy; y(2) œ (2  2) e2 œ 0

7. y œ

Ê xy  y œ 8. y œ

x ln x

dy dx "Î#

9. 2Èxy œ 2x 10.

dy dx

x sin x  cos x Ê y w œ  sinx x x# 1/2)  sin x; y ˆ 1# ‰ œ cos(1(/2) œ0

Ê yw œ

cos x x w

Ê yw œ

ln x  x Š "x ‹ (ln x)#

Ê yw œ

" ln x



 "x ˆ cosx x ‰ Ê y w œ  sinx x 

" (ln x)#

Ê x# y w œ

œ 1 Ê 2x"Î# y"Î# dy œ dx Ê 2y"Î# dy œ x"Î# dx Ê  C" Ê

2 3

y$Î#  x"Î# œ C, where C œ

" #

"Î#

" 3



x# (ln x)#

Ê xy w œ  sin x  y

Ê x# y w œ xy  y# ; y(e) œ

' 2y"Î# dy œ ' x"Î# dx

e ln e

Ê 2 ˆ 23 y$Î# ‰

C"

œ x# Èy Ê dy œ x# y"Î# dx Ê y"Î# dy œ x# dx Ê

Ê 2y

x# ln x

y x

' y"Î# dy œ ' x# dx

Ê 2y"Î# œ

x$ 3

C

$

 x œC

' ey dy œ ' ex dx

11.

dy dx

œ excy Ê dy œ ex ecy dx Ê ey dy œ ex dx Ê

12.

dy dx

œ 3x# ey Ê dy œ 3x# ey dx Ê ey dy œ 3x# dx Ê ' ey dy œ ' 3x# dx Ê ey œ x3  C Ê ey  x3 œ C

Ê ey œ ex  C Ê ey  ex œ C

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

œ e.

586 13.

Chapter 9 Further Applications of Integration dy dx

sec# Èy Èy dy

œ Èy cos# Èy Ê dy œ ˆÈy cos# Èy‰ dx Ê

side, substitute u œ Èy Ê du œ

1 2Èy dy

Ê 2 du œ

1 Èy dy,

œ dx Ê '

sec# Èy Èy dy

œ ' dx. In the integral on the left-hand

and we have ' sec# u du œ ' dx Ê 2 tan u œ x  C

Ê x  2 tan Èy œ C 14. È2xy dy dx œ 1 Ê dy œ Ê È2 15. Èx

dy dx

y3/2 3 2

dy œ

x1/2 " #

œ eyÈx Ê

1 È2xy

dx Ê È2Èydy œ

1 Èx

dx Ê È2 y1/2 dy œ x1/2 dx Ê È2 ' y1/2 dy œ ' x1/2 dx

3  C1 Ê È2 y3/2 œ 3Èx  32 C1 Ê È2 ˆÈy‰  3Èx œ C, where C œ 32 C1

dy dx

œ

ey eÈ x Èx

Ê dy œ

ey eÈ x Èx dx

right-hand side, substitute u œ Èx Ê du œ

" #È x

eÈ x Ê ecy dy œ È dx Ê x

dx Ê 2 du œ

Ê ecy œ 2eu  C1 Ê ecy œ 2eÈx  C, where C œ C1

16. asec xb

dy dx

œ eysin x Ê

dy dx

" Èx

' ecy dy œ ' ÈeÈx dxÞ In the integral on the

dx, and we have

x

' ecy dy œ 2 ' eu du

œ eysin x cos x Ê dy œ aey esin x cos xbdx Ê ey dy œ esin x cos x dx

Ê ' ecy dy œ ' esin x cos x dx Ê ecy œ esin x  C1 Ê ecy  esin x œ C, where C œ C1

17.

dy dx

œ 2xÈ1  y2 Ê dy œ 2xÈ1  y2 dx Ê

dy È 1  y2

œ 2x dx Ê '

dy È 1  y2

œ ' 2x dx Ê sin" y œ x#  C since kyk  "

Ê y œ sinax2  Cb 18.

dy dx

œ

e2xcy exby 2y

Ê dy œ

e2xcy exby dx

Ê dy œ

e2x ecy ex ey dx

œ

ex e2y dx

Ê e2y dy œ ex dx Ê ' e2y dy œ ' ex dx Ê

Ê e  2ex œ C where C œ 2C1 19. y w œ x  y Ê slope of 0 for the line y œ x. For x, y  0, y w œ x  y Ê slope  0 in Quadrant I. For x, y  0, y w œ x  y Ê slope  0 in Quadrant III. For kyk  kxk, y  0, x  0, y w œ x  y Ê slope  0 in Quadrant II above y œ x. For kyk  kxk, y  0, x  0, y w œ x  y Ê slope  0 in Quadrant II below y œ x. For kyk  kxk, x  0, y  0, y w œ x  y Ê slope  0 in Quadrant IV above y œ x. For kyk  kxk, x  0, y  0, y w œ x  y Ê slope  0 in Quadrant IV below y œ x. All of the conditions are seen in slope field (d). 20. y w œ y  1 Ê slope is constant for a given value of y, slope is 0 for y œ 1, slope is positive for y  1 and negative for y  1. These characteristics are evident in slope field (c).

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

e2y #

œ ex  C1

Section 9.1 Slope Fields and Separable Differential Equations 21. y w œ  xy Ê slope œ 1 on y œ x and 1 on y œ x. y w œ  xy Ê slope œ 0 on the y-axis, excluding a0, 0b, and is undefined on the x-axis. Slopes are positive for x  0, y  0 and x  0, y  0 (Quadrants II and IV), otherwise negative. Field (a) is consistent with these conditions.

22. y w œ y2  x2 Ê slope is 0 for y œ x and for y œ x. For kyk  kxk slope is positive and for kyk  kxk slope is negative. Field (b) has these characteristics.

23.

24.

25-36. Example CAS commands: Maple: ode := diff( y(x), x ) = y(x); icA := [0, 1]; icB := [0, 2]; icC := [0,-1]; DEplot( ode, y(x), x=0..2, [icA,icB,icC], arrows=slim, linecolor=blue, title="#25 (Section 9.1)" ); Mathematica: To plot vector fields, you must begin by loading a graphics package. y: 0 STO > x: y (enter) y  0.1*(1  y2 ) STO > y: x  0.1 STO > x: y (enter, 10 times) The last value displayed gives yEuler a1b ¸ 1.3964 The exact solution: dy œ a1  y2 bdx Ê

dy 1  y2

œ dx Ê tan1 y œ x  C; tan1 ya0b œ tan1 0 œ 0 œ 0  C Ê C œ 0

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

596

Chapter 9 Further Applications of Integration Ê tan1 y œ x Ê y œ tan x Ê yexact a"b œ tan 1 ¸ 1.5574

17. (a)

dy dx

œ 2y2 ax  1b Ê

dy y2

œ 2ax  1bdx Ê ' y2 dy œ ' a2x  2bdx Ê y" œ x2  2x  C

Initial value: ya2b œ  "# Ê 2 œ 22  2a2b  C Ê C œ 2 1 Solution: y" œ x2  2x  2 or y œ  x2  2x 2

ya3b œ  32  21a3b  2 œ  15 œ 0.2 (b) To find the approximation, set y1 œ 2y2 ax  1b and use EULERT with initial values x œ 2 and y œ  "# and step size

0.2 for 5 Points. This gives ya3b ¸ 0.1851; error ¸ 0.0149. (c) Use step size 0.1 for 10 points. This gives ya3b ¸ 0.1929; error ¸ 0.0071. (d) Use step size 0.05 for 20 points. This gives ya3b ¸ 0.1965; error ¸ 0.0035. 18. (a)

dy dx

œy1Ê'

dy y1

œ ' dx Ê ln ky  1k œ x  C Ê ky  1k œ exC Ê y  1 œ „ eC ex Ê y œ Aex  1

Initial value: ya0b œ 3 Ê 3 œ Ae0  1 Ê A œ 2 Solution: y œ 2ex  1 ya1b œ 2e  1 ¸ 6.4366 (b) To find the approximation, set y1 œ y  1 and use a graphing calculator or CAS with initial values x œ 0 and y œ 3 and step size 0.2 for 5 Points. This gives ya1b ¸ 5.9766; error ¸ 0.4599 (c) Use step size 0.1 for 10 points. This gives ya1b ¸ 6.1875; error ¸ 0.2491. (d) Use step size 0.05 for 20 points. This gives ya1b ¸ 6.3066; error ¸ 0.1300. 1 2 x2  2x  2 , so ya3b œ 0.2. To find the approximation, let zn œ yn1  2yn1 axn1  1bdx ay2n1 axn1  1b  z2n ax2n  1bbdx with initial values x0 œ 2 and y0 œ  "# . Use a spreadsheet, graphing

19. The exact solution is y œ yn œ y n  1 

and

calculator, or CAS as indicated in parts (a) through (d). (a) Use dx œ 0.2 with 5 steps to obtain ya3b ¸ 0.2024 Ê error ¸ 0.0024. (b) Use dx œ 0.1 with 10 steps to obtain ya3b ¸ 0.2005 Ê error ¸ 0.0005. (c) Use dx œ 0.05 with 20 steps to obtain ya3b ¸ 0.2001 Ê error ¸ 0.0001. (d) Each time the step size is cut in half, the error is reduced to approximately one-fourth of what it was for the larger step size. 20. The exact solution is y œ 2ex  1, so ya1b œ 2e  1 ¸ 6.4366. To find the approximation, let zn œ yn1  ayn1  1bdx and yn œ yn1  ˆ ync1 2zn  2 ‰dx with initial value yn œ 3. Use a spreadsheet, graphing calculator, or CAS as indicated in parts (a) through (d). (a) Use dx œ 0.2 with 5 steps to obtain ya1b ¸ 6.4054 Ê error ¸ 0.0311. (b) Use dx œ 0.1 with 10 steps to obtain ya1b ¸ 6.4282 Ê error ¸ 0.0084 (c) Use dx œ 0.05 with 20 steps to obtain ya1b ¸ 6.4344 Ê error ¸ 0.0022 (d) Each time the step size is cut in half, the error is reduced to approximately one-fourth of what it was for the larger step size. 13-16. Example CAS commands: Maple: ode := diff( y(x), x ) = 2*x*exp(x^2);ic := y(0)=2; xstar := 1; dx := 0.1; approx := dsolve( {ode,ic}, y(x), numeric, method=classical[foreuler], stepsize=dx ): approx(xstar); exact := dsolve( {ode,ic}, y(x) ); eval( exact, x=xstar ); Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 9.3 Euler's Method evalf( % ); 17.

Example CAS commands: Maple: ode := diff( y(x), x ) = 2*y(x)*(x-1);ic := y(2)=-1/2; xstar := 3; exact := dsolve( {ode,ic}, y(x) ); # (a) eval( exact, x=xstar ); evalf( % ); approx1 := dsolve( {ode,ic}, y(x), # (b) numeric, method=classical[foreuler], stepsize=0.2 ): approx1(xstar); approx2 := dsolve( {ode,ic}, y(x), # (c) numeric, method=classical[foreuler], stepsize=0.1 ): approx2(xstar); approx3 := dsolve( {ode,ic}, y(x), # (d) numeric, method=classical[foreuler], stepsize=0.05 ): approx3(xstar);

19.

Example CAS commands: Maple: ode := diff( y(x), x ) = 2*y(x)*(x-1);ic := y(2)=-1/2; xstar := 3; approx1 := dsolve( {ode,ic}, y(x), # (a) numeric, method=classical[heunform], stepsize=0.2 ): approx1(xstar); approx2 := dsolve( {ode,ic}, y(x), # (b) numeric, method=classical[heunform], stepsize=0.1 ): approx2(xstar); approx3 := dsolve( {ode,ic}, y(x), # (c) numeric, method=classical[heunform], stepsize=0.05 ): approx3(xstar);

21.

Example CAS commands: Maple: ode := diff( y(x), x ) = x + y(x);ic := y(0)=-7/10; x0 := -4;x1 := 4;y0 := -4; y1 := 4; b := 1; P1 := DEplot( ode, y(x), x=x0..x1, y=y0..y1, arrows=thin, title="#21(a) (Section 9.3)" ): P1; Ygen := unapply( rhs(dsolve( ode, y(x) )), x,_C1 ); # (b) P2 := seq( plot( Ygen(x,c), x=x0..x1, y=y0..y1, color=blue ), c=-2..2 ): # (c) display( [P1,P2], title="#21(c) (Section 9.3)" ); CC := solve( Ygen(0,C)=rhs(ic), C ); # (d) Ypart := Ygen(x,CC); P3 := plot( Ypart, x=0..b, title="#21(d) (Section 9.3)" ): P3; euler4 := dsolve( {ode,ic}, numeric, method=classical[foreuler], stepsize=(x1-x0)/4 ): # (e) P4 := odeplot( euler4, [x,y(x)], x=0..b, numpoints=4, color=blue ):

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

597

598

Chapter 9 Further Applications of Integration display( [P3,P4], title="#21(e) (Section 9.3)" ); euler8 := dsolve( {ode,ic}, numeric, method=classical[foreuler], stepsize=(x1-x0)/8 ): # (f) P5 := odeplot( euler8, [x,y(x)], x=0..b, numpoints=8, color=green ): euler16 := dsolve( {ode,ic}, numeric, method=classical[foreuler], stepsize=(x1-x0)/16 ): P6 := odeplot( euler16, [x,y(x)], x=0..b, numpoints=16, color=pink ): euler32 := dsolve( {ode,ic}, numeric, method=classical[foreuler], stepsize=(x1-x0)/32 ): P7 := odeplot( euler32, [x,y(x)], x=0..b, numpoints=32, color=cyan ): display( [P3,P4,P5,P6,P7], title="#21(f) (Section 9.3)" ); , # (g) < 4 | (x1-x0)/ 4 | evalf[5]( abs(1-eval(y(x),euler4(b))/eval(Ypart,x=b))*100 ) >, < 8 | (x1-x0)/ 8 | evalf[5]( abs(1-eval(y(x),euler8(b))/eval(Ypart,x=b))*100 ) >, < 16 | (x1-x0)/16 | evalf[5]( abs(1-eval(y(x),euler16(b))/eval(Ypart,x=b))*100 ) >, < 32 | (x1-x0)/32 | evalf[5]( abs(1-eval(y(x),euler32(b))/eval(Ypart,x=b))*100 ) > >;

13-24. Example CAS commands: Mathematica: (assigned functions, step sizes, and values for initial conditions may vary) For exercises 13 - 20, find the exact solution as follows. Set up two error lists. Clear[x, y, f] f[x_,y_]:= 2 y2 (x  1) a = 2; b = 1/2; xstar = 3; desol=DSolve[{y'[x] == f[x, y[x]], y[a] == b}, y[x], x] //Simplify actual[x_] = desol[[1, 1, 2]]; {xstar, actual[xstar]} errorlisteuler = { }; errorlisteulerimp = { }; pa = Plot[actual[x], {x, a, xstar}] Euler's method with error at x*. The Do command is used with a sequence of commands that are repeated n times. a = 2; b = -1/2; dx = 0.2; xstar = 3; n = (xstar  a) /dx; solnslist = {{a,b}}; Do[ {new = b + f[a,b] dx, a = a + dx, b = new, AppendTo[solnslist, {a,b}]},{n}] solnslist error= actual[xstar]  solnslist[[n, 2]] relativeerror= error / actual[xstar] AppendTo[errorlisteuler, error] pe = ListPlot[solnslist, PlotStyle Ä {Hue[.4], PointSize[0.02]}] Show[pa, pe] Rerun with different values for dx, starting from largest to smallest. After doing this, observe what happens to the error as the step size decreases by entering the input command: errorlisteuler Improved Euler's method. with error at x* a = 2; b = 1/2; dx = 0.2; xstar = 3; n = (xstar  a) /dx; solnslist = {{a,b}}; Do[{new1 = b  f[a,b] dx, new2 = b + (f[a, b]  f[a+dx, new1])/2 dx, a = a  dx, b = new2, AppendTo[solnslist, {a,b}]},{n}] solnslist error= actual[xstar]  solnslist[[n, 2] Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 9.4 Graphical Solutions of Autonomous Differential Equations relativeerror= error / actual[xstar] AppendTo[errorlisteulerimp, error] peimp = ListPlot[solnslist, PlotStyle Ä {Hue[.8], PointSize[0.02]}] Show[pa, peimp] Rerun with different values for dx, starting from largest to smallest. After doing this, observe what happens to the error as the step size decreases by entering the input command: errorlisteulerimp You can also type Show[pa, pe, peimp]. This would be appropriate for a fixed value of dx with each method. You can also make a list of relative errors. Problems 21 - 24 involve use of code from section 9.1 together with the above code for Euler's method. 9.4 GRAPHICAL SOUTIONS OF AUTONOMOUS DIFFERENTIAL EQUATIONS 1. y w œ ay  2bay  3b (a) y œ 2 is a stable equilibrium value and y œ 3 is an unstable equilibrium. (b) yww œ a2y  1by w œ 2ay  2bˆy  12 ‰ay  3b

(c)

2. y w œ ay  2bay  2b (a) y œ 2 is a stable equilibrium value and y œ 2 is an unstable equilibrium. (b) yww œ 2yy w œ 2ay  2byay  2b

(c)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

599

600

Chapter 9 Further Applications of Integration

3. y w œ y3  y œ ay  1byay  1b (a) y œ 1 and y œ 1 is an unstable equilibrium and y œ 0 is a stable equilibrium value. (b) yww œ a3y2  1by w œ 3ay  1bŠy 

1 È3 ‹yŠy



1 È3 ‹ay

 1b

(c)

4. y w œ yay  2b (a) y œ 0 is a stable equilibrium value and y œ 2 is an unstable equilibrium. (b) yww œ a2y  2by w œ 2yay  1bay  2b

(c)

5. y w œ Èy, y  0 (a) There are no equilibrium values. 1 1 w Èy œ "# (b) yww œ 2È y y œ 2È y

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 9.4 Graphical Solutions of Autonomous Differential Equations (c)

6. y w œ y  Èy, y  0 (a) y œ 1 is an unstable equilibrium. (b) yww œ Š1 

1 2È y ‹

y w œ Š1 

1 ˆ 2È y ‹ y

 Èy‰ œ ˆÈy  "# ‰ˆÈy  1‰

(c)

7. y w œ ay  1bay  2bay  3b (a) y œ 1 and y œ 3 is an unstable equilibrium and y œ 2 is a stable equilibrium value. (b) yww œ a3y2  12y  11bay  1bay  2bay  3b œ 3ay  1bŠy 

6  È3 ‹ay 3

 2bŠy 

6  È3 3 ‹ay

(c)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

 3b

601

602

Chapter 9 Further Applications of Integration

8. y w œ y3  y2 œ y2 ay  1b (a) y œ 0 and y œ 1 is an unstable equilibrium. (b) yww œ a3y2  2ybay3  y2 b œ y3 a3y  2bay  1b

(c)

9.

10.

dP dt

œ 1  2P has a stable equilibrium at P œ "# .

dP dt œ Pa1  2Pb has an unstable equilibrium d2 P dP dt2 œ a1  4Pb dt œ Pa1  4Pba1  2Pb

d2 P dt2

œ 2 dP dt œ 2a1  2Pb

at P œ 0 and a stable equilibrium at P œ "# .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 9.4 Graphical Solutions of Autonomous Differential Equations

11.

12.

dP dt œ 2PaP  3b has a d2 P dP dt2 œ 2a2P  3b dt œ

dP dt d2 P dt2

stable equilibrium at P œ 0 and an unstable equilibrium at P œ 3. 4Pa2P  3baP  3b

œ 3Pa1  PbˆP  "# ‰ has a stable equilibria at P œ 0 and P œ 1 an unstable equilibrium at P œ "# . 3 œ  #3 a6P2  6P+1b dP dt œ # PŠP 

3  È3 ˆ ‹ P 6

 "# ‰ŠP 

3  È3 ‹aP 6

 1b

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

603

604

Chapter 9 Further Applications of Integration

13.

Before the catastrophe, the population exhibits logistic growth and Patb Ä M0 , the stable equilibrium. After the catastrophe, the population declines logistically and Patb Ä M1 , the new stable equilibrium. 14.

dP dt

œ rPaM  PbaP  mb, r, M, m  0

The model has 3 equilibrium points. The rest point P œ 0, P œ M are asymptotically stable while P œ m is unstable. For initial populations greater than m, the model predicts P approaches M for large t. For initial populations less than m, the model predicts extinction. Points of inflection occur at P œ a and P œ b where a œ "3  M  m  ÈM2  mM  m2 ‘ and b œ "3  M  m  ÈM2  mM  m2 ‘. (a) The model is reasonable in the sense that if P  m, then P Ä 0 as t Ä _; if m  P  M, then P Ä M as t Ä _; if P  M, then P Ä M as t Ä _. (b) It is different if the population falls below m, for then P Ä 0 as t Ä _ (extinction). If is probably a more realistic model for that reason because we know some populations have become extinct after the population level became too low. (c) For P  M we see that dP dt œ rPaM  PbaP  mb is negative. Thus the curve is everywhere decreasing. Moreover, P ´ M is a solution to the differential equation. Since the equation satisfies the existence and uniqueness conditions, solution trajectories cannot cross. Thus, P Ä M as t Ä _. (d) See the initial discussion above. (e) See the initial discussion above. 15.

dv dt

œg

k 2 mv ,

Equilibrium: Concavity:

g, k, m  0 and vatb   0

dv dt

d2 v dt2

œg

k 2 mv

œ 0 Ê v œ É mg k

ˆ k ‰ˆ œ 2ˆ mk v‰ dv dt œ 2 m v g 

k 2‰ mv

(a)

(b)

160 (c) vterminal œ É 0.005 œ 178.9

ft s

œ 122 mph

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 9.4 Graphical Solutions of Autonomous Differential Equations

605

16. F œ Fp  Fr ma œ mg  kÈv dv kÈ v, va0b œ v0 dt œ g  m Thus,

dv dt

‰ , the terminal velocity. If v0  ˆ mg ‰ , the object will fall faster and faster, approaching the œ 0 implies v œ ˆ mg k k 2

2

‰ , the object will slow down to the terminal velocity. terminal velocity; if v0  ˆ mg k 2

17. F œ Fp  Fr ma œ 50  5kvk dv 1 dt œ m a50  5kvkb The maximum velocity occurs when

dv dt

œ 0 or v œ 10

ft sec .

18. (a) The model seems reasonable because the rate of spread of a piece of information, an innovation, or a cultural fad is proportional to the product of the number of individuals who have it (X) and those who do not (N  X). When X is small, there are only a few individuals to spread the item so the rate of spread is slow. On the other hand, when (N  X) is small the rate of spread will be slow because there are only a few indiciduals who can receive it during the interval of time. The rate of spread will be fastest when both X and (N  X) are large because then there are a lot of individuals to spread the item and a lot of individuals to receive it. (b) There is a stable equilibrium at X œ N and an unstable equilibrium at X œ 0. d2 X dt2

dX 2 œ k dX dt aN  Xb  kX dt œ k XaN  XbaN  2Xb Ê inflection points at X œ 0, X œ

N 2,

(c)

(d) The spread rate is most rapid when x œ

Eventually all of the people will receive the item.

œ VL  RL i œ RL ˆ VR  i‰, V, L, R  0 œ RL ˆ VR  i‰ œ 0 Ê i œ VR

19. L di dt  Ri œ V Ê

di dt d i 2 dt œ

Equilibrium: Concavity:

N 2.

2

di dt

ˆ R ‰2 ˆ VR  i‰ ˆ RL ‰ di dt œ  L

Phase Line:

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

and X œ N.

606

Chapter 9 Further Applications of Integration

If the switch is closed at t œ 0, then ia0b œ 0, and the graph of the solution looks like this:

As t Ä _, it Ä isteady state œ

V R.

(In the steady state condition, the self-inductance acts like a simple wire connector and, as

a result, the current throught the resistor can be calculated using the familiar version of Ohm's Law.) 20. (a) Free body diagram of he pearl:

(b) Use Newton's Second Law, summing forces in the direction of the acceleration: ˆ m m P ‰g  mk v. mg  Pg  kv œ ma Ê dv dt œ (c) Equilibrium: Ê vterminal œ Concavity:

dv dt

œ

k amPbg mŠ k

 v‹ œ 0

am  Pbg k

d2 v dt2

ˆ k ‰ am k Pbg  v‹ œ  mk dv dt œ  m Š 2

(d)

(e) The terminal velocity of the pearl is

am  Pbg . k

9.5 APPLICATIONS OF FIRST ORDER DIFFERENTIAL EQUATIONS 1. Note that the total mass is 66  7 œ 73 kg, therefore, v œ v0 eakÎmbt Ê v œ 9e3.9tÎ73 3.9tÎ73 (a) satb œ ' 9e3.9tÎ73 dt œ  2190 C 13 e

Since sa0b œ 0 we have C œ

2190 13

3.9tÎ73 ‰ ˆ and lim satb œ lim 2190 œ 13 1  e tÄ_

tÄ_

2190 13

¸ 168.5

The cyclist will coast about 168.5 meters. 73 ln 9 (b) 1 œ 9e3.9tÎ73 Ê 3.9t 73 œ ln 9 Ê t œ 3.9 ¸ 41.13 sec It will take about 41.13 seconds. Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 9.5 Applications of First-Order Differential Equations 2. v œ v0 eakÎmbt Ê v œ 9ea59,000Î51,000,000bt Ê v œ 9e59tÎ51,000 (a) satb œ ' 9e59tÎ51,000 dt œ  459,0000 e59tÎ51,000  C 59 Since sa0b œ 0 we have C œ

459,0000 59

ˆ1  e59tÎ51,000 ‰ œ and lim satb œ lim 459,0000 59 tÄ_

tÄ_

459,0000 59

¸ 7780 m

The ship will coast about 7780 m, or 7.78 km. ln 9 59t (b) 1 œ 9e59tÎ51,000 Ê 51,000 œ ln 9 Ê t œ 51,000 ¸ 1899.3 sec 59 It will take about 31.65 minutes. 3. The total distance traveled œ v0km Ê a2.75bak39.92b œ 4.91 Ê k œ 22.36. Therefore, the distance traveled is given by the function satb œ 4.91ˆ1  ea22.36/39.92bt ‰. The graph shows satb and the data points.

4.

a0.80ba49.90b œ 1.32 Ê k œ 998 k 33 v0 m k 998 We know that k œ 1.32 and m œ 33a49.9b œ 20 . 33 v0 m ˆ ak/mbt ‰ Using Equation 3, we have: satb œ k 1  e œ 1.32ˆ1 v0 m k

5. (a)

œ coasting distance Ê

dP dt

œ 0.0015Pa150  Pb œ

0.255 150 Pa150

 Pb œ

Thus, k œ 0.255 and M œ 150, and P œ Initial condition: Pa0b œ 6 Ê 6 œ Formula: P œ

150 0.255t 1  24ec0.255t Ê 1  24e ln 48 Ê t œ 0.255 ¸ 17.21 weeks 150 125 œ 1  24ec0.255t Ê 1  24e0.255t 120 Ê t œ ln0.255 ¸ 21.28

(b) 100 œ

M 1  Aeckt

150 1  Ae0

150 1  24ec0.255t

k M PaM

œ

 e20t/33 ‰ ¸ 1.32a1  e0.606t b

 Pb

150 1  Aec0.255t

Ê 1  A œ 25 Ê A œ 24

œ

3 2

Ê 24e0.255t œ

" #

Ê e0.255t œ

" 48

œ

6 5

Ê 24e0.255t œ

" 5

Ê e0.255t œ

" 120

Ê 0.255t œ ln 48 Ê 0.255t œ ln 120

It will take about 17.21 weeks to reach 100 guppies, and about 21.28 weeks to reach 125 guppies. 6. (a)

dP dt

œ 0.0004Pa250  Pb œ

0.1 250 Pa150

 Pb œ

Thus, k œ 0.1 and M œ 250, and P œ

k M PaM  Pb M œ 1 250 Aec0.1t 1  Aeckt

Initial condition: Pa0b œ 28, where t œ 0 represents the year 1970 250 111 28 œ 1 250 Ae0 Ê 28a1  Ab œ 250 Ê A œ 28  1 œ 14 ¸ 7.9286 Formula: P œ

250 c0.1t 1  111 14 e

or approximately P œ

250 1  7.9286ec0.1t

(b) The population Patb will round to 250 when Patb   249.5 Ê 249.5 œ Ê

a249.5bˆ111ec0.1t ‰ 14

œ 0.5 Ê e0.1t œ

14 55,389

Ê 0.1t œ ln

14 55,389

250 c0.1t 1  111 14 e

Ê 249.5ˆ1 

Ê t œ 10 aln 55,389  ln 14b ¸ 82.8.

It will take about 83 years. 7. (a) Using the general solution form Example 2, part (c), dy dt

œ a0.08875 ‚ 107 ba8 ‚ 107  yby Ê yatb œ

M 1  AecrMt

œ

111 0.1t ‰ 14 e

8‚107 1  Aeca!Þ!))(&ba)bt

œ

8‚107 1  Aec0.71t

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

œ 250

607

608

Chapter 9 Further Applications of Integration Apply the initial condition: ya0b œ 1.6 ‚ 107 œ

(b) yatb œ 4 ‚ 107 œ

8‚107 1A

Ê

8‚107 1  4ec0.71t

8 1.6

8‚107 1  4ec0.71 ¸ 2.69671 ‚ lnˆ 1 ‰  0.714 ¸ 1.95253 years.

 1 œ 4 Ê ya1b œ

Ê 4e0.71t œ 1 Ê t œ

107 kg.

8. (a) If a part of the population leaves or is removed from the environment (e.g., a preserve or a region) each year, then c would represent the rate of reduction of the population due to this removal and/or migration. When grizzly bears become a nuisance (e.g., feeding on livestock) or threaten human safety, they are often relocated to other areas or even eliminated, but only after relocation efforts fail. In addition, bears are killed, sometimes accidently and sometimes maliciously. For an environment that has a capacity of about 100 bears, a realistic value for c would probably be between 0 and 4. (b)

Equilibrium solutions:

dP dt

œ 0 œ 0.001a100  PbP  1 Ê P2  100P  1000 œ 0 Ê Peq ¸ 11.27 (unstable) and

Peq ¸ 88.73 (stable) (c)

For 0  Pa0b Ÿ 11, the bear population will eventually disappear, for 12 Ÿ Pa0b Ÿ 88, the population will grow to about 89, the population will remain at about 89, and for Pa0b  89, the population will decrease to about 89 bears. 9. (a)

dy dt

œ 1  y Ê dy œ a1  ybdt Ê

dy 1y

œ dt Ê ln k1  yk œ t  C1 Ê eln k1yk œ etC1 Ê k1  yk œ et eC1

1  y œ „ C2 et Ê y œ Cet  1, where C2 œ eC1 and C œ „ C2 . Apply the initial condition: ya0b œ 1 œ Ce0  1 Ê C œ 2 Ê y œ 2et  1. (b)

dy dt

œ 0.5a400  yby Ê dy œ 0.5a400  yby dt Ê

Example 2, part (c), we obtain Ê ' Š 1y  ln¹ y cy400 ¹

Êe Ê

y y400

Êyœ

1 400  y ‹dy

1 1 400 Š y



1 400  y ‹dy

dy a400  yby

œ 0.5 dt. Using the partial fraction decomposition in

œ 0.5 dt Ê Š 1y 

1 400  y ‹dy

œ 200 dt

œ ' 200 dt Ê lnkyk  lnky  400k œ 200t  C1 Ê ln¹ y y400 ¹ œ 200t  C1

œ e200tC1 œ e200t eC1 Ê ¹ y y400 ¹ œ C2 e200t (where C2 œ eC1 ) Ê

y y  400

œ „ C2 e200t

œ Ce200t (where C œ „ C2 ) Ê y œ Ce200t y  400 Ce200t Ê a1  Ce200t by œ 400 Ce200t

400 Ce200t Ce200t  1

ya0b œ 2 œ

Êyœ

400 1  Ae0

400 1  C1 ec200t

œ

400 1  Aec200t ,

Ê A œ 199 Ê yatb œ

where A œ  C1 . Apply the initial condition:

400 1  199ec200t

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 9.5 Applications of First-Order Differential Equations 10.

dP dt

œ raM  PbP Ê dP œ raM  PbP dt Ê

we obtain

1 ˆ1 M P

1 ‰ M  P dP



dP aM  PbP

œ r dt. Using the partial fraction decomposition in Example 6, part (c),

'

œ r dt Ê ˆ P1 

Ê lnkPk  lnkP  Mk œ arMb Ê ¸ P P M ¸ œ C2 earMbt (where

'

1 ‰ ˆ P1  P 1 M ‰dP œ rM dt M  P dP œ rM dt Ê P t  C1 Ê ln¸ P P M ¸ œ arMb t  C1 Ê eln¸ P c M ¸ œ earMbtC1 œ earMbt eC1 C2 œ eC1 ) Ê PPM œ „ C2 earMbt Ê PPM œ CearMbt (where C œ „ C2 )

Ê P œ CearMbt P  M CearMbt Ê ˆ1  CearMbt ‰P œ M CearMbt Ê P œ ÊPœ 11. (a)

dP dt

M , 1  AecarMbt

œ kP2 Ê ' P2 dP œ ' k dt Ê P" œ kt  C Ê P œ

Initial condition: Pa0b œ P0 Ê P0 œ  C1 Ê C œ

dP dt

œ raM  PbaP  mb Ê

Ê

ÊPœ

M 1  C1 ecarMbt

aP  100ba1200  Pb dP a1200  PbaP  100b dt

1 P0

" kt  C

P0 1  kP0 t

(b) There is a vertical asymptote at t œ 12. (a)

M CearMbt CearMbt  1

where A œ  C1 .

Solution: P œ  kt  a11/P0 b œ

dP dt

1 kpO

œ ra1200  PbaP  100b Ê

œ 1100 r Ê

ˆ 12001  P



1 ‰ dP P  100 dt

1 dP a1200  PbaP  100b dt

œ 1100 r Ê

œrÊ

ˆ 12001  P



1100 dP a1200  PbaP  100b dt

1 ‰ P  100 dP

P  100 1200  P 1100 r t

where C œ „ eC1 Ê P  100 œ 1200Ce1100 r t  CPe1100 r t Ê Pa1  Ce1100 r t b œ 1200Ce ÊPœ

1200Ce  100 Ce1100 r t  1

œ

c1100 r t 1200  100 C e 1  C1 ec1100 r t

(b) Apply the initial condition: 300 œ

1200  100Aec1100 r t 1  Aec1100 r t

ÊPœ

1200  100A 1A

œ 1100 r

œ 1100 r dt

Ê ' ˆ 12001 P  P1100 ‰dP œ ' 1100 r dt Ê ln a1200  Pb  ln aP  100b œ 1100 r t  C1 P  100 ¸ P  100 C1 1100 r t ¸ P  100 ¸ Ê ln ¸ 1200 Ê  P œ 1100 r t  C1 Ê ln 1200  P œ 1100 r t  C1 Ê 1200  P œ „ e e 1100 r t

œ Ce1100 r t

 100

where A œ C1 .

Ê 300  300A œ 1200  100A Ê A œ

9 2

ÊPœ

2400  900Aec1100 r t Þ 2  9ec1100 r t

(Note that P Ä 1200 as t Ä _.) (c)

dP dt

œ raM  PbaP  mb Ê

Ê ˆ M 1 P 

1 ‰ dP P  m dt

1 dP aM  PbaP  mb dt

œrÊ

œ raM  mb Ê ' ˆ M 1 P 

Ê ln aM  Pb  ln aP  mb œ aM  mb r t  Ê

Pm MP

Mm dP aM  PbaP  mb dt

Ê Pˆ1  Ce

aMmb r t

œ MCe

œ raM  mb Ê

'

1 ‰ raM  mbdt P  m dP œ Pm ¸ ¸ C1 Ê ln M  P œ aM  mb r t  aMmb r t aMmb r t

œ CeaMmb r t where C œ „ eC1 Ê P  m œ MCe aMmb r t ‰

mÊPœ

aP  mb  aM  Pb dP aM  PbaP  mb dt

C1 Ê

Pm MP

Apply the initial condition Pa0b œ P0 MmA 1 A

Ê P0  P0 A œ M  mA Ê A œ

M  P0 P0  m

ÊPœ

ÊPœ

caMcmb r t M m Ce 1  C1 ecaMcmb r t

ÊPœ

MaP0  mb  maM  P0 becaMcmb r t aP0  mb  aM  P0 becaMcmb r t

(Note that P Ä M as t Ä _ provided P0  m.) 13. y œ mx Ê

y x

orthogonals:

œmÊ dy dx

xy  y x2 w

œ 0 Ê y w œ yx . So for

œ  xy Ê y dy œ x dx Ê

y2 2



x2 2

œC

Ê x  y œ C1 2

œ raM  mb

œ „ eC1 eaMmb r t

 CPe

MCeaMcmb r t  m CeaMcmb r t  1

A œ C1 . P0 œ

609

2

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

M  mAecaMcmb r t 1  AecaMcmb r t

610

Chapter 9 Further Applications of Integration

14. y œ cx2 Ê Ê yw œ

y x2

2y x .

œcÊ

x2 y  2xy x4

œ 0 Ê x2 y w œ 2xy

w

So for the orthogonals:

dy dx

x œ  2y

2

Ê 2ydy œ xdx Ê y2 œ  x2  C Ê y œ „ É x2  C, 2

C0

15. kx2  y2 œ 1 Ê 1  y2 œ kx2 Ê

1  y2 x2

œk

x a2yby  ˆ1  y2 ‰2x Ê œ 0 Ê 2yx2 y w œ a1  y2 ba2xb x% ˆ1  y2 ‰a2xb ˆ1  y 2 ‰ Ê y w œ 2xy2 œ xy . So for the orthogonals: 2 ˆ1  y 2 ‰ 2 dy xy dy œ x dx Ê ln y  y2 œ x2  C dx œ 1y2 Ê y 2

w

2x 16. 2x2  y2 œ c2 Ê 4x  2yy w œ 0 Ê y w œ  4x 2y œ  y . For

orthogonals:

dy dx

œ

y 2x

Ê

œ

dy y

dx 2x

Ê ln y œ "# ln x  C

Ê ln y œ ln x1/2  ln C1 Ê y œ C1 kxk1/2

17. y œ cex Ê

y ecx

œcÊ

ex y w c yaex bac1b aex b2

œ!

Ê ex y w œ yex Ê y w œ y. So for the orthogonals: dy dx

œ

1 y 2

Ê y dy œ dx Ê

y2 2

œxC

Ê y œ 2x  C1 Ê y œ „ È2x  C1

xŠ 1y ‹y c ln y w

18. y œ ekx Ê ln y œ kx Ê

ln y x

œkÊ

Ê Š xy ‹ y w  ln y œ 0 Ê y w œ dy dx

y ln y x .

x y ln y Ê y ln y dy œ x dx 1 2 " 2 ˆ " 2‰  # y ln y  4 ay b œ  # x 2 y2 ln y  y2 œ x2  C1

x2

œ0

So for the orthogonals:

œ

Ê Ê

C

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 9.5 Applications of First-Order Differential Equations 2 w 19. 2x2  3y2 œ 5 and y2 œ x3 intersect at a1, 1b. Also, 2x2  3y2 œ 5 Ê 4x  6y y w œ 0 Ê y w œ  4x 6y Ê y a1, 1b œ  3

y21 œ x3 Ê 2y1 y1w œ 3x2 Ê y1w œ x2 2

20. (a) x dx  y dy œ 0 Ê



y2 2 w

3x2 2y1

Ê y1w a1, 1b œ 32 . Since y w † y1w œ ˆ 23 ‰ˆ 32 ‰ œ 1, the curves are orthogonal.

œ C is the general equation

of the family with slope y œ  xy . For the orthogonals: yw œ

y x

Ê

dy y

œ

dx x

Ê ln y œ ln x  C or y œ C1 x

(where C1 œ e Ñ is the general equation of the orthogonals. C

(b) x dy  2y dx œ 0 Ê 2y dx œ x dy Ê Ê "# Š dy y ‹œ

dx x

dy 2y

œ

dx x

Ê "# ln y œ ln x  C Ê y œ C1 x2 is

the equation for the solution family. " # ln

y  ln x œ C Ê

"y # y

w



Ê slope of orthogonals is

1 x dy dx

œ 0 Ê yw œ

2y x

x œ  2y 2

Ê 2y dy œ x dx Ê y2 œ  x2  C is the general equation of the orthogonals.

2". y2 œ 4a2  4ax and y2 œ 4b2  4bx Ê (at intersection) 4a2  4ax œ 4b2  4bx Ê a2  b2 œ xaa  bb Ê aa  bbaa  bb œ aa  bbx Ê x œ a  b. Now, y2 œ 4a2  4aaa  bb œ 4a2  4a2  4ab œ 4ab Ê y œ „ 2Èab. 4a Thus the intersections are at Ša  b, „ 2Èab‹. So, y2 œ 4a2  4ax Ê y1w œ  2y which are equal to  4a and È 2Š2

4a  2Š2Èab‹ 4b 2Š2Èab‹

œ

È ba

and

È ba

at the intersections. Also, y œ 4b  4bx Ê 2

2

y2w

œ

4b 2y

which are equal to

œ É ba and É ba at the intersections. ay1w b † ay2w b œ ". Thus the curves are orthogonal.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

ab‹

4b 2Š2Èab‹

and

611

612

Chapter 9 Further Applications of Integration

CHAPTER 9 PRACTICE EXERCISES ".

dy dx

œ Èy cos2 Èy Ê

2. y w œ

3yax1b2 y 1

Ê

œ dx Ê 2tanÈy œ x  C Ê y œ ˆtan1 ˆ x 2 C ‰‰

dy Èy cos2 Èy

ay  1 b y dy

3. yy w œ secay2 bsec2 x Ê

œ 3ax  1b2 dx Ê y  ln y œ ax  1b3  C

y dy secay2 b

sinˆy2 ‰ 2

œ sec2 x dx Ê

œ tan x  C Ê sinay2 b œ 2tan x  C1

sin x 4. y cos2 axb dy  sin x dx œ 0 Ê y dy œ  cos 2 axb dx Ê

y2 2

œ  cos1axb  C Ê y œ „ É cosa2xb  C1

2ax  2b3/2 a3x  4b  15 2ax  2b3/2 a3x  4b  C“ 15

5. y w œ xey Èx  2 Ê ey dy œ xÈx  2 dx Ê ey œ 2ax  2b3/2 a3x  4b 15

Ê y œ ln’ 6. y w œ xyex Ê 2

dy y

2

 C“ Ê y œ ln’

C Ê ey œ

2ax  2b3/2 a3x  4b 15

C

œ ex x dx Ê ln y œ "# ex  C 2

2

7. sec x dy  x cos2 y dx œ 0 Ê

dy cos2 y

x dx œ  sec x Ê tan y œ cos x  x sin x  C

8. 2x2 dx  3Èy csc x dy œ 0 Ê 3Èy dy œ

2x2 csc x dx

Ê 2y3/2 œ 2a2  x2 bcos x  4x sin x  C

Ê y3/2 œ a2  x2 bcos x  2x sin x  C1 9. y w œ

ey xy

Ê yey dy œ

Ê ay  1bey œ ln kxk  C

dx x

10. y w œ xexy csc y Ê y w œ

x ex ey csc



ey csc y dy

œ x ex dx Ê

11. xax  1bdy  y dx œ 0 Ê xax  1bdy œ y dx Ê

dy y

œ

ey 2 asin

dx x ax  1 b

y  cos yb œ ax  1bex  C

Ê ln y œ lnax  1b  lnaxb  C

Ê ln y œ lnax  1b  lnaxb  ln C1 Ê ln y œ lnŠ C1 axx 1b ‹ Ê y œ

12. y w œ ay2  1bax1 b Ê

dy

y 2 1

œ

Ê

dx x

1 lnŠ yy c b1‹

2

C1 ax  1b x

1 œ ln x  C Ê lnŠ yy  1 ‹ œ 2ln x  ln C1 Ê

y1 y1

œ C1 x2

13. 2y w  y œ xex/2 Ê y w  "# y œ x2 ex/2 .

' ˆ "‰ paxb œ  "# , vaxb œ e c # dx œ ex/2 .

ex/2 y w  "# ex/2 y œ ˆex/2 ‰ˆ x2 ‰ˆex/2 ‰ œ 14.

w

y 2

x 2

Ê

d ˆ x/2 dx e

y‰ œ

x 2

Ê ex/2 y œ

x2 4

2

 C Ê y œ ex/2 Š x4  C‹

 y œ ex sin x Ê y w  2y œ 2ex sin x.

paxb œ 2, vaxb œ e' 2dx œ e2x . e2x y w  2e2x y œ 2e2x ex sin x œ 2ex sin x Ê x

d 2x dx ae

yb œ 2ex sin x Ê e2x y œ ex asin x  cos xb  C

2x

Ê y œ e asin x  cos xb  Ce

15. xy w  2y œ 1  x1 Ê y w  ˆ 2x ‰y œ vaxb œ e2'

dx x

1 x



1 x2 .

2

œ e2ln x œ eln x œ x2 .

x2 y w  2xy œ x  1 Ê

d 2 dx ax yb

œ x  1 Ê x2 y œ

x2 2

xCÊyœ

" #



1 x



C x2

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 9 Practice Exercises

613

16. xy w  y œ 2x ln x Ê y w  ˆ 1x ‰y œ 2 ln x. vaxb œ e d ˆ1 dx x

' dxx

2 œ eln x œ 1x . ˆ 1x ‰y w  ˆ 1x ‰ y œ 2x ln x Ê

† y‰ œ 2x ln x Ê

† y œ c ln x d2  C Ê y œ xc ln x d2  Cx

1 x

17. a1  ex bdy  ayex  ex bdx œ 0 Ê a1  ex by w  ex y œ ex Ê y w œ ' a exdx b

vaxb œ e 1 b ex œ elnae 1b œ ex  1. x cx aex  1by w  aex  1bˆ 1 e ex ‰y œ a1e ex b aex  1b Ê Êyœ 18.

dx dy

ecx  C ex  1

ex 1  ex y

œ

ecx a1  e x b .

x

œ

e cx  C

 1by d œ ex Ê aex  1by œ ex  C

d aex dx c

1  ex

 x  4yey œ 0 Ê x w  x œ 4yey . Let vayb œ e

' dy

œ ey . Then ey x w  xey œ 4ye2y Ê

d y dy axe b

œ 4ye2y

Ê xey œ a2y  1be2y  C Ê x œ a2y  1bey  Cey 19. ax  3y2 b dy  y dx œ 0 Ê x dy  y dx œ 3y2 dy Ê

d dx axyb

œ 3y2 dy Ê xy œ y3  C '

20. y dx  a3x  y2 cos yb dx œ 0 Ê x w  Š 3y ‹x œ y3 cos y. Let vayb œ e

3dy y

3

œ e3ln y œ eln y œ y3 .

Then y3 x w  3y2 x œ cos y and y3 x œ ' cos y dy œ sin y  C. So x œ y3 asin y  Cb 21.

œ exy2 Ê ey dy œ eax2b dx Ê ey œ eax2b  C. We have ya0b œ 2, so e2 œ e2  C Ê C œ 2e2 and e œ eax2b  2e2 Ê y œ lnˆeax2b  2e2 ‰

22.

dy dx

dy dx y

œ

y ln y 1  x2

Ê etan

Ê

c1 a0bC

dy y ln y

œ

dx 1  x2

Ê lnaln yb œ tan1 axb  C Ê y œ ee

So y w ax  1b2  Ê yax  1b2 œ

x x1.

' x b2 1 dx

Let vaxb œ e

2 ax  1 b a x

 1b2 y œ

x3 3

 C Ê y œ ax  1b2 Š x3 



y œ ax  1b2 Š x3  3

x2 2 2

x 2

x ax  1 b a x

 1b2 Ê

d  dx yax

3

x2 2

dy dx

tanc1 axbbln 2

2

œ e2lnax1b œ elnax1b œ ax  1b2 .

2  1b2 ‘ œ xax  1b Ê yax  1b œ ' xax  1bdx

 1‹ ' ˆ 2 ‰dx

25.

tanc1 a0bbC

 C‹. We have ya0b œ 1 Ê 1 œ C. So

1 2 w ˆ2‰ 24. x dy dx  2y œ x  1 Ê y  x y œ x  x . Let vaxb œ e

So

. We have ya0b œ e2 Ê e2 œ ee

œ 2 Ê tan1 a0b  C œ ln 2 Ê 0  C œ ln 2 Ê C œ ln 2 Ê y œ ee

w ˆ 2 ‰ 23. ax  1b dy dx  2y œ x Ê y  x  1 y œ

Ê

tanc1 axbbC

d x4 2 3 2 dx ax yb œ x  x Ê x y œ 4 2 4 2x2  1 y œ x4  4x1 2  "# œ x 4x 2



x2 2

CÊyœ

x2 4

x



C x2

œ eln x œ x2 . So x2 y w  2xy œ x3  x 2

 "# . We have ya1b œ 1 Ê 1 œ

 3x2 y œ x2 . Let vaxb œ e' 3x dx œ ex . So ex y w  3x2 ex y œ x2 ex Ê 2

3

3

3

3

We have ya0b œ 1 Ê e0 a1b œ 13 e0  C Ê 1 œ

3

1 3

d dx axyb

dy ˆy È y ‰

3

" #

3

Ê C œ 14 .

3

œ x2 ex Ê ex y œ 13 ex  C.

3

cos x x .

C

3

4 3

Êyœ

1 3

 43 ex

3

' 1 dx x œ eln x œ x.

Let vaxb œ e

œ cos x Ê xy œ ' cos x dx Ê xy œ sin x  C. We have yˆ 12 ‰ œ 0 Ê ˆ 12 ‰0 œ 1  C

Ê C œ 1. So xy œ 1  sin x Ê y œ 27. x dy  ˆy  Èy‰dx œ 0 Ê

d x3 dx Še y‹

 C Ê C œ  43 and ex y œ 13 ex 

26. xdy  ay  cos xbdx œ 0 Ê xy w  y  cos x œ 0 Ê y w  ˆ 1x ‰y œ So xy w  xˆ 1x ‰y œ cos x Ê

3

1 4

œ

dx x

1  sin x x

Ê 2lnˆÈy  1‰ œ ln x  C. We have ya1b œ 1 Ê 2 lnŠÈ1  1‹ œ ln 1  C

Ê 2 ln 2 œ C œ ln 22 œ ln 4. So 2 lnˆÈy  1‰ œ ln x  ln 4 œ lna4xb Ê lnˆÈy  1‰ œ "# lna4xb œ lna4xb1/2 Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

614

Chapter 9 Further Applications of Integration Ê eln

ˆÈ y 1 ‰

28. y2 dx dy œ So

y3 3

1/2

œ elna4xb Ê Èy  1 œ 2Èx Ê y œ ˆ2Èx  1‰

ex e2x  1

Ê

e2x  1 ex dx

œ ex  ex 

1 3

œ

dy yc2

Ê

y3 3

2

œ ex  ex  C. We have ya0b œ 1 Ê

a1 b 3 3

œ e0  e0  C Ê C œ 13 .

Ê y3 œ 3aex  ex b  1 Ê y œ c3aex  ex b  1 d1/3 xc2

29. xy w  ax  2by œ 3x3 ex Ê y w  ˆ x x 2 ‰y œ 3x2 ex . Let vaxb œ e' ˆ x ‰dx œ ex2ln x œ xe2 . So x x ex w ex ˆ x  2 ‰ d ˆ y œ 3 Ê dx y † xe2 ‰ œ 3 Ê y † xe2 œ 3x  C. We have ya1b œ 0 Ê 0 œ 3a1b  C Ê C œ 3 x2 y  x2 x Êy†

ex x2

œ 3x  3 Ê y œ x2 ex a3x  3b

30. y dx  a3x  xy  2bdy œ 0 Ê Payb œ

3 y

x

dx dy



3x  xy  2 y

œ0Ê

dx dy



3x y

 x œ  2y Ê

dx dy

 Š 3y  1‹x œ  2y .

 1 Ê ' Paybdy œ 3ln y  y Ê vayb œ e3ln yy œ y3 ey

y3 ey x w  y3 ey Š 3y  1‹x œ 2y2 ey Ê y3 ey x œ ' 2y2 ey dy œ 2ey ay2  2y  2b  C Ê y3 œ Ê y3 œ

2ˆy2  2y  2‰  Cey . x 2 yb1 ˆ ‰ 2 y  2y  2  4e x

We have ya2b œ 1 Ê 1 œ

2a1  2  2b  Cec1 2

Ê C œ 4e and

31. To find the approximate values let yn œ yn1  ayn1  cos xn1 ba0.1b with x0 œ 0, y0 œ 0, and 20 steps. Use a spreadsheet, graphing calculator, or CAS to obtain the values in the following table. x y x y 1.1 1.6241 0 0 1.2 1.8319 0.1 0.1000 1.3 2.0513 0.2 0.2095 1.4 2.2832 0.3 0.3285 1.5 2.5285 0.4 0.4568 1.6 2.7884 0.5 0.5946 1.7 3.0643 0.6 0.7418 1.8 3.3579 0.7 0.8986 1.9 3.6709 0.8 1.0649 2.0 4.0057 0.9 1.2411 1.0 1.4273 32. To find the approximate values let zn œ yn1  aa2  yn1 ba2 xn1  3bba0.1b and yn œ yn1  Š a2  ync1 ba2 xnc1  32b  a2  zn ba2 xn  3b ‹a0.1b with initial values x0 œ 3, y0 œ 1, and 20 steps. Use a spreadsheet, graphing calculator, or CAS to obtain the values in the following table. x y x y 1.9 5.9686 3 1 1.8 6.5456 2.9 0.6680 1.7 6.9831 2.8 0.2599 1.6 7.2562 2.7 0.2294 1.5 7.3488 2.6 0.8011 1.4 7.2553 2.5 1.4509 1.3 6.9813 2.4 2.1687 1.2 6.5430 2.3 2.9374 1.1 5.9655 2.2 3.7333 1.0 5.2805 2.1 4.5268 2.0 5.2840

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 9 Practice Exercises 2ync1 " xnc1  2ync1 33. To estimate ya3b, let zn œ yn1  Š xncx1nc1  1 ‹a0.05b and yn œ yn1  # Š xnc1  1 

xn  2zn xn  1 ‹a0.05b

615

with initial values

x0 œ 0, y0 œ 1, and 60 steps. Use a spreadsheet, graphing calculator, or CAS to obtain ya3b ¸ 0.9063. 34. To estimate ya4b, let zn œ yn1  Š

x2nc1  2ync1  1 ‹a0.05b xnc1

with initial values x0 œ 1, y0 œ 1, and 60 steps. Use a

spreadsheet, graphing calculator, or CAS to obtain ya4b ¸ 4.4974. 35. Let yn œ yn1  ˆ exnc1 b1ync1 b 2 ‰adxb with starting values x0 œ 0 and y0 œ 2, and steps of 0.1 and 0.1. Use a spreadsheet, programmable calculator, or CAS to generate the following graphs. (a)

(b) Note that we choose a small interval of x-values because the y-values decrease very rapidly and our calculator cannot handle the calculations for x Ÿ 1. (This occurs because the analytic solution is y œ 2  lna2  ex b, which has an asymptote at x œ ln 2 ¸ 0.69. Obviously, the Euler approximations are misleading for x Ÿ 0.7.)

y

y

36. Let zn œ yn1  Š eynncc11  xnncc11 ‹adxb and yn œ yn1  #" Š eynncc11  xnncc11  x2

x2

xn2  zn ezn  xn ‹adxb

with starting values x0 œ 0 and y0 œ 0,

and steps of 0.1 and 0.1. Use a spreadsheet, programmable calculator, or CAS to generate the following graphs. (a) (b)

37.

x y dy dx

1 1.2 1.4 1.6 1 0.8 0.56 0.28

œ x Ê dy œ x dx Ê y œ

Ê 1 œ

" #

Ê ya2b œ

CÊCœ 2

2 2



3 2

œ

" #

 32

x2 2

1.8 0.04

2.0 0.4

 C; x œ 1 and y œ 1

Ê yaexactb œ

x2 2



3 2

is the exact value.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

616

Chapter 9 Further Applications of Integration

38.

x y œ

dy dx

1 1.2 1.4 1.6 1.8 2.0 1 0.8 0.6333 0.4904 0.3654 0.2544 1 x

Ê dy œ x1 dx Ê y œ lnkxk  C; x œ 1 and y œ 1

Ê 1 œ ln 1  C Ê C œ 1 Ê yaexactb œ lnkxk  1 Ê ya2b œ ln 2  1 ¸ 0.3069 is the exact value.

39.

x y

1 1.2 1.4 1.6 1.8 2.0 1 1.2 0.488 1.9046 2.5141 3.4192

œ xy Ê

dy dx

Êyœe

dy y

x2 2 C

œ x dx Ê lnkyk œ x2 2

x2 2

C

x2 2

œ e † eC œ C1 e ; x œ 1 and y œ 1 x2

Ê 1 œ C1 e1/2 Ê C1 œ e1/2 yaexactb œ e1/2 † e 2 œ eˆx 1‰/2 Ê ya2b œ e3/2 ¸ 4.4817 is the exact value. 2

40.

x y

1 1.2 1.4 1.6 1.8 2.0 1 1.2 1.3667 1.5130 1.6452 1.7688

dy y2 1 dx œ y Ê y dy œ dx Ê 2 œ x " " 2 # œ 1  C Ê C œ # Ê y œ

 C; x œ 1 and y œ 1

2x  1 Ê yaexactb œ È2x  1 Ê ya2b œ È3 ¸ 1.7321 is the exact value.

41.

dy dx

œ y2  1 Ê y w œ ay  1bay  1b. We have y w œ 0 Ê ay  1b œ 0, ay  1b œ 0 Ê y œ 1, 1.

(a) Equilibrium points are 1 (stable) and 1 (unstable) (b) y w œ y2  1 Ê y ww œ 2yy w Ê y ww œ 2yay2  1b œ 2yay  1bay  1b. So y ww œ 0 Ê y œ 0, y œ 1, y œ 1.

(c)

42.

dy dx

œ y  y2 Ê y w œ ya1  yb. We have y w œ 0 Ê ya1  yb œ 0 Ê y œ 0, 1  y œ 0 Ê y œ 0, 1.

(a) The equilibrium points are 0 and 1. So, 0 is unstable and 1 is stable. (b) Let ïî œ increasing, íï œ decreasing. yw  ! yw  ! yw  ! qqíïïïïïqqñqqïïïïïîqqñqqíïïïïïqqpy 0 1 y w œ y  y2 Ê y ww œ y w  2yy w Ê y ww œ ay  y2 b  2yay  y2 b œ y  y2  2y2  2y3 Ê y ww œ 2y3  3y2  y œ ya2y2  3y  1b Ê y ww œ ya2y  1bay  1b. So, y ww œ 0 Ê y œ 0, 2y  1 œ 0, y  1 œ 0 Ê y œ 0, y œ "# , Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 9 Additional and Advanced Exercises

617

y œ 1. Let ïî œ concave up, íï œ concave down. y ww  ! y ww  ! y ww  ! y ww  ! qíïïïïïqqñqqïïïïïîqqñqqíïïïïïqqñqqïïïïïîqpy 0 1 1/2 (c)

43. (a) Force œ Mass times Acceleration (Newton's Second Law) or F œ ma. Let a œ

dv dt

œ

dv ds



ds dt

œ v dv ds . Then

2 2 ma œ mgR2 s2 Ê a œ gR2 s2 Ê v dv Ê v dv œ gR2 s2 ds Ê ' v dv œ ' gR2 s2 ds ds œ gR s

Ê

v2 2

œ

ÊCœ

gR2 s  C1 2 v0  2gR

Ê v2 œ Êv œ 2

(b) If v0 œ È2gR, then v2 œ

2gR2 s 2gR2 s

2gR s

2

 2C1 œ 

v20

2gR2 s

 C. When t œ 0, v œ v0 and s œ R Ê v20 œ

2gR2 R

C

 2gR 2

È2gR. Then Ê v œ É 2gR s , since v   0 if v0  

ds dt

œ

È2gR2 Ès

Ê Ès ds œ È2gR2 dt

Ê ' s1/2 ds œ ' È2gR2 dt Ê 23 s3/2 œ È2gR2 t  C1 Ê s3/2 œ ˆ 32 È2gR2 ‰t  C; t œ 0 and s œ R Ê R3/2 œ ˆ 32 È2gR2 ‰a0b  C Ê C œ R3/2 Ê s3/2 œ ˆ 32 È2gR2 ‰t  R3/2 œ ˆ 32 RÈ2g‰t  R3/2 3 œ R3/2  ˆ 32 R1/2 È2g‰t  1 ‘ œ R3/2 ’ Š

44.

v0 m k

a0.86ba30.84b k 0.8866t

œ coasting distance Ê

Ê satb œ 0.97a1  e

È2gR 2R ‹t

2/3 0‰ 0‰ ‘ ‘ Ê s œ R 1  ˆ 3v  1 “ œ R3/2  ˆ 3v 2R t  1 2R t

œ 0.97 Ê k ¸ 27.343. satb œ

v0 m ˆ k 1

 eak/mbt ‰ Ê satb œ 0.97ˆ1  ea27.343/30.84bt ‰

b. A graph of the model is shown superimposed on a graph of the data.

CHAPTER 9 ADDITIONAL AND ADVANCED EXERCISES 1. (a)

dy dt

A œ kA V ac  yb Ê dy œ k V ay  cbdt Ê

dy yc

' œ k A V dt Ê

dy yc

A œ ' k A V dt Ê lnky  ck œ k V t  C1

Ê y  c œ „ eC1 ek V t . Apply the initial condition, ya0b œ y0 Ê y0 œ c  C Ê C œ y0  c A

Ê y œ c  ay0  cbek V t . A (b) Steady state solution: y_ œ lim yatb œ lim  c  ay0  cbek V t ‘ œ c  ay0  cba0b œ c A

tÄ_

tÄ_

2. Measure the amounts of oxygen involved in mL. Then the inflow of oxygen is 1000 mL/min (Assumed: it will take 5 minutes to deliver the 5L œ 5000mL); the amount of oxygen at t œ 0 is 210 mL; letting A œ the amount of oxygen in the flask, the concentration at time t is A mL/L; the outflow rate of oxygen is A mL/L (lb/sec). The rate of change in A, dA dt , equals the rate of gain (1000 mL/min) minus rate of loss (A mL/min). Thus: dA dA t dt œ 1000  A Ê 1000  A œ dt Ê lnaA  1000b œ t  C Ê A  1000 œ Ce . At t œ 0, A œ 210, so C œ 790 and A œ 1000  790et . Thus, Aa5b œ 1000  790e5 ¸ 994.7 mL. The concentration is

994.7 mL 1000 mL

œ 99.47%.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

618

Chapter 9 Further Applications of Integration

3. The amount of CO2 in the room at time t is Aatb. The rate of change in the amount of CO2 ,

dA dt

is the rate of internal

production (R1 ) plus the inflow rate (R2 ) minus the outflow rate (R3 ). R1 œ ˆ20

breaths/min ‰ a30 student

R2 œ Š1000

ft3 CO2 ft3 min ‹Š0.0004 min ‹

A R3 œ Š 10,000 ‹1000 œ 0.1A dA dt

3

100 2 studentsbˆ 1728 ft3 ‰Š0.04 ft ftCO ‹ ¸ 1.39 3

œ 0.4

ft3 CO2 min

ft3 CO2 min

ft3 CO2 min

œ 1.39  0.4  0.1A œ 1.79  0.1A Ê Aw  0.1A œ 1.79. Let vatb œ e

' 0.1dt

. We have

' 0.1dt d ‹ dt ŠAe

' 0.1dt

œ 1.79e

Ê Ae0.1t œ ' 1.79e0.1t dt œ 17.9e0.1t  C. At t œ 0, A œ a10,000ba0.0004b œ 4 ft3 CO2 Ê C œ 13.9 Ê A œ 17.9  13.9e0.1t . So Aa60b œ 17.9  13.9e0.1a60b ¸ 17.87 ft3 of CO2 in the 10,000 ft3 room. The percent of 17.87 CO2 is 10,000 ‚ 100 œ 0.18% 4.

damvb damvb dm dm dv dm dm dm dv dm dt œ F  av  ub dt Ê F œ dt  av  ub dt Ê F œ m dt  v dt  v dt  u dt Ê F œ m dt  u dt . dm dt œ b Ê m œ kbkt  C. At t œ 0, m œ m0 , so C œ m0 and m œ m0  kbkt. u kb k m0  kbkt dv Thus, F œ am0  kbktb dv dt  ukbk œ am0  kbktbkgk Ê dt œ g  m0  kbkt Ê v œ gt  u lnŠ m0 ‹  C1

v œ 0 at t œ 0 Ê C1 œ 0. So v œ gt  u lnŠ m0 m0kbkt ‹ œ t œ 0 Ê y œ  "# gt2  c’ t  Š

m0  kbkt m0  kbkt kbk ‹ lnŠ m0 ‹

dy dt

Ê y œ ' ’ gt  u lnŠ

m0  kbkt m0 ‹

“dt and u œ c, y œ 0 at



' 5. (a) Let y be any function such that vaxby œ ' vaxbQaxb dx  C, vaxb œ e Paxb dx . Then ' Paxb dx ' d w w Ê v w axb œ œ e Paxb dx Paxb œ vaxbPaxb. dx avaxb † yb œ vaxb † y  y † v axb œ vaxbQaxb. We have vaxb œ e

Thus vaxb † y w  y † vaxb Paxb œ vaxbQaxb Ê y w  y Paxb œ Qaxb Ê the given y is a solution.

(b) If v and Q are continuous on c a, b d and x − aa, bb, then Ê

d dx ’

'xx vatbQatb dt“ œ vaxbQaxb 0

'xx vatbQatb dt œ ' vaxbQaxb dx. So C œ y0 vax0 b  ' vaxbQaxb dx. From part (a), vaxby œ ' vaxbQaxb dx  C. 0

Substituting for C: vaxby œ ' vaxbQaxb dx  y0 vax0 b  ' vaxbQaxb dx Ê vaxby œ y0 vax0 b when x œ x0 . 6. (a) y w  Paxby œ 0, yax0 b œ 0. Use vaxb œ e' Paxb dx as an integrating factor. Then

d dx avaxbyb

œ 0 Ê vaxby œ C

Ê y œ Ce' Paxb dx and y1 œ C1 e' Paxb dx , y2 œ C# e' Paxb dx , y1 ax0 b œ y2 ax0 b œ 0, y1  y2 œ aC1  C2 be' Paxb dx œ C3 e (b)

' Paxb dx

d y axb dx avaxbc 1

and y1  y2 œ 0  0 œ 0. So y1  y2 is a solution to y w  Paxby œ 0 with yax0 b œ 0.

 y2 axb db œ

' Paxb dx  ' Paxb dx d e aC1 dx Še

 C2 b ‘‹ œ

d dx aC1

 C2 b œ

d dx aC3 b

œ !.

' dxd avaxbc y1 axb  y2 axb dbdx œ avaxbc y1 axb  y2 axb db œ ' ! dx œ C ' ' ' ' (c) y1 œ C1 e Paxb dx , y2 œ C# e Paxb dx , y œ y1  y2 . So yax0 b œ 0 Ê C1 e Paxb dx  C# e Paxb dx œ ! Ê C1  C2 œ 0 Ê C1 œ C2 Ê y1 axb œ y2 axb for a  x  b.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

CHAPTER 10 CONIC SECTIONS AND POLAR COORDINATES 10.1 CONIC SECTIONS AND QUADRATIC EQUATIONS 1. x œ

y# 8

Ê 4p œ 8 Ê p œ 2; focus is (2ß 0), directrix is x œ 2 #

2. x œ  y4 Ê 4p œ 4 Ê p œ 1; focus is (1ß 0), directrix is x œ 1 #

3. y œ  x6 Ê 4p œ 6 Ê p œ 4. y œ

x# 2

Ê 4p œ 2 Ê p œ

1 #

3 #

; focus is ˆ!ß  3# ‰ , directrix is y œ

3 #

; focus is ˆ!ß 1# ‰ , directrix is y œ  1#

5.

x# 4



y# 9

œ 1 Ê c œ È4  9 œ È13 Ê foci are Š „ È13ß !‹ ; vertices are a „ 2ß 0b ; asymptotes are y œ „ 3# x

6.

x# 4



y# 9

œ 1 Ê c œ È9  4 œ È5 Ê foci are Š0ß „ È5‹ ; vertices are a0ß „ 3b

7.

x# 2

 y# œ 1 Ê c œ È2  1 œ 1 Ê foci are a „ 1ß 0b ; vertices are Š „ È2ß !‹

8.

y# 4

 x# œ 1 Ê c œ È4  1 œ È5 Ê foci are Š0ß „ È5‹ ; vertices are a!ß „ 2b ; asymptotes are y œ „ 2x

9. y# œ 12x Ê x œ

y# 1#

Ê 4p œ 12 Ê p œ 3;

focus is ($ß !), directrix is x œ 3

11. x# œ 8y Ê y œ

x# 8

Ê 4p œ 8 Ê p œ 2;

focus is (!ß 2), directrix is y œ 2

#

10. x# œ 6y Ê y œ x6 Ê 4p œ 6 Ê p œ focus is ˆ!ß 3# ‰ , directrix is y œ  3#

#

3 #

;

y 12. y# œ 2x Ê x œ # Ê 4p œ 2 Ê p œ " focus is ˆ # ß !‰ , directrix is x œ "#

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

" #

;

620

Chapter 10 Conic Sections and Polar Coordinates

13. y œ 4x# Ê y œ

x# ˆ "4 ‰

" 4

Ê 4p œ

Ê pœ

" 16

#

14. y œ 8x# Ê y œ  ˆx" ‰ Ê 4p œ

;

8

" ‰ " focus is ˆ!ß 16 , directrix is y œ  16

#

15. x œ 3y# Ê x œ  ˆy" ‰ Ê 4p œ 3

focus is ˆ 1"# ß !‰ , directrix is x œ

#

#

" 3

" 1#

y 17. 16x#  25y# œ 400 Ê #x5  16 œ1 Ê c œ Èa#  b# œ È25  16 œ 3

#

19. 2x#  y# œ 2 Ê x#  y# œ 1 Ê c œ Èa#  b# œ È2  1 œ 1

" ‰ focus is ˆ!ß  32 , directrix is y œ

Ê pœ

" 1#

;

16. x œ 2y# Ê x œ

y# ˆ "# ‰

Ê 4p œ

" #

" 8

" 3#

Ê pœ

focus is ˆ 8" ß !‰ , directrix is x œ  8"

#

#

x 18. 7x#  16y# œ 112 Ê 16  y7 œ 1 Ê c œ Èa#  b# œ È16  7 œ 3

#

#

20. 2x#  y# œ 4 Ê x#  y4 œ 1 Ê c œ Èa#  b# œ È4  2 œ È2

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Ê pœ

" 8

;

" 32

;

Section 10.1 Conic Sections and Quadratic Equations #

#

21. 3x#  2y# œ 6 Ê x#  y3 œ 1 Ê c œ Èa#  b# œ È3  2 œ 1

#

#

23. 6x#  9y# œ 54 Ê x9  y6 œ 1 Ê c œ Èa#  b# œ È9  6 œ È3

#

#

x 22. 9x#  10y# œ 90 Ê 10  y9 œ 1 Ê c œ Èa#  b# œ È10  9 œ 1

#

#

y x 24. 169x#  25y# œ 4225 Ê 25  169 œ1 Ê c œ Èa#  b# œ È169  25 œ 12

#

25. Foci: Š „ È2ß !‹ , Vertices: a „ 2ß 0b Ê a œ 2, c œ È2 Ê b# œ a#  c# œ 4  ŠÈ2‹ œ 2 Ê 26. Foci: a!ß „ 4b , Vertices: a0ß „ 5b Ê a œ 5, c œ 4 Ê b# œ 25  16 œ 9 Ê 27. x#  y# œ 1 Ê c œ Èa#  b# œ È1  1 œ È2 ; asymptotes are y œ „ x

x# 9

 #

y# #5

œ1 #

x 28. 9x#  16y# œ 144 Ê 16  y9 œ 1 Ê c œ Èa#  b# œ È16  9 œ 5; asymptotes are y œ „ 34 x

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

x# 4



y# #

œ1

621

622

Chapter 10 Conic Sections and Polar Coordinates

29. y#  x# œ 8 Ê y8  x8 œ 1 Ê c œ Èa#  b# œ È8  8 œ 4; asymptotes are y œ „ x

# # 30. y#  x# œ 4 Ê y4  x4 œ 1 Ê c œ Èa#  b# œ È4  4 œ 2È2; asymptotes are y œ „ x

31. 8x#  2y# œ 16 Ê x#  y8 œ 1 Ê c œ Èa#  b# œ È2  8 œ È10 ; asymptotes are y œ „ 2x

32. y#  3x# œ 3 Ê y3  x# œ 1 Ê c œ Èa#  b# œ È3  1 œ 2; asymptotes are y œ „ È3x

# # 33. 8y#  2x# œ 16 Ê y#  x8 œ 1 Ê c œ Èa#  b# œ È2  8 œ È10 ; asymptotes are y œ „ x

y x 34. 64x#  36y# œ 2304 Ê 36  64 œ 1 Ê c œ Èa#  b# œ È36  64 œ 10; asymptotes are y œ „ 4

#

#

#

#

#

#

#

#

3

35. Foci: Š!ß „ È2‹ , Asymptotes: y œ „ x Ê c œ È2 and

a b

œ 1 Ê a œ b Ê c# œ a#  b# œ 2a# Ê 2 œ 2a#

Ê a œ 1 Ê b œ 1 Ê y#  x# œ 1 36. Foci: a „ 2ß !b , Asymptotes: y œ „ Ê 4œ

4a# 3

" È3

x Ê c œ 2 and

Ê a# œ 3 Ê a œ È3 Ê b œ 1 Ê

x# 3

b a

œ

" È3

Ê bœ

a È3

4 3

Ê c# œ a#  b# œ a# 

 y# œ 1

37. Vertices: a „ 3ß 0b , Asymptotes: y œ „ 43 x Ê a œ 3 and

b a

œ

4 3

Ê bœ

(3) œ 4 Ê

38. Vertices: a!ß „ 2b , Asymptotes: y œ „ 12 x Ê a œ 2 and

a b

œ

1 2

Ê b œ 2(2) œ 4 Ê

x# 9 y# 4

 

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

y# 16 x# 16

œ1 œ1

a# 3

œ

4a# 3

Section 10.1 Conic Sections and Quadratic Equations 39. (a) y# œ 8x Ê 4p œ 8 Ê p œ 2 Ê directrix is x œ 2, focus is (#ß !), and vertex is (!ß 0); therefore the new directrix is x œ 1, the new focus is (3ß 2), and the new vertex is (1ß 2)

40. (a) x# œ 4y Ê 4p œ 4 Ê p œ 1 Ê directrix is y œ 1, focus is (!ß 1), and vertex is (!ß 0); therefore the new directrix is y œ 4, the new focus is (1ß 2), and the new vertex is (1ß 3)

41. (a)

x# 16



y# 9

œ 1 Ê center is (!ß 0), vertices are (4ß 0)

and (%ß !); c œ Èa#  b# œ È7 Ê foci are ŠÈ7ß 0‹ and ŠÈ7ß !‹ ; therefore the new center is (%ß $), the new vertices are (!ß 3) and (8ß 3), and the new foci are Š4 „ È7ß $‹

42. (a)

x# 9



y# 25

œ 1 Ê center is (!ß 0), vertices are (0ß 5) and (0ß 5); c œ Èa#  b# œ È16 œ 4 Ê foci are (!ß 4) and (!ß 4) ; therefore the new center is (3ß 2), the new vertices are (3ß 3) and (3ß 7), and the new foci are (3ß 2) and (3ß 6)

43. (a)

x# 16



y# 9

œ 1 Ê center is (!ß 0), vertices are (4ß 0)

and (4ß 0), and the asymptotes are x4 œ „ y3 or Èa#  b# œ È25 œ 5 Ê foci are y œ „ 3x 4 ;cœ (5ß 0) and (5ß 0) ; therefore the new center is (2ß 0), the new vertices are (2ß 0) and (6ß 0), the new foci are (3ß 0) and (7ß 0), and the new asymptotes are yœ „

3(x  2) 4

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

623

624

Chapter 10 Conic Sections and Polar Coordinates

44. (a)

y# 4



x# 5

œ 1 Ê center is (!ß 0), vertices are (0ß 2)

and (0ß 2), and the asymptotes are yœ „

2x È5

y 2

œ „

x È5

or

; c œ Èa#  b# œ È9 œ 3 Ê foci are

(0ß 3) and (0ß 3) ; therefore the new center is (0ß 2), the new vertices are (0ß 4) and (0ß 0), the new foci are (0ß 1) and (0ß 5), and the new asymptotes are 2x y2œ „ È 5 45. y# œ 4x Ê 4p œ 4 Ê p œ 1 Ê focus is ("ß 0), directrix is x œ 1, and vertex is (0ß 0); therefore the new vertex is (2ß 3), the new focus is (1ß 3), and the new directrix is x œ 3; the new equation is (y  3)# œ 4(x  2) 46. y# œ 12x Ê 4p œ 12 Ê p œ 3 Ê focus is (3ß 0), directrix is x œ 3, and vertex is (0ß 0); therefore the new vertex is (4ß 3), the new focus is (1ß 3), and the new directrix is x œ 7; the new equation is (y  3)# œ 12(x  4) 47. x# œ 8y Ê 4p œ 8 Ê p œ 2 Ê focus is (0ß 2), directrix is y œ 2, and vertex is (0ß 0); therefore the new vertex is (1ß 7), the new focus is (1ß 5), and the new directrix is y œ 9; the new equation is (x  1)# œ 8(y  7) Ê focus is ˆ!ß #3 ‰ , directrix is y œ  3# , and vertex is (0ß 0); therefore the new vertex is (3ß 2), the new focus is ˆ3ß  "# ‰ , and the new directrix is y œ  7# ; the new equation is

48. x# œ 6y Ê 4p œ 6 Ê p œ

3 #

(x  3)# œ 6(y  2) 49.

x# 6



y# 9

œ 1 Ê center is (!ß 0), vertices are (0ß 3) and (!ß 3); c œ Èa#  b# œ È9  6 œ È3 Ê foci are Š!ß È3‹

and Š!ß È3‹ ; therefore the new center is (#ß 1), the new vertices are (2ß 2) and (#ß 4), and the new foci are Š#ß 1 „ È3‹ ; the new equation is 50.

x# 2

(x  2)# 6

(y  1)# 9



œ1

 y# œ 1 Ê center is (!ß 0), vertices are ŠÈ2ß !‹ and ŠÈ2ß !‹ ; c œ Èa#  b# œ È2  1 œ 1 Ê foci are

(1ß 0) and ("ß !); therefore the new center is (3ß 4), the new vertices are Š3 „ È2ß 4‹ , and the new foci are (2ß 4) and (4ß 4); the new equation is 51.

x# 3



y# #

(x  3)# #

 (y  4)# œ 1

œ 1 Ê center is (!ß 0), vertices are ŠÈ3ß !‹ and ŠÈ3ß !‹ ; c œ Èa#  b# œ È3  2 œ 1 Ê foci are

(1ß 0) and ("ß !); therefore the new center is (2ß 3), the new vertices are Š2 „ È3ß 3‹ , and the new foci are (1ß 3) and (3ß 3); the new equation is 52.

x# 16



y# #5

(x  2)# 3



(y  3)# #

œ1

œ 1 Ê center is (!ß 0), vertices are (!ß &) and (!ß 5); c œ Èa#  b# œ È25  16 œ 3 Ê foci are

(0ß 3) and (0ß 3); therefore the new center is (4ß 5), the new vertices are (4ß 0) and (4ß 10), and the new foci are (4ß 2) and (4ß 8); the new equation is 53.

x# 4



y# 5

(x  4)# 16



(y  5)# #5

œ1

œ 1 Ê center is (!ß 0), vertices are (2ß 0) and (2ß 0); c œ Èa#  b# œ È4  5 œ 3 Ê foci are ($ß !) and

(3ß 0); the asymptotes are „

x #

œ

y È5

Ê yœ „

È5x #

; therefore the new center is (2ß 2), the new vertices are

(4ß 2) and (0ß 2), and the new foci are (5ß 2) and (1ß 2); the new asymptotes are y  2 œ „

È5 (x  2) #

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

; the new

Section 10.1 Conic Sections and Quadratic Equations equation is 54.

x# 16



y# 9

(x  2)# 4

(y  2)# 5



625

œ1

œ 1 Ê center is (!ß 0), vertices are (4ß 0) and (4ß 0); c œ Èa#  b# œ È16  9 œ 5 Ê foci are (5ß !)

and (5ß 0); the asymptotes are „

x 4

œ

Ê yœ „

y 3

3x 4

; therefore the new center is (5ß 1), the new vertices are

(1ß 1) and (9ß 1), and the new foci are (10ß 1) and (0ß 1); the new asymptotes are y  1 œ „ the new equation is

(x  5)# 16



(y  1)# 9

3(x  5) 4

;

œ1

55. y#  x# œ 1 Ê center is (!ß 0), vertices are (0ß 1) and (0ß 1); c œ Èa#  b# œ È1  1 œ È2 Ê foci are Š!ß „ È2‹ ; the asymptotes are y œ „ x; therefore the new center is (1ß 1), the new vertices are (1ß 0) and (1ß 2), and the new foci are Š1ß 1 „ È2‹ ; the new asymptotes are y  1 œ „ (x  1); the new equation is (y  1)#  (x  1)# œ 1 56.

y# 3

 x# œ 1 Ê center is (!ß 0), vertices are Š0ß È3‹ and Š!ß È3‹ ; c œ Èa#  b# œ È3  1 œ 2 Ê foci are (!ß #)

and (!ß 2); the asymptotes are „ x œ

y È3

Ê y œ „ È3x; therefore the new center is (1ß 3), the new vertices

are Š"ß $ „ È3‹ , and the new foci are ("ß &) and (1ß 1); the new asymptotes are y  3 œ „ È3 (x  1); the new equation is

(y  3)# 3

 (x  1)# œ 1

57. x#  4x  y# œ 12 Ê x#  4x  4  y# œ 12  4 Ê (x  2)#  y# œ 16; this is a circle: center at C(2ß 0), a œ 4 58. 2x#  2y#  28x  12y  114 œ 0 Ê x#  14x  49  y#  6y  9 œ 57  49  9 Ê (x  7)#  (y  3)# œ 1; this is a circle: center at C(7ß 3), a œ 1 59. x#  2x  4y  3 œ 0 Ê x#  2x  1 œ 4y  3  1 Ê (x  1)# œ 4(y  1); this is a parabola: V(1ß 1), F(1ß 0) 60. y#  4y  8x  12 œ 0 Ê y#  4y  4 œ 8x  12  4 Ê (y  2)# œ 8(x  2); this is a parabola: V(#ß 2), F(!ß #) 61. x#  5y#  4x œ 1 Ê x#  4x  4  5y# œ 5 Ê (x  2)#  5y# œ 5 Ê

(x  2)# 5

 y# œ 1; this is an ellipse: the

center is (2ß 0), the vertices are Š2 „ È5ß 0‹ ; c œ Èa#  b# œ È5  1 œ 2 Ê the foci are (4ß 0) and (!ß 0) #

62. 9x#  6y#  36y œ 0 Ê 9x#  6 ay#  6y  9b œ 54 Ê 9x#  6(y  3)# œ 54 Ê x6  (y 9 3) œ 1; this is an ellipse: the center is (0ß 3), the vertices are (!ß 0) and (!ß 6); c œ Èa#  b# œ È9  6 œ È3 Ê the foci are Š0ß 3 „ È3‹ #

63. x#  2y#  2x  4y œ 1 Ê x#  2x  1  2 ay#  2y  1b œ 2 Ê (x  1)#  2(y  1)# œ 2 # Ê (x1)  (y  1)# œ 1; this is an ellipse: the center is (1ß 1), the vertices are Š" „ È2ß "‹ ; 2

c œ Èa#  b# œ È2  1 œ 1 Ê the foci are (2ß 1) and (0ß 1) 64. 4x#  y#  8x  2y œ 1 Ê 4 ax#  2x  1b  y#  2y  1 œ 4 Ê 4(x  1)#  (y  1)# œ 4 Ê (x  1)# 

(y1)# 4

œ 1; this is an ellipse: the center is (1ß 1), the vertices are (1ß 3) and

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

626

Chapter 10 Conic Sections and Polar Coordinates

(1ß 1); c œ Èa#  b# œ È4  1 œ È3 Ê the foci are Š1ß " „ È3‹ 65. x#  y#  2x  4y œ 4 Ê x#  2x  1  ay#  4y  4b œ 1 Ê (x  1)#  (y  2)# œ 1; this is a hyperbola: the center is (1ß 2), the vertices are (2ß 2) and (!ß 2); c œ Èa#  b# œ È1  1 œ È2 Ê the foci are Š1 „ È2ß #‹ ; the asymptotes are y  2 œ „ (x  1) 66. x#  y#  4x  6y œ 6 Ê x#  4x  4  ay#  6y  9b œ 1 Ê (x  2)#  (y  3)# œ 1; this is a hyperbola: the center is (2ß 3), the vertices are (1ß 3) and (3ß 3); c œ Èa#  b# œ È1  1 œ È2 Ê the foci are Š2 „ È2ß 3‹ ; the asymptotes are y  3 œ „ (x  2) 67. 2x#  y#  6y œ 3 Ê 2x#  ay#  6y  9b œ 6 Ê

(y  3)# 6



x# 3

œ 1; this is a hyperbola: the center is (!ß $),

the vertices are Š!ß 3 „ È6‹ ; c œ Èa#  b# œ È6  3 œ 3 Ê the foci are (0ß 6) and (!ß 0); the asymptotes are y 3 È6

œ „

x È3

Ê y œ „ È2x  3

68. y#  4x#  16x œ 24 Ê y#  4 ax#  4x  4b œ 8 Ê

y# 8



(x  2)# 2

œ 1; this is a hyperbola: the center is (2ß 0),

the vertices are Š2ß „ È8‹ ; c œ Èa#  b# œ È8  2 œ È10 Ê the foci are Š2ß „ È10‹ ; the asymptotes are y È8

œ „

x 2 È2

Ê y œ „ 2(x  2)

69.

70.

71.

72.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.1 Conic Sections and Quadratic Equations

627

74. kx#  y# k Ÿ 1 Ê 1 Ÿ x#  y# Ÿ 1 Ê 1 Ÿ x#  y# and x#  y# Ÿ 1 Ê 1   y#  x# and x#  y# Ÿ 1

73.

75. Volume of the Parabolic Solid: V" œ '0 21x ˆh  bÎ2

œ

1hb# 8

76. y œ '

; Volume of the Cone: V# œ w H

x dx œ

w H

#

Š x# ‹  C œ

wx# 2H

" 3

#

1 ˆ b# ‰ h œ

" 3

4h b#

x# ‰ dx œ 21h '0 Šx  bÎ2

#

1 Š b4 ‹ h œ

1hb# 12

4x$ b# ‹

; therefore V" œ

 C; y œ 0 when x œ 0 Ê 0 œ

w(0)# 2H

#

dx œ 21h ’ x2  3 #

bÎ2

x% b# “ !

V#

 C Ê C œ 0; therefore y œ

wx# 2H

is the

equation of the cable's curve 77. A general equation of the circle is x#  y#  ax  by  c œ 0, so we will substitute the three given points into a  c œ 1 Þ b  c œ 1 ß Ê c œ 43 and a œ b œ  73 ; therefore this equation and solve the resulting system: 2a  2b  c œ 8 à 3x#  3y#  7x  7y  4 œ 0 represents the circle 78. A general equation of the circle is x#  y#  ax  by  c œ 0, so we will substitute each of the three given points 2a  3b  c œ 13 Þ into this equation and solve the resulting system:

3a  2b  c œ 13 ß Ê a œ 2, b œ 2, and c œ 23; 4a  3b  c œ 25 à

therefore x#  y#  2x  2y  23 œ 0 represents the circle 79. r# œ (2  1)#  (1  3)# œ 13 Ê (x  2)#  (y  1)# œ 13 is an equation of the circle; the distance from the center to (1.1ß 2.8) is È(#  1.1)#  (1  2.8)# œ È12.85  È13 , the radius Ê the point is inside the circle 80. (x  2)#  (y  1)# œ 5 Ê 2(x  2)  2(y  1)

dy dx

œ0 Ê

dy dx

2 # # œ  yx 1 ; y œ 0 Ê (x  2)  (0  1) œ 5

Ê (x  2)# œ 4 Ê x œ 4 or x œ 0 Ê the circle crosses the x-axis at (4ß 0) and (!ß 0); x œ 0 Ê (0  2)#  (y  1)# œ 5 Ê (y  1)# œ 1 Ê y œ 2 or y œ 0 Ê the circle crosses the y-axis at (!ß 2) and (!ß !). At (4ß 0): At (!ß !): At (!ß #):

dy dx dy dx dy dx

2 œ  40 1 œ 2 Ê the tangent line is y œ 2(x  4) or y œ 2x  8 2 œ  00 1 œ 2 Ê the tangent line is y œ 2x

2 œ  02 1 œ 2 Ê the tangent line is y  2 œ 2x or y œ 2x  2

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

628

Chapter 10 Conic Sections and Polar Coordinates

81. (a) y# œ kx Ê x œ

y# k

; the volume of the solid formed by

Èkx

revolving R" about the y-axis is V" œ '0 œ

1 k#

Èkx

'0

y% dy œ

1x# Èkx 5

#

#

1 Š yk ‹ dy

; the volume of the right

circular cylinder formed by revolving PQ about the y-axis is V# œ 1x# Èkx Ê the volume of the solid formed by revolving R# about the y-axis is V$ œ V#  V" œ

41x# Èkx 5

. Therefore we can see the

ratio of V$ to V" is 4:1.

(b) The volume of the solid formed by revolving R# about the x-axis is V" œ '0 1 ŠÈkt‹ dt œ 1k'0 t dt #

x

œ

1kx# #

x

. The volume of the right circular cylinder formed by revolving PS about the x-axis is #

V# œ 1 ŠÈkx‹ x œ 1kx# Ê the volume of the solid formed by revolving R" about the x-axis is 1kx# #

V$ œ V#  V" œ 1kx# 

œ

1kx# #

. Therefore the ratio of V$ to V" is 1:1.

82. Let P" (pß y" ) be any point on x œ p, and let P(xß y) be a point where a tangent intersects y# œ 4px. Now y# œ 4px Ê 2y

dy dx

œ 4p Ê

dy dx

œ

2p y

Ê y#  yy" œ 2px  2p# . Since x œ Ê

" #

tangents from P" are m" œ

y# 4p

2p y"  Èy#"  4p#

œ

dy dx

œ

#

y , we have y#  yy" œ 2p Š 4p ‹  2p# Ê y#  yy" œ

2y" „ È4y#"  16p# #

y#  yy"  2p# œ 0 Ê y œ

y  y" x  (p)

; then the slope of a tangent line from P" is

and m# œ

" #

2p y

y#  2p#

œ y" „ Èy#"  4p# . Therefore the slopes of the two 2p y" Èy#"  4p#

Ê m" m# œ

4p# y#"  ay#"  4p# b

œ 1

Ê the lines are perpendicular 83. Let y œ É1 

x# 4

on the interval 0 Ÿ x Ÿ 2. The area of the inscribed rectangle is given by

A(x) œ 2x Š2É1  Ê Aw (x) œ 4É1 

x# 4‹ x# 4

œ 4xÉ1 



x# É1 x4#

x# 4

(since the length is 2x and the height is 2y)

. Thus Aw (x) œ 0 Ê 4É1 

x# 4



x# É1 x4#

œ 0 Ê 4 Š1 

x# 4‹

 x# œ 0 Ê x# œ 2

Ê x œ È2 (only the positive square root lies in the interval). Since A(0) œ A(2) œ 0 we have that A ŠÈ2‹ œ 4 is the maximum area when the length is 2È2 and the height is È2. 84. (a) Around the x-axis: 9x#  4y# œ 36 Ê y# œ 9  94 x# Ê y œ „ É9  94 x# and we use the positive root #

Ê V œ 2 '0 1 ŠÉ9  94 x# ‹ dx œ 2 '0 1 ˆ9  94 x# ‰ dx œ 21 9x  34 x$ ‘ ! œ 241 2

2

#

(b) Around the y-axis: 9x#  4y# œ 36 Ê x# œ 4  49 y# Ê x œ „ É4  49 y# and we use the positive root #

Ê V œ 2'0 1 ŠÉ4  49 y# ‹ dy œ 2 '0 1 ˆ4  49 y# ‰ dy œ 21 4y  3

85. 9x#  4y# œ 36 Ê y# œ œ

91 4

9x#  36 4

'24 ax#  4b dx œ 941 ’ x3

$

3

4 27

$

y$ ‘ ! œ 161

Ê y œ „ #3 Èx#  4 on the interval 2 Ÿ x Ÿ 4 Ê V œ '2 1 Š #3 Èx#  4‹ dx #

4

%

 4x“ œ #

91 4

ˆ 64 ‰ ˆ8 ‰‘ œ 3  16  3  8

91 4

ˆ 56 ‰ 3 8 œ

31 4

(56  24) œ 241

86. x#  y# œ 1 Ê x œ „ È1  y# on the interval 3 Ÿ y Ÿ 3 Ê V œ 'c3 1 ˆÈ1  y# ‰ dy œ 2'0 1 ˆÈ1  y# ‰ dy 3

œ 21'0 a1  y# b dy œ 21 ’y  3

$ y$ 3 “!

#

œ 241

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

3

#

Section 10.1 Conic Sections and Quadratic Equations 87. Let y œ É16 

x# on the interval 3 Ÿ x Ÿ 3. Since the plate is symmetric about the y-axis, x œ 0. For a

16 9

É16  aµ x ßµ y b œ xß #

vertical strip:

Ê mass œ dm œ $ dA œ $É16  # É16  16 9 x

µ y dm œ

#

Š$ É16 

16 9

16 9

16 9

x#

 , length œ É16 

16 9

x# , width œ dx Ê area œ dA œ É16 

16 9

x# dx

x# ‹ dx œ $ ˆ8  98 x# ‰ dx so the moment of the plate about the x-axis is

3

3

16 9

x# dx. Moment of the strip about the x-axis:

Mx œ ' µ y dm œ 'c3 $ ˆ8  89 x# ‰ dx œ $ 8x  M œ 'c3 $ É16 

629

8 27

$

x$ ‘ $ œ 32$ ; also the mass of the plate is

# x# dx œ 'c3 4$ É1  ˆ "3 x‰ dx œ 4$ 'c1 3È1  u# du where u œ 3

1

x 3

Ê 3 du œ dx; x œ 3

Ê u œ 1 and x œ 3 Ê u œ 1. Hence, 4$ 'c1 3È1  u# du œ 12$ 'c1 È1  u# du 1

œ 12$ ’ "2 ŠuÈ1  u#  sin" u‹“ 88. y œ Èx#  1 Ê

dy dx

" #

œ

È2

1 ' œ É 2x x#  1 Ê S œ 0 #



89.

u œ È2x — Ä du œ È2 dx

drA dt

œ

drB dt

Ê

d dt

21 È2

ax#  1b

"

"

1

œ 61$ Ê y œ

"Î#

(2x) œ

x È x#  1

Mx M

œ

32$ 61$

#

œ

Ê Š dy dx ‹ œ

È2

16 31

. Therefore the center of mass is ˆ!ß 3161 ‰ .

x# x # 1

#

dy Ê Ê1  Š dx ‹ œ É1 

È2

dy 1 È # ' 21yÊ1  Š dx ‹ dx œ '0 21Èx#  1 É 2x x#  1 dx œ 0 21 2x  1 dx ; #

'02 Èu#  1 du œ È21

#

#

’ " ŠuÈu#  1  ln Šu  Èu#  1‹‹“ œ 2 2 !

1 È2

90. (a) tan " œ mL Ê tan " œ f w (x! ) where f(x) œ È4px ; œ

2p y!

" #

(4px)"Î# (4p) œ

(b) tan 9 œ mFP œ

œ

2p È4px

Ê f w (x! ) œ

2p È4px!

Ê tan " œ

(c) tan ! œ

’2È5  ln Š2  È5‹“

(rA  rB ) œ 0 Ê rA  rB œ C, a constant Ê the points P(t) lie on a hyperbola with foci at A

and B

f w (x) œ

x# x#  1

2p y! . y!  0 y! x!  p œ x!  p

tan 9  tan " 1  tan 9 tan "

y#!  2p(x!  p) y! (x!  p  2p)

œ

œ

y! 2p Šx  p c y ‹

!

!

y! 2p 1 b Šx  p‹ Šy ‹

!

4px!  2px!  2p# y! (x!  p)

!

œ

2p(x!  p) y! (x!  p)

œ

2p y!

91. PF will always equal PB because the string has constant length AB œ FP  PA œ AP  PB. 92. (a) In the labeling of the accompanying figure we have y 1 œ tan t so the coordinates of A are (1ß tan t). The coordinates of P are therefore (1  rß tan t). Since 1#  y# œ (OA)# , we have 1#  tan# t œ (1  r)# Ê 1  r œ È1  tan# t œ sec t Ê r œ sec t  1. The coordinates of P are therefore (xß y) œ (sec tß tan t) Ê x#  y# œ sec# t  tan# t œ 1

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

630

Chapter 10 Conic Sections and Polar Coordinates

(b) In the labeling of the accompany figure the coordinates of A are (cos tß sin t), the coordinates of C are (1ß tan t), and the coordinates of P are (1  dß tan t). By similar triangles,

d AB

œ

Ê

OC OA

d 1  cos t

œ

È1  tan# t 1

Ê d œ (1  cos t)(sec t) œ sec t  1. The coordinates of P are therefore (sec tß tan t) and P moves on the hyperbola x#  y# œ 1 as in part (a).

93. x# œ 4py and y œ p Ê x# œ 4p# Ê x œ „ 2p. Therefore the line y œ p cuts the parabola at points (2pß p) and (2pß p), and these points are È[2p  (2p)]#  (p  p)# œ 4p units apart. 94. x lim Š b x  ba Èx#  a# ‹ œ Ä_ a œ

b a x lim Ä_



x #  ax #  a # b “ x  È x #  a#

œ

b a x lim Ä_

b a x lim Ä_



Šx  Èx#  a# ‹ œ

a# “ x  È x #  a#

b a x lim Ä_



Šx  Èx#  a# ‹ Šx  Èx#  a# ‹ x  È x #  a#

œ0

10.2 CLASSIFYING CONIC SECTIONS BY ECCENTRICITY # y# 1. 16x#  25y# œ 400 Ê #x5  16 œ 1 Ê c œ Èa#  b# œ È25  16 œ 3 Ê e œ ca œ 35 ; F a „ 3ß 0b ;

directrices are x œ 0 „

œ „

a e

5 ˆ 35 ‰

œ „

25 3

# x# 2. 7x#  16y# œ 112 Ê 16  y7 œ 1 Ê c œ Èa#  b# œ È16  7 œ 3 Ê e œ ca œ 34 ; F a „ 3ß 0b ;

directrices are x œ 0 „

œ „

a e

4 ˆ 34 ‰

œ „

16 3

3. 2x#  y# œ 2 Ê x#  y2 œ 1 Ê c œ Èa#  b# œ È2  1 œ 1 Ê e œ ca œ È12 ; F a0ß „ 1b ; #

directrices are y œ 0 „

a e

œ „

È2 Š È12 ‹

œ „2

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley



Section 10.2 Classifying Conic Sections by Eccentricity 4. 2x#  y# œ 4 Ê

x# #



œ 1 Ê c œ Èa#  b#

y# 4

œ È4  2 œ È2 Ê e œ directrices are y œ 0 „

a e

c a

œ

È2 2

; F Š0ß „ È2‹ ;

œ „ È22 œ „ 2È2 Š ‹ 2

# # 5. 3x#  2y# œ 6 Ê x#  y3 œ 1 Ê c œ Èa#  b# œ È3  2 œ 1 Ê e œ ca œ È13 ; F a0ß „ 1b ;

directrices are y œ 0 „

a e

œ „

È3

œ „3

Š È13 ‹

# x# 6. 9x#  10y# œ 90 Ê 10  y9 œ 1 Ê c œ Èa#  b# œ È10  9 œ 1 Ê e œ ca œ È110 ; F a „ 1ß 0b ;

directrices are x œ 0 „

7. 6x#  9y# œ 54 Ê

x# 9

a e

œ „



y# 6

œ È9  6 œ È3 Ê e œ directrices are x œ 0 „

a e

È10 Š È110 ‹

œ „ 10

œ 1 Ê c œ Èa#  b# c a

œ

È3 3

; F Š „ È3ß 0‹ ;

œ „ È33 œ „ 3È3 Š ‹ 3

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

631

632

Chapter 10 Conic Sections and Polar Coordinates

y# x# 8. 169x#  25y# œ 4225 Ê 25  169 œ 1 Ê c œ Èa#  b# œ È169  25 œ 12 Ê e œ c œ 12 ; F a0ß „ 12b ; a

directrices are y œ 0 „

a e

œ „

13

13 ˆ 12 ‰ 13

œ „

169 12

x# #7

y# 36

9. Foci: a0ß „ 3b , e œ 0.5 Ê c œ 3 and a œ

c e

œ

3 0.5

œ 6 Ê b# œ 36  9 œ 27 Ê

10. Foci: a „ 8ß 0b , e œ 0.2 Ê c œ 8 and a œ

c e

œ

8 0.#

œ 40 Ê b# œ 1600  64 œ 1536 Ê



œ1 x# 1600



y# 1536

11. Vertices: a0ß „ 70b , e œ 0.1 Ê a œ 70 and c œ ae œ 70(0.1) œ 7 Ê b# œ 4900  49 œ 4851 Ê

œ1

x# 4851

y# 4900

œ1

Šx 

9 È5 ‹



12. Vertices: a „ 10ß 0b , e œ 0.24 Ê a œ 10 and c œ ae œ 10(0.24) œ 2.4 Ê b# œ 100  5.76 œ 94.24 x# 100

Ê



y# 94.24

œ1

13. Focus: ŠÈ5ß !‹ , Directrix: x œ Ê eœ

È5 3

. Then PF œ

PF œ

Ê È(x  x

256 ‰ 9

Ê

a e

œ

5 9

Šx# 

16 3

x

Ê

81 5 ‹

Ê c œ ae œ 4 and 0)#

œ

x#  y# œ

16 3

 (y 

" 4

18 È5

È3 #

¸x 

Ê

x# ˆ 64 ‰ 3

4 9

a e

È5 3



16 3

Ê

œ

ae e#

#

œ

ae e#

¹x 



Ê

16 3 #

Ê (x  4)  y œ y# ˆ 16 ‰ 3

9 È5

9 È5 ¹

x# 9

x#  y# œ 4 Ê

œ

16 ¸ 3

Ê

9 È5

PD Ê ÊŠx  È5‹  (y  0)# œ

14. Focus: (%ß 0), Directrix: x œ 4)#

Ê c œ ae œ È5 and #

È5 3

Ê x#  2È5 x  5  y# œ

È œ #3 PD 3 ˆ # 32 4 x  3

9 È5

y# 4

4 e# 3 4

Ê

È5 e#

œ

Ê e# œ

9 È5 #

Ê Šx  È5‹  y# œ

5 9

5 9

œ1 œ

16 3

ˆx 

Ê e# œ

16 ‰# 3

Ê eœ

3 4

È3 #

. Then

#

Ê x  8x  16  y#

œ1

4 " # 15. Focus: (%ß 0), Directrix: x œ 16 Ê c œ ae œ 4 and ae œ 16 Ê ae e# œ 16 Ê e# œ 16 Ê e œ 4 Ê e œ PF œ 1 PD Ê È(x  4)#  (y  0)# œ 1 kx  16k Ê (x  4)#  y# œ 1 (x  16)# Ê x#  8x  16  y# #

œ

1 4

#

#

ax  32x  256b Ê

3 4

#

#

x  y œ 48 Ê

œ

" #

1 È2

. Then PF œ #

1 È2



y# 48

. Then

œ1

#

PD Ê ÊŠx  È2‹  (y  0)# œ

Šx  2È2‹ Ê x#  2È2 x  2  y# œ

1 #

4

x# 64

16. Focus: ŠÈ2ß !‹ , Directrix: x œ 2È2 Ê c œ ae œ È2 and Ê eœ

#

" #

a e

œ 2È 2 Ê

1 È2

ae e#

œ 2È 2 Ê

È2 e#

œ 2 È 2 Ê e# œ

#

¹x  2È2¹ Ê Šx  È2‹  y#

Šx#  4È2 x  8‹ Ê

" #

x#  y# œ 2 Ê

x# 4

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley



y# #

œ1

" #

Section 10.2 Classifying Conic Sections by Eccentricity 17. e œ

Ê take c œ 4 and a œ 5; c# œ a#  b#

4 5

Ê 16 œ 25  b# Ê b# œ 9 Ê b œ 3; therefore x# #5



y# 9

œ1

18. The eccentricity e for Pluto is 0.25 Ê e œ

c a

œ 0.25 œ

" 4 #

Ê take c œ 1 and a œ 4; c# œ a#  b# Ê 1 œ 16  b # # Ê b# œ 15 Ê b œ È15 ; therefore, x  y œ 1 is a 16

15

model of Pluto's orbit.

19. One axis is from A("ß ") to B("ß 7) and is 6 units long; the other axis is from C($ß %) to D(1ß 4) and is 4 units long. Therefore a œ 3, b œ 2 and the major axis is vertical. The center is the point C("ß 4) and the ellipse is given by (x1)# 4



(y4)# 9

œ 1; c# œ a#  b# œ 3#  2# œ 5

Ê c œ È5 ; therefore the foci are F Š1ß 4 „ È5‹ , the eccentricity is e œ yœ4„

a e

œ

c a

È5 3

, and the directrices are

œ 4 „ È5 œ 4 „ Š ‹ 3

9È 5 5

.

3

20. Using PF œ e † PD, we have È(x  4)#  y# œ œ

4 9

ax#  18x  81b Ê

5 9

2 3

kx  9k Ê (x  4)#  y# œ

x#  y# œ 20 Ê 5x#  9y# œ 180 or

x# 36



#

y 20

4 9

(x  9)# Ê x#  8x  16  y#

œ 1.

21. The ellipse must pass through (!ß 0) Ê c œ 0; the point (1ß 2) lies on the ellipse Ê a  2b œ 8. The ellipse is tangent to the x-axis Ê its center is on the y-axis, so a œ 0 and b œ 4 Ê the equation is 4x#  y#  4y œ 0. Next, 4x#  y#  4y  4 œ 4 Ê 4x#  (y  24)# œ 4 Ê x# 

(y  2)# 4

standard symbols) Ê c# œ a#  b# œ 4  1 œ 3 Ê c œ È3 Ê e œ

œ 1 Ê a œ 2 and b œ 1 (now using the c a

œ

È3 #

.

22. We first prove a result which we will use: let m" , and m# be two nonparallel, nonperpendicular lines. Let ! be the acute angle between the lines. Then tan ! œ 1m" m"mm## . To see this result, let )" be the angle of inclination of the line with slope m" , and )# be the angle of inclination of the line with slope m# . Assume m"  m# . Then )"  )# and we have ! œ )"  )# . Then tan ! œ tan ()"  )# ) )"  tan )# m"  m# œ 1tan  tan )" tan )# œ 1  m" m# , since m" œ tan )" and and m# œ tan )# .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

633

634

Chapter 10 Conic Sections and Polar Coordinates

Now we prove the reflective property of ellipses (see the x# a#

accompanying figure): If # #

# #

# #

b x  a y œ a b and y œ

 b a

y# b#

œ 1, then Èa#  x# Ê yw œ

bx aÈ a#  x#

.

Let P(x! ß y! ) be any point on the ellipse Ê yw (x! ) œ

bx!

œ

aÉa#  x#!

b # x ! a# y!

be the foci. Then mPF" œ

. Let F" (cß 0) and F# (cß 0)

y! x!  c

and mPF# œ

y! x!  c

. Let ! and

" be the angles between the tangent line and PF" and PF# , respectively. Then b# x

tan ! œ

!  Œc a# y! c x!  c ! y

b# x y Š1 c a# y (x! ! c) ‹ ! !

Similarly, tan " œ

b# cy!

œ

b# x#!  b# x! c  a# y#! a # y ! x !  a# y! c  b# x! y!

œ

b# x! c  ab# x#!  a# y#! b  a # y ! c  aa #  b # b x ! y!

È2 1

b # x! c  a# b # a # y ! c  c # x ! y !

œ

b# cy!

.

. Since tan ! œ tan " , and ! and " are both less than 90°, we have ! œ " .

23. x#  y# œ 1 Ê c œ Èa#  b# œ È1  1 œ È2 Ê e œ œ

œ

c a

œ È2 ; asymptotes are y œ „ x; F Š „ È2 ß !‹ ;

directrices are x œ 0 „

a e

œ „

" È2

# x# 24. 9x#  16y# œ 144 Ê 16  y9 œ 1 Ê c œ Èa#  b# œ È16  9 œ 5 Ê e œ ca œ 54 ; asymptotes are

y œ „ 34 x; F a „ 5ß !b ; directrices are x œ 0 „ œ „

a e

"6 5

# # 25. y#  x# œ 8 Ê y8  x8 œ 1 Ê c œ Èa#  b# œ È8  8 œ 4 Ê e œ ca œ È48 œ È2 ; asymptotes are

y œ „ x; F a0ß „ 4b ; directrices are y œ 0 „ œ „

È8 È2

a e

œ „2

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.2 Classifying Conic Sections by Eccentricity y# 4

26. y#  x# œ 4 Ê



x# 4

œ 1 Ê c œ Èa#  b#

œ È4  4 œ 2È2 Ê e œ

c a

œ

2È 2 2

œ È2 ; asymptotes

are y œ „ x; F Š0ß „ 2È2‹ ; directrices are y œ 0 „ œ „

2 È2

a e

œ „ È2

27. 8x#  2y# œ 16 Ê

x# 2



y# 8

œ È2  8 œ È10 Ê e œ

œ 1 Ê c œ Èa#  b# c a

œ

È10 È2

œ È5 ; asymptotes

are y œ „ 2x; F Š „ È10ß !‹ ; directrices are x œ 0 „ œ „

È2 È5

635

œ „

a e

2 È10

# 28. y#  3x# œ 3 Ê y3  x# œ 1 Ê c œ Èa#  b# œ È3  1 œ 2 Ê e œ ca œ È23 ; asymptotes are

y œ „ È3 x; F a0ß „ 2b ; directrices are y œ 0 „ œ „

È3 Š È23 ‹

œ „

a e

3 #

29. 8y#  2x# œ 16 Ê

y# 2



x# 8

œ È2  8 œ È10 Ê e œ

œ 1 Ê c œ Èa#  b# c a

œ

È10 È2

œ È5 ; asymptotes

are y œ „ x# ; F Š0ß „ È10‹ ; directrices are y œ 0 „ œ „

È2 È5

œ „

a e

2 È10

y# x# 30. 64x#  36y# œ 2304 Ê 36  64 œ 1 Ê c œ Èa#  b# 5 œ È36  64 œ 10 Ê e œ ca œ 10 6 œ 3 ; asymptotes are

y œ „ 43 x; F a „ 10ß !b ; directrices are x œ 0 „ œ „

6 ˆ 53 ‰

œ „

a e

18 5

31. Vertices a!ß „ 1b and e œ 3 Ê a œ 1 and e œ

c a

œ 3 Ê c œ 3a œ 3 Ê b# œ c#  a# œ 9  1 œ 8 Ê y# 

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

x# 8

œ1

636

Chapter 10 Conic Sections and Polar Coordinates 

y# 1#

œ1

œ 3 Ê c œ 3a Ê a œ 1 Ê b# œ c#  a# œ 9  1 œ 8 Ê x# 

y# 8

œ1

32. Vertices a „ 2ß !b and e œ 2 Ê a œ 2 and e œ 33. Foci a „ 3ß !b and e œ 3 Ê c œ 3 and e œ

c a

34. Foci a!ß „ 5b and e œ 1.25 Ê c œ 5 and e œ œ 25  16 œ 9 Ê

#

y 16

#



x 9

œ 2 Ê c œ 2a œ 4 Ê b# œ c#  a# œ 16  4 œ 12 Ê

c a

c a

œ 1.25 œ

5 4

Ê cœ

a Ê 5œ

5 4

5 4

x# 4

a Ê a œ 4 Ê b# œ c#  a#

œ1

4 # È2 . Then 35. Focus (4ß 0) and Directrix x œ 2 Ê c œ ae œ 4 and ae œ 2 Ê ae e# œ 2 Ê e# œ 2 Ê e œ # Ê e œ PF œ È2 PD Ê È(x  4)#  (y  0)# œ È2 kx  2k Ê (x  4)#  y# œ 2(x  2)# Ê x#  8x  16  y#

œ 2 ax#  4x  4b Ê x#  y# œ 8 Ê

x# 8



y# 8

œ1

36. Focus ŠÈ10ß !‹ and Directrix x œ È2 Ê c œ ae œ È10 and

a e

œ È2 Ê

ae e#

œ È2 Ê

È10 e#

œ È 2 Ê e# œ È 5

#

#

Ê e œ %È5 . Then PF œ %È5 PD Ê ÊŠx  È10‹  (y  0)# œ %È5 ¹x  È2¹ Ê Šx  È10‹  y# #

œ È5 Šx  È2‹ Ê x#  2È10 x  10  y# œ È5 Šx#  2È2 x  2‹ Ê Š1  È5‹ x#  y# œ 2È5  10 Ê

Š1  È5‹ x# #È5  10



y# 2È5  10

œ1 Ê

x# 2È 5



y# 10  2È5

œ1

37. Focus (2ß 0) and Directrix x œ  "# Ê c œ ae œ 2 and

a e

œ

" # #

Ê

ae e#

œ

" #

Ê

PF œ 2PD Ê È(x  2)#  (y  0)# œ 2 ¸x  "# ¸ Ê (x  2)  y# œ 4 ˆx  œ 4 ˆx#  x  "4 ‰ Ê 3x#  y# œ 3 Ê x# 

#

y 3

2 e# " ‰# #

œ

" #

Ê e# œ 4 Ê e œ 2. Then

Ê x#  4x  4  y#

œ1

6 # È3. Then 38. Focus (6ß 0) and Directrix x œ  # Ê c œ ae œ 6 and ae œ # Ê ae e# œ # Ê e# œ # Ê e œ 3 Ê e œ PF œ È3 PD Ê È(x  6)#  (y  0)# œ È3 kx  2k Ê (x  6)#  y# œ 3(x  2)# Ê x#  12x  36  y# x# 1#

œ 3 ax#  4x  4b Ê 2x#  y# œ 24 Ê 39. È(x  1)#  (y  3)# œ

3 #



y# 24

œ1

ky  2k Ê x#  2x  1  y#  6y  9 œ

Ê 4 ax#  2x  1b  5 ay#  12y  36b œ 4  4  180 Ê 40. c# œ a#  b# Ê b# œ c#  a# ; e œ x# a#



#

y b#

œ" Ê

x# a#



#

y a # ae #  1 b

c a

(y6)# 36

9 4

ay#  4y  4b Ê 4x#  5y#  8x  60y  4 œ 0



(x1)# 45

œ1

Ê c œ ea Ê c# œ e# a# Ê b# œ e# a#  a# œ a# ae#  1b ; thus,

œ 1; the asymptotes of this hyperbola are y œ „ ae#  1bx Ê as e increases, the

absolute values of the slopes of the asymptotes increase and the hyperbola approaches a straight line. 41. To prove the reflective property for hyperbolas: x# a#



y# b#

œ 1 Ê a# y# œ b# x#  a# b# and

dy dx

œ

xb# ya#

.

Let P(x! ß y! ) be a point of tangency (see the accompanying figure). The slope from P to F(cß 0) is x!y! c and from P to F# (cß 0) it is

y! x ! c

. Let the tangent through P meet

the x-axis in point A, and define the angles nF" PA œ ! and nF# PA œ " . We will show that tan ! œ tan " . From the preliminary result in Exercise 22,

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.3 Quadratic Equations and Rotations x b#

tan ! œ

!  Πy! a# c x!  c !

x b# y! 1 b Š y! a# ‹ Š x  ! c‹ ! y

tan " œ

y

!  Πx!  c

x! b# y! a# 

y! x! b# 1  Šx  c ‹ Š y a# ‹

!

!

œ

œ

x#! b#  x! b# cy#! a# x ! y ! a #  y ! a # c  x! y! b #

b# y! c

œ

a# b#  x! b# c x ! y ! c #  y! a# c

œ

b# y! c

. In a similar manner,

. Since tan ! œ tan " , and ! and " are acute angles, we have ! œ " .

42. From the accompanying figure, a ray of light emanating from the focus A that met the parabola at P would be reflected from the hyperbola as if it came directly from B (Exercise 41). The same light ray would be reflected off the ellipse to pass through B. Thus BPC is a straight line. Let " be the angle of incidence of the light ray on the hyperbola. Let ! be the angle of incidence of the light ray on the ellipse. Note that !  " is the angle between the tangent lines to the ellipse and hyperbola at P. Since BPC is a straight line, 2!  2" œ 180°. Thus !  " œ 90°. 10.3 QUADRATIC EQUATIONS AND ROTATIONS 1. x#  3xy  y#  x œ 0 Ê B#  4AC œ (3)#  4(1)(1) œ 5  0 Ê Hyperbola 2. 3x#  18xy  27y#  5x  7y œ 4 Ê B#  4AC œ (18)#  4(3)(27) œ 0 Ê Parabola 3. 3x#  7xy  È17y# œ 1 Ê B#  4AC œ (7)#  4(3) È17 ¸ 0.477  0 Ê Ellipse #

4. 2x#  È15 xy  2y#  x  y œ 0 Ê B#  4AC œ ŠÈ15‹  4(2)(2) œ 1  0 Ê Ellipse 5. x#  2xy  y#  2x  y  2 œ 0 Ê B#  4AC œ 2#  4(1)(1) œ 0 Ê Parabola 6. 2x#  y#  4xy  2x  3y œ 6 Ê B#  4AC œ 4#  4(2)(1) œ 24  0 Ê Hyperbola 7. x#  4xy  4y#  3x œ 6 Ê B#  4AC œ 4#  4(1)(4) œ 0 Ê Parabola 8. x#  y#  3x  2y œ 10 Ê B#  4AC œ 0#  4(1)(1) œ 4  0 Ê Ellipse (circle) 9. xy  y#  3x œ 5 Ê B#  4AC œ 1#  4(0)(1) œ 1  0 Ê Hyperbola 10. 3x#  6xy  3y#  4x  5y œ 12 Ê B#  4AC œ 6#  4(3)(3) œ 0 Ê Parabola 11. 3x#  5xy  2y#  7x  14y œ 1 Ê B#  4AC œ (5)#  4(3)(2) œ 1  0 Ê Hyperbola 12. 2x#  4.9xy  3y#  4x œ 7 Ê B#  4AC œ (4.9)#  4(2)(3) œ 0.01  0 Ê Hyperbola 13. x#  3xy  3y#  6y œ 7 Ê B#  4AC œ (3)#  4(1)(3) œ 3  0 Ê Ellipse 14. 25x#  21xy  4y#  350x œ 0 Ê B#  4AC œ 21#  4(25)(4) œ 41  0 Ê Hyperbola 15. 6x#  3xy  2y#  17y  2 œ 0 Ê B#  4AC œ 3#  4(6)(2) œ 39  0 Ê Ellipse

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

637

638

Chapter 10 Conic Sections and Polar Coordinates

16. 3x#  12xy  12y#  435x  9y  72 œ 0 Ê B#  4AC œ 12#  4(3)(12) œ 0 Ê Parabola 1 1 # Ê !œ 4 ; È È xw sin !  yw cos ! Ê x œ xw #2  yw #2 , y È È È È Š #2 xw  #2 yw ‹ Š #2 xw  #2 yw ‹ œ 2 Ê "#

17. cot 2! œ yœ Ê

18. cot 2! œ

AC B

AC B

œ

11 1

œ

therefore x œ xw cos !  yw sin !,

œ 0 Ê 2! œ

0 1

œ 0 Ê 2! œ

1 #

Ê !œ

È2 #

œ xw

xw #  "# yw # œ 2 Ê xw #  yw # œ 4 Ê Hyperbola 1 4

; therefore x œ xw cos !  yw sin !,

È2 w È2 w È2 # y # ,yœ x #  È È È È Š #2 xw  #2 yw ‹ Š #2 xw  #2 yw ‹

y œ xw sin !  yw cos ! Ê x œ xw Ê Š Ê

" #

È2 #

xw 

#

È2 #

yw ‹ 

È2 #

 yw

yw 

È2 # È Š #2

xw 

xw #  xw yw  "# yw #  "# xw #  "# yw #  "# xw #  xw yw  "# yw # œ 1 Ê

19. cot 2! œ

AC B

31 2È 3

œ

œ

" È3

1 3

Ê 2! œ

1 6

Ê !œ

È2 #

#

yw ‹ œ 1

xw #  "# yw # œ 1 Ê 3xw #  yw # œ 2 Ê Ellipse

3 #

; therefore x œ xw cos !  yw sin !,

È3 w È3 w " w 1 w # x  # y,yœ # x  # y È È Š #3 xw  1# yw ‹ Š 1# xw  #3 yw ‹ 

y œ xw sin !  yw cos ! Ê x œ Ê 3Š

È3 #

#

xw  1# yw ‹  2È3

 8È3 Š "# xw  20. cot 2! œ

AC B

È3 #

œ

È3 #

È3 #

#

yw ‹  8 Š

È3 #

xw  "# yw ‹

yw ‹ œ 0 Ê 4xw #  16yw œ 0 Ê Parabola

12 È 3

œ

" È3

#

1 3

Ê 2! œ

y œ xw sin !  yw cos ! Ê x œ Ê Š

Š 1# xw 

xw  1# yw ‹  È3 Š

È3 #

È3 #

1 6

Ê !œ

xw  #1 yw , y œ

" #

; therefore x œ xw cos !  yw sin !,

xw  È3 #

xw  1# yw ‹ Š 1# xw 

È3 #

yw

yw ‹  2 Š 1# xw 

È3 #

#

yw ‹ œ 1 Ê

" #

xw #  5# yw # œ 1

Ê xw #  5yw # œ 2 Ê Ellipse 21. cot 2! œ

AC B

œ

11 2

œ 0 Ê 2! œ

y œ xw sin !  yw cos ! Ê x œ Ê Š

È2 #

xw 

#

È2 #

yw ‹  2 Š

È2 #

È2 #

1 2

Ê !œ È2 #

; therefore x œ xw cos !  yw sin !,

È2 w È2 w # x  # y È2 w È2 w È2 w È2 # y ‹Š # x  # y ‹  Š #

xw 

xw 

1 4

yw , y œ

xw 

È2 #

#

yw ‹ œ 2 Ê yw # œ 1

Ê Parallel horizontal lines 22. cot 2! œ

AC B

œ

31 2 È 3

œ  È"3 Ê 2! œ

y œ xw sin !  yw cos ! Ê x œ Ê 3 Š 1# xw 

È3 #

#

1 #

xw 

yw ‹  2È3 Š 1# xw 

È3 # È3 #

21 3

Ê !œ

yw , y œ yw ‹ Š

È3 #

È3 #

1 3

; therefore x œ xw cos !  yw sin !,

xw  1# yw

xw  1# yw ‹  Š

È3 #

#

xw  1# yw ‹ œ 1 Ê 4yw # œ 1

Ê Parallel horizontal lines 23. cot 2! œ

AC B

œ

È2  È2 2È 2

y œ xw sin !  yw cos ! Ê x œ È Ê È 2 Š # 2 xw 

È2 #

Ê !œ

#

È2 #

xw 

È2 #

yw , y œ

È2 #

xw 

È2 #

yw ‹ œ 0 Ê 2È2xw #  8È2 yw œ 0 Ê Parabola

yw ‹  2È2 Š

È2 #

xw 

È2 #

yw ‹  8 Š

24. cot 2! œ

AC B

œ

00 1

 8Š

1 2

œ 0 Ê 2! œ

È2 #

xw 

œ 0 Ê 2! œ

y œ xw sin !  yw cos ! Ê x œ

È2 #

1 2

xw 

; therefore x œ xw cos !  yw sin !,

È2 w È2 w # x  # y È2 w È2 w È2 w # y ‹Š # x  # y ‹

Ê !œ È2 #

1 4

1 4

 È2 Š

È2 #

xw 

È2 #

yw ‹

#

; therefore x œ xw cos !  yw sin !,

yw , y œ

È2 #

xw 

È2 #

yw

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.3 Quadratic Equations and Rotations Ê Š

È2 #

È2 #

xw 

yw ‹ Š

È2 #

xw 

È2 #

yw ‹  Š

È2 #

xw 

È2 #

yw ‹  Š

È2 #

xw 

È2 #

639

yw ‹  1 œ 0 Ê xw #  yw #  2È2 xw  2

œ 0 Ê Hyperbola 25. cot 2! œ

AC B

œ

33 2

œ 0 Ê 2! œ

y œ xw sin !  yw cos ! Ê x œ Ê 3Š

È2 #

xw 

È2 #

#

yw ‹  2 Š

È2 #

È2 #

1 2

xw 

xw 

1 4

Ê !œ È2 #

È2 #

; therefore x œ xw cos !  yw sin !, È2 #

yw , y œ

yw ‹ Š

È2 #

xw +

xw  È2 #

È2 #

yw

yw ‹  3 Š

È2 #

xw 

È2 #

#

yw ‹ œ 19 Ê 4xw #  2yw # œ 19

Ê Ellipse 26. cot 2! œ

AC B

œ

3  (1) 4È 3

œ

" È3

Ê 2! œ

È3 # È3 È 4 3Š #

y œ xw sin !  yw cos ! Ê x œ Ê 3Š

È3 #

#

xw  1# yw ‹ 

1 3

Ê !œ

xw  #1 yw , y œ

1 #

1 6

; therefore x œ xw cos !  yw sin !,

xw 

xw  1# yw ‹ Š 1# xw 

È3 #

È3 #

yw

yw ‹  Š 1# xw 

È3 #

#

yw ‹ œ 7 Ê 5xw #  3yw # œ 7

Ê Hyperbola 27. cot 2! œ

14  2 16

œ

3 4

Ê cos 2! œ

2! and cos ! œ É 1  cos œÉ #

28. cot 2! œ œÉ

AC B

1  ˆ 35 ‰ #

29. tan 2! œ

œ

œ

" 13 w

4" 4

2 È5

1ˆ 35 ‰ #

3 5

2! (if we choose 2! in Quadrant I); thus sin ! œ É 1  cos œÉ 2

œ

2 È5

(or sin ! œ

2 È5

and cos ! œ

1  ˆ 35 ‰ #

œ

" È5

" È5 )

2! œ  34 Ê cos 2! œ  35 (if we choose 2! in Quadrant II); thus sin ! œ É 1  cos 2

2! and cos ! œ É 1  cos œÉ #

1  ˆ 35 ‰ #

œ

1 È5

(or sin ! œ

1 È5

and cos ! œ

2 È5 )

" #

Ê 2! ¸ 26.57° Ê ! ¸ 13.28° Ê sin ! ¸ 0.23, cos ! ¸ 0.97; then Aw ¸ 0.9, Bw ¸ 0.0,

œ

" 5

œ

Cw ¸ 3.1, D ¸ 0.7, Ew ¸ 1.2, and Fw œ 3 Ê 0.9 xw #  3.1 yw #  0.7xw  1.2yw  3 œ 0, an ellipse 30. tan 2! œ

" 2  (3)

Ê 2! ¸ 11.31° Ê ! ¸ 5.65° Ê sin ! ¸ 0.10, cos ! ¸ 1.00; then Aw ¸ 2.1, Bw ¸ 0.0,

Cw ¸ 3.1, Dw ¸ 3.0, Ew ¸ 0.3, and Fw œ 7 Ê 2.1 xw #  3.1 yw #  3.0xw  0.3yw  7 œ 0, a hyperbola 31. tan 2! œ

4 14 w

œ

Ê 2! ¸ 53.13° Ê ! ¸ 26.5(° Ê sin ! ¸ 0.45, cos ! ¸ 0.89; then Aw ¸ 0.0, Bw ¸ 0.0,

4 3

Cw ¸ 5.0, D ¸ 0, Ew ¸ 0, and Fw œ 5 Ê 5.0 yw #  5 œ 0 or yw œ „ 1.0, parallel lines 32. tan 2! œ

12 2  18 w

œ

3 4

Ê 2! ¸ 36.87° Ê ! ¸ 18.43° Ê sin ! ¸ 0.32, cos ! ¸ 0.95; then Aw ¸ 0.0, Bw ¸ 0.0,

Cw ¸ 20.1, D ¸ 0, Ew ¸ 0, and Fw œ 49 Ê 20.1 yw #  49 œ 0, parallel lines 33. tan 2! œ

œ 5 Ê 2! ¸ 78.69° Ê ! ¸ 39.35° Ê sin ! ¸ 0.63, cos ! ¸ 0.77; then Aw ¸ 5.0, Bw ¸ 0.0,

5 3 2

Cw ¸ 0.05, Dw ¸ 5.0, Ew ¸ 6.2, and Fw œ 1 Ê 5.0 xw #  0.05 yw #  5.0xw  6.2yw  1 œ 0, a hyperbola 34. tan 2! œ

7 29 w

œ 1 Ê 2! ¸ 45.00° Ê ! ¸ 22.5° Ê sin ! ¸ 0.38, cos ! ¸ 0.92; then Aw ¸ 0.5, Bw ¸ 0.0,

Cw ¸ 10.4, D ¸ 18.4, Ew ¸ 7.6, and Fw œ 86 Ê 0.5 xw #  10.4ayw b#  18.4xw  7.6yw  86 œ 0, an ellipse 35. ! œ 90° Ê x œ xw cos 90°  yw sin 90° œ yw and y œ xw sin 90°  yw cos 90° œ xw (a)

xw # b#



yw # a#

œ1

(b)

yw # a#



xw # b#

œ1

(c) xw #  yw # œ a#

(d) y œ mx Ê y  mx œ 0 Ê D œ m and E œ 1; ! œ 90° Ê Dw œ 1 and Ew œ m Ê myw  xw œ 0 Ê yw œ  m" xw (e) y œ mx  b Ê y  mx  b œ 0 Ê D œ m and E œ 1; ! œ 90° Ê Dw œ 1, Ew œ m and Fw œ b Ê myw  xw  b œ 0 Ê yw œ  m" xw  mb Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

640

Chapter 10 Conic Sections and Polar Coordinates

36. ! œ 180° Ê x œ xw cos 180°  yw sin 180° œ xw and y œ xw sin 180°  yw cos 180° œ yw (a)

xw # a#

yw # b#



œ1

(b)

xw # a#



yw # b#

(c) xw #  yw # œ a#

œ1

(d) y œ mx Ê y  mx œ 0 Ê D œ m and E œ 1; ! œ 180° Ê Dw œ m and Ew œ 1 Ê yw  mxw œ 0 Ê yw œ mxw (e) y œ mx  b Ê y  mx  b œ 0 Ê D œ m and E œ 1; ! œ 180° Ê Dw œ m, Ew œ 1 and Fw œ b Ê yw  mxw  b œ 0 Ê yw œ mxw  b 37. (a) Aw œ cos 45° sin 45° œ Š " w# " # x  # Aw œ "# , Cw œ

Ê

(b)

c a

œ

2È 2 #

œ

" #

, Bw œ 0, Cw œ  cos 45° sin 45° œ  "# , Fw œ 1

yw # œ 1 Ê xw #  yw # œ 2  "# (see part (a) above), Dw œ Ew œ Bw œ 0, Fw œ a Ê

38. xy œ 2 Ê xw #  yw # œ 4 Ê Ê eœ

È2 È2 # ‹Š # ‹

xw # 4



yw # 4

" #

xw #  "# yw # œ a Ê xw #  yw # œ 2a

œ 1 (see Exercise 37(b)) Ê a œ 2 and b œ 2 Ê c œ È4  4 œ 2È2

œ È2

39. Yes, the graph is a hyperbola: with AC  0 we have 4AC  0 and B#  4AC  0. 40. The one curve that meets all three of the stated criteria is the ellipse x#  4xy  5y#  1 œ 0. The reasoning: The symmetry about the origin means that (xß y) lies on the graph whenever (xß y) does. Adding Ax#  Bxy  Cy#  Dx  Ey  F œ 0 and A(x)#  B(x)(y)  C(y)#  D(x)  E(y)  F œ 0 and dividing the result by 2 produces the equivalent equation Ax#  Bxy  Cy#  F œ 0. Substituting x œ 1, y œ 0 (because the point (1ß 0) lies on the curve) shows further that A œ F. Then Fx#  Bxy  Cy#  F œ 0. By implicit differentiation, 2Fx  By  Bxyw  2Cyyw œ 0, so substituting x œ 2, y œ 1, and yw œ 0 (from Property 3) gives 4F  B œ 0 Ê B œ 4F Ê the conic is Fx#  4Fxy  Cy#  F œ 0. Now substituting x œ 2 and y œ 1 again gives 4F  8F  C  F œ 0 Ê C œ 5F Ê the equation is now Fx#  4Fxy  5Fy#  F œ 0. Finally, dividing through by F gives the equation x#  4xy  5y#  1 œ 0. 41. Let ! be any angle. Then Aw œ cos# !  sin# ! œ 1, Bw œ 0, Cw œ sin# !  cos# ! œ 1, Dw œ Ew œ 0 and Fw œ a# Ê xw #  yw # œ a# . 42. If A œ C, then Bw œ B cos 2!  (C  A) sin 2! œ B cos 2!. Then ! œ

1 4

Ê 2! œ

1 #

Ê Bw œ B cos

1 #

œ 0 so the

xy-term is eliminated. 43. (a) B#  4AC œ 4#  4(1)(4) œ 0, so the discriminant indicates this conic is a parabola (b) The left-hand side of x#  4xy  4y#  6x  12y  9 œ 0 factors as a perfect square: (x  2y  3)# œ 0 Ê x  2y  3 œ 0 Ê 2y œ x  3; thus the curve is a degenerate parabola (i.e., a straight line). 44. (a) B#  4AC œ 6#  4(9)(1) œ 0, so the discriminant indicates this conic is a parabola (b) The left-hand side of 9x#  6xy  y#  12x  4y  4 œ 0 factors as a perfect square: (3x  y  2)# œ 0 Ê 3x  y  2 œ 0 Ê y œ 3x  2; thus the curve is a degenerate parabola (i.e., a straight line).

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.3 Quadratic Equations and Rotations 45. (a) B#  4AC œ 1  4(0)(0) œ 1 Ê hyperbola (b) xy  2x  y œ 0 Ê y(x  1) œ 2x Ê y œ (c) y œ

2x x1

Ê

dy dx

œ

2 (x  1)#

and we want

the slope of y œ 2x Ê 2 œ  (x#1)

1 dy Š dx ‹

2x x1

œ 2,

#

Ê (x  1)# œ 4 Ê x œ 3 or x œ 1; x œ 3 Ê y œ 3 Ê (3ß 3) is a point on the hyperbola where the line with slope m œ 2 is normal Ê the line is y  3 œ 2(x  3) or y œ 2x  3; x œ 1 Ê y œ 1 Ê (1ß 1) is a point on the hyperbola where the line with slope m œ 2 is normal Ê the line is y  1 œ 2(x  1) or y œ 2x  3 46. (a) False: let A œ C œ 1, B œ 2 Ê B#  4AC œ 0 Ê parabola (b) False: see part (a) above (c) True: AC  0 Ê 4AC  0 Ê B#  4AC  0 Ê hyperbola 47. Assume the ellipse has been rotated to eliminate the xy-term Ê the new equation is Aw xw #  Cw yw # œ 1 Ê the semi-axes are É A" and É C" Ê the area is 1 ŠÉ A" ‹ ŠÉ C" ‹ œ w

w

w

w

1 ÈA C

œ Bw #  4Aw Cw œ 4Aw Cw (because Bw œ 0) we find that the area is

w

w

œ

21 È4A C

21 È4AC  B#

w

w

. Since B#  4AC

as claimed.

48. (a) Aw  Cw œ aA cos# !  B cos ! sin !  C sin# !b  aA sin# !  B cos ! sin !  C sin# !b œ A acos# !  sin# !b  C asin# !  cos# !b œ A  C (b) Dw #  Ew # œ (D cos !  E sin !)#  (D sin !  E cos !)# œ D# cos# !  2DE cos ! sin !  E# sin# !  D# sin# !  2DE sin ! cos !  E# cos# ! œ D# acos# !  sin# !b  E# asin# !  cos# !b œ D#  E# 49. Bw #  4Aw Cw œ aB cos 2!  (C  A) sin 2!b#  4 aA cos# !  B cos ! sin !  C sin# !b aA sin# !  B cos ! sin !  C cos# !b œ B# cos# 2!  2B(C  A) sin 2! cos 2!  (C  A)# sin# 2!  4A# cos# ! sin# !  4AB cos$ ! sin !  4AC cos% !  4AB cos ! sin$ !  4B# cos# ! sin# !  4BC cos$ ! sin !  4AC sin% !  4BC cos ! sin$ !  4C# cos# ! sin# ! # œ B cos# 2!  2BC sin 2! cos 2!  2AB sin 2! cos 2!  C# sin# 2!  2AC sin# 2!  A# sin# 2!  4A# cos# ! sin# !  4AB cos$ ! sin !  4AC cos% !  4AB cos ! sin$ !  B# sin# 2!  4BC cos$ ! sin !  4AC sin% !  4BC cos ! sin$ !  4C# cos# ! sin# ! # œ B  2BC(2 sin ! cos !) acos# !  sin# !b  2AB(2 sin ! cos !) acos# !  sin# !b  C# a4 sin# ! cos# !b  2AC a4 sin# ! cos# !b  A# a4 sin# ! cos# !b  4A# cos# ! sin# !  4AB cos$ ! sin !  4AC cos% !  4AB cos ! sin$ !  4BC cos$ ! sin !  4AC sin% !  4BC cos ! sin$ !  4C# cos# ! sin# ! # œ B  8AC sin# ! cos# !  4AC cos% !  4AC sin% ! œ B#  4AC acos% !  2 sin# ! cos# !  sin% !b œ B#  4AC acos# !  sin# !b œ B#  4AC

#

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

641

642

Chapter 10 Conic Sections and Polar Coordinates

10.4 CONICS AND PARAMETRIC EQUATIONS; THE CYCLOID 1. x œ cos t, y œ sin t, 0 Ÿ t Ÿ 1 Ê cos# t  sin# t œ 1 Ê x#  y# œ 1

2. x œ sin (21(1  t)), y œ cos (21(1  t)), 0 Ÿ t Ÿ 1 Ê sin# (21(1  t))  cos# (21(1  t)) œ 1 Ê x#  y# œ 1

3. x œ 4 cos t, y œ 5 sin t, 0 Ÿ t Ÿ 1

4. x œ 4 sin t, y œ 5 cos t, 0 Ÿ t Ÿ 21

Ê

16 cos# t 16



25 sin# t 25

x# 16

œ1 Ê



y# 25

œ1

5. x œ t, y œ Èt, t   0 Ê y œ Èx

Ê

16 sin# t 16



25 cos# t 25

œ1 Ê

x# 16



6. x œ sec# t  1, y œ tan t,  1#  t  Ê sec# t  1 œ tan# t Ê x œ y#

7. x œ  sec t, y œ tan t,  1#  t  #

#

#

1 # #

Ê sec t  tan t œ 1 Ê x  y œ 1

y# #5

œ1

1 #

8. x œ csc t, y œ cot t, 0  t  1 Ê 1  cot# t œ csc# t Ê 1  y# œ x# Ê x#  y# œ 1

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.4 Conics and Parametric Equations; The Cycloid 9. x œ t, y œ È4  t# , 0 Ÿ t Ÿ 2 Ê y œ È4  x#

10. x œ t# , y œ Èt%  1, t   0 Ê y œ Èx#  1, x   0

11. x œ  cosh t, y œ sinh t, _  1  _ Ê cosh# t  sinh# t œ 1 Ê x#  y# œ 1

12. x œ 2 sinh t, y œ 2 cosh t, _  t  _ Ê 4 cosh# t  4 sinh# t œ 4 Ê y#  x# œ 4

13. Arc PF œ Arc AF since each is the distance rolled and Arc PF œ nFCP Ê Arc PF œ b(nFCP); ArcaAF œ ) b Ê Arc AF œ a) Ê a) œ b(nFCP) Ê nFCP œ nOCG œ

1 #

a b

);

 ); nOCG œ nOCP  nPCE œ nOCP  ˆ 1#  !‰ . Now nOCP œ 1  nFCP œ 1  ba ). Thus nOCG œ 1  ba )  œ 1  ba ) 

1 #

1 #

! Ê

 ! Ê ! œ 1  ba )  ) œ 1 

1 # ) ˆ ab b )‰ .

Then x œ OG  BG œ OG  PE œ (a  b) cos )  b cos ! œ (a  b) cos )  b cos ˆ1  œ (a  b) cos )  b cos ˆ a b b )‰ . Also y œ EG œ CG  CE œ (a  b) sin )  b sin !

ab b

)‰

œ (a  b) sin )  b sin ˆ1  a b b )‰ œ (a  b) sin )  b sin ˆ a b b )‰ . Therefore x œ (a  b) cos )  b cos ˆ a b b )‰ and y œ (a  b) sin )  b sin ˆ a b b )‰ . If b œ 4a , then x œ ˆa  4a ‰ cos )  œ œ œ œ

3a 4 3a 4 3a 4 3a 4

cos ) 

œ œ œ

3a 4 3a 4 3a 4 3a 4

cos 3) œ

3a 4

cos Š

a  ˆ 4a ‰ ˆ 4a ‰

)‹

cos )  4a (cos ) cos 2)  sin ) sin 2))

cos )  a(cos )) acos# )  sin# )b  (sin ))(2 sin ) cos ))b a 2a # # 4 cos ) sin )  4 sin ) cos ) # $ )  cos$ )  3a 4 (cos )) a1  cos )b œ a cos ); a  ˆ 4a ‰ a‰ a 3a a 3a 4 sin )  4 sin Š ˆ 4a ‰ )‹ œ 4 sin )  4 sin 3) œ 4

cos )  cos

y œ ˆa  œ

a 4 a 4 a 4 a 4

a 4

cos$ ) 

sin )  4a (sin ) cos 2)  cos ) sin 2))

sin )  4a a(sin )) acos# )  sin# )b  (cos ))(2 sin ) cos ))b sin )  sin )  sin ) 

a 4 3a 4 3a 4

sin ) cos# )  sin ) cos# ) 

a 4 a 4 #

sin$ ) 

2a 4

cos# ) sin )

sin$ )

(sin )) a1  sin )b 

a 4

sin$ ) œ a sin$ ).

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

643

644

Chapter 10 Conic Sections and Polar Coordinates

14. P traces a hypocycloid where the larger radius is 2a and the smaller is a Ê x œ (2a  a) cos )  a cos ˆ 2a a a )‰ œ 2a cos ), 0 Ÿ ) Ÿ 21, and y œ (2a  a) sin )  a sin ˆ 2a a a )‰ œ a sin )  a sin ) œ 0. Therefore P traces the diameter of the circle back and forth as ) goes from 0 to 21. 15. Draw line AM in the figure and note that nAMO is a right angle since it is an inscribed angle which spans the diameter of a circle. Then AN# œ MN#  AM# . Now, OA œ a, AN AM a œ tan t, and a œ sin t. Next MN œ OP Ê OP# œ AN#  AM# œ a# tan# t  a# sin# t Ê OP œ Èa# tan# t  a# sin# t œ (a sin t)Èsec# t  1 œ a sin$ t cos t œ #

x œ OP sin t œ

a sin# t cos t #

. In triangle BPO,

a sin t tan t and

y œ OP cos t œ a sin t Ê x œ a sin# t tan t and y œ a sin# t. 16. Let the x-axis be the line the wheel rolls along with the y-axis through a low point of the trochoid (see the accompanying figure).

Let ) denote the angle through which the wheel turns. Then h œ a) and k œ a. Next introduce xw yw -axes parallel to the xy-axes and having their origin at the center C of the wheel. Then xw œ b cos ! and yw œ b sin !, where ! œ 3#1  ). It follows that xw œ b cos ˆ 3#1  )‰ œ b sin ) and yw œ b sin ˆ 3#1  )‰

œ b cos ) Ê x œ h  xw œ a)  b sin ) and y œ k  yw œ a  b cos ) are parametric equations of the trochoid.

# # # 17. D œ É(x  2)#  ˆy  "# ‰ Ê D# œ (x  2)#  ˆy  "# ‰ œ (t  2)#  ˆt#  "# ‰ Ê D# œ t%  4t 

Ê

d aD # b dt

17 4

œ 4t$  4 œ 0 Ê t œ 1. The second derivative is always positive for t Á 0 Ê t œ 1 gives a local

minimum for D# (and hence D) which is an absolute minimum since it is the only extremum Ê the closest point on the parabola is (1ß 1). # # 18. D œ Ɉ2 cos t  34 ‰  (sin t  0)# Ê D# œ ˆ2 cos t  34 ‰  sin# t Ê

d aD # b dt

œ 2 ˆ2 cos t  34 ‰ (2 sin t)  2 sin t cos t œ (2 sin t) ˆ3 cos t  3# ‰ œ 0 Ê 2 sin t œ 0 or 3 cos t  Ê t œ 0, 1 or t œ #

#

1 3

,

51 3

. Now

#

#

d aD b dt#

œ 6 cos# t  3 cos t  6 sin# t so that #

#

#

d aD b dt#

3 #

œ0

(0) œ 3 Ê relative

#

maximum, d dtaD# b (1) œ 9 Ê relative maximum, d dtaD# b ˆ 13 ‰ œ 92 Ê relative minimum, and d # aD # b ˆ 5 1 ‰ œ 9# Ê relative minimum. Therefore both t œ 13 and t œ 531 give points on the ellipse dt# 3 È È the point ˆ 34 ß !‰ Ê Š1ß #3 ‹ and Š1ß  #3 ‹ are the desired points.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

closest to

Section 10.4 Conics and Parametric Equations; The Cycloid 19. (a)

(b)

(c)

20. (a)

(b)

(c)

(b)

(c)

21.

22. (a)

23. (a)

(b)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

645

646

Chapter 10 Conic Sections and Polar Coordinates

24. (a)

25. (a)

(b)

(b)

(c)

26. (a)

(b)

(c)

(d)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.5 Polar Coordinates 10.5 POLAR COORDINATES 1. a, e; b, g; c, h; d, f

2. a, f; b, h; c, g; d, e

3. (a) ˆ2ß 1#  2n1‰ and ˆ2ß 1#  (2n  1)1‰ , n an integer

(b) (#ß 2n1) and (#ß (2n  1)1), n an integer (c) ˆ2ß 3#1  2n1‰ and ˆ2ß 3#1  (2n  1)1‰ , n an integer

(d) (#ß (2n  1)1) and (#ß 2n1), n an integer

4. (a) ˆ3ß 14  2n1‰ and ˆ3ß 541  2n1‰ , n an integer (b) ˆ3ß 14  2n1‰ and ˆ3ß 541  2n1‰ , n an integer (c) ˆ3ß  14  2n1‰ and ˆ3ß 341  2n1‰ , n an integer (d) ˆ3ß  14  2n1‰ and ˆ3ß 341  2n1‰ , n an integer

5. (a) x œ r cos ) œ 3 cos 0 œ 3, y œ r sin ) œ 3 sin 0 œ 0 Ê Cartesian coordinates are ($ß 0) (b) x œ r cos ) œ 3 cos 0 œ 3, y œ r sin ) œ 3 sin 0 œ 0 Ê Cartesian coordinates are ($ß 0) (c) x œ r cos ) œ 2 cos 21 œ 1, y œ r sin ) œ 2 sin 21 œ È3 Ê Cartesian coordinates are Š1ß È3‹ 3

(d) x œ r cos ) œ 2 cos

71 3

3

œ 1, y œ r sin ) œ 2 sin

71 3

œ È3 Ê Cartesian coordinates are Š1ß È3‹

(e) x œ r cos ) œ 3 cos 1 œ 3, y œ r sin ) œ 3 sin 1 œ 0 Ê Cartesian coordinates are (3ß 0) (f) x œ r cos ) œ 2 cos 1 œ 1, y œ r sin ) œ 2 sin 1 œ È3 Ê Cartesian coordinates are Š1ß È3‹ 3

3

(g) x œ r cos ) œ 3 cos 21 œ 3, y œ r sin ) œ 3 sin 21 œ 0 Ê Cartesian coordinates are (3ß 0) (h) x œ r cos ) œ 2 cos ˆ 1 ‰ œ 1, y œ r sin ) œ 2 sin ˆ 1 ‰ œ È3 Ê Cartesian coordinates are Š1ß È3‹ 3

6. (a) x œ È2 cos

1 4

œ 1, y œ È2 sin

3

1 4

œ 1 Ê Cartesian coordinates are (1ß 1)

(b) x œ 1 cos 0 œ 1, y œ 1 sin 0 œ 0 Ê Cartesian coordinates are (1ß 0) (c) x œ 0 cos 1# œ 0, y œ 0 sin 1# œ 0 Ê Cartesian coordinates are (!ß 0) (d) x œ È2 cos ˆ 1 ‰ œ 1, y œ È2 sin ˆ 1 ‰ œ 1 Ê Cartesian coordinates are (1ß 1) 4

(e) x œ 3 cos

51 6

œ

4

3È 3 2

, y œ 3 sin

51 6

È

œ  3# Ê Cartesian coordinates are Š 3 # 3 ß  3# ‹

(f) x œ 5 cos ˆtan" 43 ‰ œ 3, y œ 5 sin ˆtan" 43 ‰ œ 4 Ê Cartesian coordinates are ($ß 4) (g) x œ 1 cos 71 œ 1, y œ 1 sin 71 œ 0 Ê Cartesian coordinates are (1ß 0) (h) x œ 2È3 cos 231 œ È3, y œ 2È3 sin 231 œ 3 Ê Cartesian coordinates are ŠÈ3ß 3‹

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

647

648

Chapter 10 Conic Sections and Polar Coordinates

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.5 Polar Coordinates

649

22.

23. r cos ) œ 2 Ê x œ 2, vertical line through (#ß 0)

24. r sin ) œ 1 Ê y œ 1, horizontal line through (0ß 1)

25. r sin ) œ 0 Ê y œ 0, the x-axis

26. r cos ) œ 0 Ê x œ 0, the y-axis

27. r œ 4 csc ) Ê r œ

4 sin )

28. r œ 3 sec ) Ê r œ

Ê r sin ) œ 4 Ê y œ 4, a horizontal line through (0ß 4)

3 cos )

Ê r cos ) œ 3 Ê x œ 3, a vertical line through (3ß 0)

29. r cos )  r sin ) œ 1 Ê x  y œ 1, line with slope m œ 1 and intercept b œ 1 30. r sin ) œ r cos ) Ê y œ x, line with slope m œ 1 and intercept b œ 0 31. r# œ 1 Ê x#  y# œ 1, circle with center C œ (!ß 0) and radius 1 32. r# œ 4r sin ) Ê x#  y# œ 4y Ê x#  y#  4y  4 œ 4 Ê x#  (y  2)# œ 4, circle with center C œ (0ß 2) and radius 2 33. r œ

5 sin )2 cos )

Ê r sin )  2r cos ) œ 5 Ê y  2x œ 5, line with slope m œ 2 and intercept b œ 5

34. r# sin 2) œ 2 Ê 2r# sin ) cos ) œ 2 Ê (r sin ))(r cos )) œ 1 Ê xy œ 1, hyperbola with focal axis y œ x )‰ˆ " ‰ 35. r œ cot ) csc ) œ ˆ cos Ê r sin# ) œ cos ) Ê r# sin# ) œ r cos ) Ê y# œ x, parabola with vertex (0ß 0) sin ) sin )

which opens to the right sin ) ‰ 36. r œ 4 tan ) sec ) Ê r œ 4 ˆ cos Ê r cos# ) œ 4 sin ) Ê r# cos# ) œ 4r sin ) Ê x# œ 4y, parabola with #)

vertex œ (!ß 0) which opens upward

37. r œ (csc )) er cos ) Ê r sin ) œ er cos ) Ê y œ ex , graph of the natural exponential function 38. r sin ) œ ln r  ln cos ) œ ln (r cos )) Ê y œ ln x, graph of the natural logarithm function 39. r#  2r# cos ) sin ) œ 1 Ê x#  y#  2xy œ 1 Ê x#  2xy  y# œ 1 Ê (x  y)# œ 1 Ê x  y œ „ 1, two parallel straight lines of slope 1 and y-intercepts b œ „ 1 40. cos# ) œ sin# ) Ê r# cos# ) œ r# sin# ) Ê x# œ y# Ê kxk œ kyk Ê „ x œ y, two perpendicular lines through the origin with slopes 1 and 1, respectively. 41. r# œ 4r cos ) Ê x#  y# œ 4x Ê x#  4x  y# œ 0 Ê x#  4x  4  y# œ 4 Ê (x  2)#  y# œ 4, a circle with center C(2ß 0) and radius 2

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

650

Chapter 10 Conic Sections and Polar Coordinates

42. r# œ 6r sin ) Ê x#  y# œ 6y Ê x#  y#  6y œ 0 Ê x#  y#  6y  9 œ 9 Ê x#  (y  3)# œ 9, a circle with center C(0ß 3) and radius 3 43. r œ 8 sin ) Ê r# œ 8r sin ) Ê x#  y# œ 8y Ê x#  y#  8y œ 0 Ê x#  y#  8y  16 œ 16 Ê x#  (y  4)# œ 16, a circle with center C(0ß 4) and radius 4 44. r œ 3 cos ) Ê r# œ 3r cos ) Ê x#  y# œ 3x Ê x#  y#  3x œ 0 Ê x#  3x  # Ê ˆx  3# ‰  y# œ

9 4

, a circle with center C ˆ 3# ß !‰ and radius

9 4

 y# œ

9 4

3 #

45. r œ 2 cos )  2 sin ) Ê r# œ 2r cos )  2r sin ) Ê x#  y# œ 2x  2y Ê x#  2x  y#  2y œ 0 Ê (x  1)#  (y  1)# œ 2, a circle with center C(1ß 1) and radius È2 46. r œ 2 cos )  sin ) Ê r# œ 2r cos )  r sin ) Ê x#  y# œ 2x  y Ê x#  2x  y#  y œ 0 # Ê (x  1)#  ˆy  "# ‰ œ 54 , a circle with center C ˆ1ß  "# ‰ and radius

È5 #

È

47. r sin ˆ)  16 ‰ œ 2 Ê r ˆsin ) cos 16  cos ) sin 16 ‰ œ 2 Ê #3 r sin )  "# r cos ) œ 2 Ê Ê È3 y  x œ 4, line with slope m œ  " and intercept b œ 4 È3

È3 #

È3

È

48. r sin ˆ 231  )‰ œ 5 Ê r ˆsin 231 cos )  cos 231 sin )‰ œ 5 Ê #3 r cos )  "# r sin ) œ 5 Ê Ê È3 x  y œ 10, line with slope m œ È3 and intercept b œ 10 49. x œ 7 Ê r cos ) œ 7 51. x œ y Ê r cos ) œ r sin ) Ê ) œ

y  "# x œ 2

È3 #

x  "# y œ 5

50. y œ 1 Ê r sin ) œ 1 1 4

52. x  y œ 3 Ê r cos )  r sin ) œ 3

53. x#  y# œ 4 Ê r# œ 4 Ê r œ 2 or r œ 2 54. x#  y# œ 1 Ê r# cos# )  r# sin# ) œ 1 Ê r# acos# )  sin# )b œ 1 Ê r# cos 2) œ 1 55.

x# 9



y# 4

œ 1 Ê 4x#  9y# œ 36 Ê 4r# cos# )  9r# sin# ) œ 36

56. xy œ 2 Ê (r cos ))(r sin )) œ 2 Ê r# cos ) sin ) œ 2 Ê 2r# cos ) sin ) œ 4 Ê r# sin 2) œ 4 57. y# œ 4x Ê r# sin# ) œ 4r cos ) Ê r sin# ) œ 4 cos ) 58. x#  xy  y# œ 1 Ê x#  y#  xy œ 1 Ê r#  r# sin ) cos ) œ 1 Ê r# (1  sin ) cos )) œ 1 59. x#  (y  2)# œ 4 Ê x#  y#  4y  4 œ 4 Ê x#  y# œ 4y Ê r# œ 4r sin ) Ê r œ 4 sin ) 60. (x  5)#  y# œ 25 Ê x#  10x  25  y# œ 25 Ê x#  y# œ 10x Ê r# œ 10r cos ) Ê r œ 10 cos ) 61. (x  3)#  (y  1)# œ 4 Ê x#  6x  9  y#  2y  1 œ 4 Ê x#  y# œ 6x  2y  6 Ê r# œ 6r cos )  2r sin )  6 62. (x  2)#  (y  5)# œ 16 Ê x#  4x  4  y#  10y  25 œ 16 Ê x#  y# œ 4x  10y  13 Ê r# œ 4r cos )  10r sin )  13 63. (!ß )) where ) is any angle Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.6 Graphing in Polar Coordinates 64. (a) x œ a Ê r cos ) œ a Ê r œ (b) y œ b Ê r sin ) œ b Ê r œ

a cos ) b sin )

Ê r œ a sec ) Ê r œ b csc )

10.6 GRAPHING IN POLAR COORDINATES 1. 1  cos ()) œ 1  cos ) œ r Ê symmetric about the x-axis; 1  cos ()) Á r and 1  cos (1  )) œ 1  cos ) Á r Ê not symmetric about the y-axis; therefore not symmetric about the origin

2. 2  2 cos ()) œ 2  2 cos ) œ r Ê symmetric about the x-axis; 2  # cos ()) Á r and 2  2 cos (1  )) œ 2  2 cos ) Á r Ê not symmetric about the y-axis; therefore not symmetric about the origin

3. 1  sin ()) œ 1  sin ) Á r and 1  sin (1  )) œ 1  sin ) Á r Ê not symmetric about the x-axis; 1  sin (1  )) œ 1  sin ) œ r Ê symmetric about the y-axis; therefore not symmetric about the origin

4. 1  sin ()) œ 1  sin ) Á r and 1  sin (1  )) œ 1  sin ) Á r Ê not symmetric about the x-axis; 1  sin (1  )) œ 1  sin ) œ r Ê symmetric about the y-axis; therefore not symmetric about the origin

5. 2  sin ()) œ 2  sin ) Á r and 2  sin (1  )) œ 2  sin ) Á r Ê not symmetric about the x-axis; 2  sin (1  )) œ 2  sin ) œ r Ê symmetric about the y-axis; therefore not symmetric about the origin

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

651

652

Chapter 10 Conic Sections and Polar Coordinates

6. 1  2 sin ()) œ 1  2 sin ) Á r and 1  2 sin (1  )) œ 1  2 sin ) Á r Ê not symmetric about the x-axis; 1  2 sin (1  )) œ 1  2 sin ) œ r Ê symmetric about the y-axis; therefore not symmetric about the origin

7. sin ˆ #) ‰ œ  sin ˆ #) ‰ œ r Ê symmetric about the y-axis; sin ˆ 21#) ‰ œ sin ˆ 2) ‰ , so the graph is symmetric about the x-axis, and hence the origin.

8. cos ˆ #) ‰ œ cos ˆ #) ‰ œ r Ê symmetric about the x-axis; cos ˆ 21#) ‰ œ cos ˆ 2) ‰ , so the graph is symmetric about the y-axis, and hence the origin.

9. cos ()) œ cos ) œ r# Ê (rß )) and (rß )) are on the graph when (rß )) is on the graph Ê symmetric about the x-axis and the y-axis; therefore symmetric about the origin

10. sin (1  )) œ sin ) œ r# Ê (rß 1  )) and (rß 1  )) are on the graph when (rß )) is on the graph Ê symmetric about the y-axis and the x-axis; therefore symmetric about the origin

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.6 Graphing in Polar Coordinates 11.  sin (1  )) œ  sin ) œ r# Ê (rß 1  )) and (rß 1  )) are on the graph when (rß )) is on the graph Ê symmetric about the y-axis and the x-axis; therefore symmetric about the origin

12.  cos ()) œ  cos ) œ r# Ê (rß )) and (rß )) are on the graph when (rß )) is on the graph Ê symmetric about the x-axis and the y-axis; therefore symmetric about the origin

13. Since a „ rß )b are on the graph when (rß )) is on the graph ˆa „ rb# œ 4 cos 2( )) Ê r# œ 4 cos 2)‰ , the graph is symmetric about the x-axis and the y-axis Ê the graph is symmetric about the origin

14. Since (rß )) on the graph Ê (rß )) is on the graph ˆa „ rb# œ 4 sin 2) Ê r# œ 4 sin 2)‰ , the graph is symmetric about the origin. But 4 sin 2()) œ 4 sin 2) Á r# and 4 sin 2(1  )) œ 4 sin (21  2)) œ 4 sin (2)) œ 4 sin 2) Á r# Ê the graph is not symmetric about the x-axis; therefore the graph is not symmetric about the y-axis 15. Since (rß )) on the graph Ê (rß )) is on the graph ˆa „ rb# œ  sin 2) Ê r# œ  sin 2)‰ , the graph is symmetric about the origin. But  sin 2()) œ ( sin 2)) sin 2) Á r# and  sin 2(1  )) œ  sin (21  2)) œ  sin (2)) œ ( sin 2)) œ sin 2) Á r# Ê the graph is not symmetric about the x-axis; therefore the graph is not symmetric about the y-axis 16. Sincea „ rß )b are on the graph when (rß )) is on the graph ˆa „ rb# œ  cos 2()) Ê r# œ  cos 2)‰, the graph is symmetric about the x-axis and the y-axis Ê the graph is symmetric about the origin.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

653

654

Chapter 10 Conic Sections and Polar Coordinates Ê r œ 1 Ê ˆ1ß 1# ‰ , and ) œ  1# Ê r œ 1 w )r cos ) Ê ˆ1ß  1# ‰ ; rw œ ddr) œ  sin ); Slope œ rrw sin cos )r sin )

17. ) œ

1 #

 sin# )r cos )  sin ) cos )r sin )  sin# ˆ 1# ‰(1) cos 1#  sin 1# cos 1# (1) sin 1#

œ

Ê Slope at ˆ1ß 1# ‰ is

œ 1; Slope at ˆ1ß  1# ‰ is

 sin# ˆ 1# ‰(1) cos ˆ 1# ‰  sin ˆ 1# ‰ cos ˆ 1# ‰(1) sin ˆ 1# ‰

œ1

18. ) œ 0 Ê r œ 1 Ê ("ß 0), and ) œ 1 Ê r œ 1 dr Ê ("ß 1); rw œ d) œ cos );

rw sin )r cos ) cos ) sin )r cos ) rw cos )r sin ) œ cos ) cos )r sin ) 0 sin 0(1) cos 0 cos ) sin )r cos ) Ê Slope at ("ß 0) is coscos # 0(1) sin 0 cos# )r sin ) cos 1 sin 1(1) cos 1 1; Slope at ("ß 1) is cos# 1(1) sin 1 œ 1

Slope œ œ œ

Ê r œ 1 Ê ˆ"ß 14 ‰ ; ) œ  14 Ê r œ 1 Ê ˆ1ß  14 ‰ ; ) œ 341 Ê r œ 1 Ê ˆ"ß 341 ‰ ; ) œ  341 Ê r œ 1 Ê ˆ1ß  341 ‰ ;

19. ) œ

rw œ

1 4

dr d)

œ 2 cos 2);

Slope œ

r sin )r cos ) r cos )r sin ) w w

Ê Slope at ˆ1ß 14 ‰ is Slope at ˆ1ß  14 ‰ is Slope at ˆ1ß 341 ‰ is Slope at ˆ1ß  341 ‰ is

2 cos 2) sin )r cos ) 2 cos 2) cos )r sin ) 2 cos ˆ 1# ‰ sin ˆ 14 ‰(1) cos ˆ 14 ‰ 2 cos ˆ 1 ‰ cos ˆ 1 ‰(1) sin ˆ 1 ‰

œ

#

4

4

œ 1;

2 cos ˆ 1# ‰ sin ˆ 14 ‰(1) cos ˆ 14 ‰ 2 cos ˆ 1# ‰ cos ˆ 14 ‰(1) sin ˆ 14 ‰

2 cos Š 3#1 ‹ sin Š 341 ‹(1) cos Š 341 ‹ 2 cos Š 3#1 ‹ cos Š 341 ‹(1) sin Š 341 ‹

œ 1;

œ 1;

2 cos Š 3#1 ‹ sin Š 341 ‹(1) cos Š 341 ‹ 2 cos Š 3#1 ‹ cos Š 341 ‹(1) sin Š 341 ‹

œ 1

20. ) œ 0 Ê r œ 1 Ê (1ß 0); ) œ 12 Ê r œ 1 Ê ˆ1ß 12 ‰ ; ) œ  1# Ê r œ 1 Ê ˆ"ß  12 ‰ ; ) œ 1 Ê r œ 1 Ê (1ß 1); rw œ

dr d) œ 2 sin 2); )r cos ) 2 sin 2) sin )r cos ) Slope œ rr sin cos )r sin ) œ 2 sin 2) cos )r sin ) 2 sin 0 sin 0cos 0 Ê Slope at (1ß 0) is  2 sin 0 cos 0sin 0 , which is undefined; 2 sin 2 ˆ 1 ‰ sin ˆ 1 ‰(1) cos ˆ 1 ‰ Slope at ˆ1ß 12 ‰ is 2 sin 2 ˆ 12 ‰ cos ˆ21 ‰(1) sin ˆ 21 ‰ œ 0; w w

2

Slope at ˆ1ß  12 ‰ is Slope at ("ß 1) is

2

2

2 sin 2 ˆ 1# ‰ sin ˆ 1# ‰(1) cos ˆ 1# ‰ 2 sin 2 ˆ 1 ‰ cos ˆ 1 ‰(1) sin ˆ 1 ‰ #

2 sin 21 sin 1cos 1 2 sin 21 cos 1sin 1

#

#

œ 0;

, which is undefined

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.6 Graphing in Polar Coordinates 21. (a)

(b)

22. (a)

(b)

23. (a)

(b)

24. (a)

(b)

25.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

655

656

Chapter 10 Conic Sections and Polar Coordinates

26. r œ 2 sec ) Ê r œ

2 cos )

Ê r cos ) œ 2 Ê x œ 2

27.

28.

29. ˆ#ß 341 ‰ is the same point as ˆ2ß  14 ‰ ; r œ 2 sin 2 ˆ 14 ‰ œ 2 sin ˆ 1# ‰ œ 2 Ê ˆ2ß  14 ‰ is on the graph Ê ˆ#ß 341 ‰ is on the graph 30. ˆ "# ß 321 ‰ is the same point as ˆ "# ß 12 ‰ ; r œ  sin Š

ˆ 1# ‰ 3 ‹

œ  sin

1 6

œ  "# Ê ˆ "# ß 1# ‰ is on the graph Ê ˆ "# ß 3#1 ‰

is on the graph 31. 1  cos ) œ 1  cos ) Ê cos ) œ 0 Ê ) œ 1# , 3#1 Ê r œ 1; points of intersection are ˆ"ß 1# ‰ and ˆ"ß 3#1 ‰ . The point of intersection (!ß 0) is found by graphing.

32. 1  sin ) œ 1  sin ) Ê sin ) œ 0 Ê ) œ 0, 1 Ê r œ 1; points of intersection are (1ß 0) and (1ß 1). The point of intersection (!ß 0) is found by graphing.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.6 Graphing in Polar Coordinates 33. 2 sin ) œ 2 sin 2) Ê sin ) œ sin 2) Ê sin ) œ 2 sin ) cos ) Ê sin )  2 sin ) cos ) œ 0 Ê (sin ))(1  2 cos )) œ 0 Ê sin ) œ 0 or cos ) œ

, or  13 ; ) œ 0 or 1 Ê r œ 0, Ê r œ È3 , and ) œ  1 Ê r œ È3 ; points of

Ê ) œ 0, 1, )œ

1 3

1 3

" #

3

intersection are (!ß 0), ŠÈ3 ß 13 ‹, and ŠÈ3 ß  13 ‹

34. cos ) œ 1  cos ) Ê 2 cos ) œ 1 Ê cos ) œ

" #

Ê ) œ 13 ,  13 Ê r œ "# ; points of intersection are ˆ "# ß 13 ‰ and ˆ "# ,  13 ‰ . The point (0ß 0) is found by graphing.

#

35. ŠÈ2‹ œ 4 sin ) Ê

" #

œ sin ) Ê ) œ

1 6

,

51 6

; points

of intersection are ŠÈ2ß 16 ‹ and ŠÈ2ß 561 ‹ . The points ŠÈ2ß  16 ‹ and ŠÈ2ß  561 ‹ are found by graphing.

36. È2 sin ) œ È2 cos ) Ê sin ) œ cos ) Ê ) œ )œ

1 4

#

Ê r œ 1 Ê r œ „ 1 and ) œ

51 4

1 4

,

51 4

;

#

Ê r œ 1

Ê no solution for r; points of intersection are ˆ „ 1ß 14 ‰ . The points (!ß 0) and ˆ „ 1ß 341 ‰ are found by graphing.

37. 1 œ 2 sin 2) Ê sin 2) œ

" #

Ê 2) œ

1 6

,

51 6

,

131 6

,

171 6

1 Ê ) œ 12 , 5121 , 13121 , 17121 ; points of intersection are 1‰ ˆ ˆ1ß 12 , 1ß 5121 ‰ , ˆ1ß 131#1 ‰, and ˆ1ß 171#1 ‰ . No other

points are found by graphing.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

657

658

Chapter 10 Conic Sections and Polar Coordinates

38. È2 cos 2) œ È2 sin 2) Ê cos 2) œ sin 2) Ê 2) œ 14 , 541 , 941 , 1341 Ê ) œ 18 , 581 , 981 , )œ

1 91 8 , 8 #

#

Ê r œ 1 Ê r œ „ 1; ) œ

51 8

,

131 8 131 8

;

Ê r œ 1 Ê no solution for r; points of intersection are ˆ1ß 18 ‰ and ˆ1ß 981 ‰ . The point of intersection (!ß 0) is found by graphing.

39. r# œ sin 2) and r# œ cos 2) are generated completely for 0 Ÿ ) Ÿ 1# . Then sin 2) œ cos 2) Ê 2) œ 14 is the only solution on that interval Ê ) œ 18 Ê r# œ sin 2 ˆ 18 ‰ œ È" Ê rœ „

" % È 2

2

" ß 1‹. % È 2 8

; points of intersection are Š „

The point of intersection (!ß 0) is found by graphing.

40. 1  sin

) #

31 #

Ê )œ )œ

71 #

œ 1  cos ,

71 #

) #

;)œ

Ê  sin 31 #

Ê r œ 1  cos

intersection are Š" 

) #

œ cos

Ê r œ 1  cos 71 4

œ1

È 2 31 # ß # ‹

È2 #

) #

Ê

) #

31 4

œ1

31 71 4 , 4 È2 # ;

œ

; points of

and Š1 

È 2 71 # ß # ‹.

three points of intersection (0ß 0) and Š1 „

È2 #

The

ß 1# ‹ are

found by graphing and symmetry.

41. 1 œ 2 sin 2) Ê sin 2) œ

" #

Ê 2) œ

1 6

,

51 6

,

131 6

,

171 6

Ê ) œ 11# , 511# , 131#1 , 171#1 ; points of intersection are ˆ"ß 11# ‰ , ˆ"ß 511# ‰ , ˆ1ß 131#1 ‰ , and ˆ"ß 17121 ‰ . The points of intersection ˆ1ß 711# ‰ , ˆ"ß 111#1 ‰ , ˆ"ß 191#1 ‰ and ˆ"ß 231#1 ‰ are found by graphing and symmetry.

42. r# œ 2 sin 2) is completely generated on 0 Ÿ ) Ÿ " #

1 6

1 #

so

1 that 1 œ 2 sin 2) Ê sin 2) œ Ê 2) œ , 561 Ê ) œ 12 51 1 5 1 ˆ ‰ ˆ ‰ 1# ; points of intersection are 1ß 1# and "ß 1# . The 1 5 1 points of intersection ˆ"ß 1# ‰ and ˆ1ß 1# ‰ are found

,

by graphing.

43. Note that (rß )) and (rß )  1) describe the same point in the plane. Then r œ 1  cos ) Í 1  cos ()  1) œ 1  (cos ) cos 1  sin ) sin 1) œ 1  cos ) œ (1  cos )) œ r; therefore (rß )) is on the graph of r œ 1  cos ) Í (rß )  1) is on the graph of r œ 1  cos ) Ê the answer is (a).

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.6 Graphing in Polar Coordinates

44. Note that (rß )) and (rß )  1) describe the same point in the plane. Then r œ cos 2) Í  sin ˆ2()  1))  1# ‰ œ  sin ˆ2)  5#1 ‰ œ  sin (2)) cos ˆ 5#1 ‰  cos (2)) sin ˆ 5#1 ‰ œ  cos 2) œ r; therefore (rß )) is on the graph of r œ  sin ˆ2)  1# ‰ Ê the answer is (a).

45.

47. (a)

46.

(b)

(c)

(d)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

659

660

Chapter 10 Conic Sections and Polar Coordinates

48. (a)

(b)

(d)

(c)

(e)

#

#

49. (a) r# œ 4 cos ) Ê cos ) œ  r4 ; r œ 1  cos ) Ê r œ 1  Š r4 ‹ Ê 0 œ r#  4r  4 Ê (r  2)# œ 0 #

Ê r œ 2; therefore cos ) œ  24 œ 1 Ê ) œ 1 Ê (2ß 1) is a point of intersection (b) r œ 0 Ê 0# œ 4 cos ) Ê cos ) œ 0 Ê ) œ 1# , 3#1 Ê ˆ!ß 1# ‰ or ˆ!ß 3#1 ‰ is on the graph; r œ 0 Ê 0 œ 1  cos ) Ê cos ) œ 1 Ê ) œ 0 Ê (0ß 0) is on the graph. Since (!ß 0) œ ˆ!ß 1# ‰ for polar coordinates, the graphs intersect at the origin. 50. (a) Let r œ f()) be symmetric about the x-axis and the y-axis. Then (rß )) on the graph Ê (rß )) is on the graph because of symmetry about the x-axis. Then (rß ())) œ (rß )) is on the graph because of symmetry about the y-axis. Therefore r œ f()) is symmetric about the origin. (b) Let r œ f()) be symmetric about the x-axis and the origin. Then (rß )) on the graph Ê (rß )) is on the graph because of symmetry about the x-axis. Then (rß )) is on the graph because of symmetry about the origin. Therefore r œ f()) is symmetric about the y-axis. (c) Let r œ f()) be symmetric about the y-axis and the origin. Then (rß )) on the graph Ê (rß )) is on the graph because of symmetry about the y-axis. Then ((r)ß )) œ (rß )) is on the graph because of symmetry about the origin. Therefore r œ f()) is symmetric about the x-axis. 51. The maximum width of the petal of the rose which lies along the x-axis is twice the largest y value of the curve on the interval 0 Ÿ ) Ÿ 14 . So we wish to maximize 2y œ 2r sin ) œ 2 cos 2) sin ) on 0 Ÿ ) Ÿ 14 . Let f()) œ 2 cos 2) sin ) œ 2 a1  2 sin# )b (sin )) œ 2 sin )  4 sin$ ) Ê f w ()) œ 2 cos )  12 sin# ) cos ). Then f w ()) œ 0 Ê 2 cos )  12 sin# ) cos ) œ 0 Ê (cos )) a1  6 sin# )b œ 0 Ê cos ) œ 0 or 1  6 sin# ) œ 0 Ê ) œ sin ) œ

„1 È6 .

Since we want 0 Ÿ ) Ÿ

œ 2 Š È"6 ‹  4 † interval 0 Ÿ ) Ÿ is

2È 6 9

" œ . We 6È 6 1 4 . Therefore the

1 4

"

, we choose ) œ sin

Š È"6 ‹

$

Ê f()) œ 2 sin )  4 sin )

can see from the graph of r œ cos 2) that a maximum does occur in the maximum width occurs at ) œ sin" Š È"6 ‹ , and the maximum width

2È 6 9 .

52. We wish to maximize y œ r sin ) œ 2(1  cos ))(sin )) œ 2 sin )  2 sin ) cos ). Then dy # # # d) œ 2 cos )  2(sin ))( sin ))  2 cos ) cos ) œ 2 cos )  2 sin )  2 cos ) œ 2 cos )  4 cos )  2; thus dy # # d) œ 0 Ê 4 cos )  2 cos )  2 = 0 Ê 2 cos )  cos )  1 œ 0 Ê (2 cos )  1)(cos )  1) œ 0 Ê cos ) œ or cos ) œ 1 Ê ) œ 13 , 531 , 1. From the graph, we can see that the maximum occurs in the first quadrant so È

we choose ) œ 13 . Then y œ 2 sin 13  2 sin 13 cos 13 œ 3 # 3 . The x-coordinate of this point is x œ r cos È œ 2 ˆ1  cos 13 ‰ ˆcos 13 ‰ œ 3# . Thus the maximum height is h œ 3 # 3 occurring at x œ 3# . Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

1 3

" #

1 #

or

Section 10.7 Area and Lengths in Polar Coordinates 10.7 AREA AND LENGTHS IN POLAR COORDINATES 1. A œ '0

21

" #

(4  2 cos ))# d) œ '0

21

" #

2) ‰‘ a16  16 cos )  4 cos# )b d) œ '0 8  8 cos )  2 ˆ 1  cos d) # 21

œ '0 (9  8 cos )  cos 2)) d) œ 9)  8 sin )  21

2. A œ '0

21

œ

" #

a#

" #

[a(1  cos ))]# d) œ '0

21

" #

#1

" 2

sin 2)‘ ! œ 181

a# a1  2 cos )  cos# )b d) œ

" #

a#

2) ‰ '021 ˆ1  2 cos )  1  cos d) #

'021 ˆ 3#  2 cos )  "# cos 2)‰ d) œ "# a#  3# )  2 sin )  4" sin 2)‘ #!1 œ 3# 1a#

3. A œ 2 '0

1Î4

" #

cos# 2) d) œ '0

" #

a2a# cos 2)b d) œ 2a# '1Î4 cos 2) d) œ 2a#  sin22) ‘ 1Î% œ 2a#

1Î4

4. A œ 2 '1Î4 5. A œ '0

1Î2

" #

1Î4

1  cos 4) #

d) œ

" #

) 

sin 4) ‘ 1Î% 4 !

œ

1Î4

(4 sin 2)) d) œ '0

1Î2

6. A œ (6)(2)'0

1Î6

1 8 1Î%

1Î#

2 sin 2) d) œ c cos 2)d !

œ2

(2 sin 3)) d) œ 12 '0 sin 3) d) œ 12  cos3 3) ‘ ! 1Î6

" #

1Î'

œ4

7. r œ 2 cos ) and r œ 2 sin ) Ê 2 cos ) œ 2 sin ) Ê cos ) œ sin ) Ê ) œ 14 ; therefore A œ 2 '0

1Î4

œ '0

1Î4

(2 sin ))# d) œ '0

1Î4

" #

2) ‰ 4 ˆ 1  cos d) œ '0 #

1Î4

œ c2)  sin

1Î% 2) d !

œ

1 #

4 sin# ) d)

(2  2 cos 2)) d)

1

8. r œ 1 and r œ 2 sin ) Ê 2 sin ) œ 1 Ê sin ) œ Ê )œ

1 6

or

51 6

" #

; therefore

A œ 1(1)#  '1Î6

51Î6

" #

c(2 sin ))#  1# d d)

œ 1  '1Î6 ˆ2 sin# )  "# ‰ d) 51Î6

œ 1  '1Î6 ˆ1  cos 2)  "# ‰ d) 51Î6

œ 1  '1Î6 ˆ "#  cos 2)‰ d) œ 1   "2 ) 

sin 2) ‘ &1Î' # 1Î'

œ 1  ˆ 511# 

41  3È 3 6

51Î6

" #

sin

51 ‰ 3

1  ˆ 12 

" #

sin 13 ‰ œ

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

661

662

Chapter 10 Conic Sections and Polar Coordinates

9. r œ 2 and r œ 2(1  cos )) Ê 2 œ 2(1  cos )) Ê cos ) œ 0 Ê ) œ „ 1# ; therefore A œ 2 '0

1Î2

œ '0

1Î2

œ '0

1Î2

œ '0

1Î2

" #

[2(1  cos ))]# d)  "# area of the circle

4 a1  2 cos )  cos# )b d)  ˆ "# 1‰ (2)# 4 ˆ1  2 cos ) 

1  cos 2) ‰ #

d)  2 1

(4  8 cos )  2  2 cos 2)) d)  21 1Î#

œ c6)  8 sin )  sin 2)d !

 21 œ 51  8

10. r œ 2(1  cos )) and r œ 2(1  cos )) Ê 1  cos ) œ 1  cos ) Ê cos ) œ 0 Ê ) œ 1# or 3#1 ; the graph also gives the point of intersection (0ß 0); therefore A œ 2 '0

1Î2

" #

[2(1  cos ))]# d)  2 '1Î2 "# [2(1  cos ))]# d) 1

œ '0

4 a1  2 cos )  cos# )b d)

œ '0

4 ˆ1  2 cos ) 

œ '0

(6  8 cos )  2 cos 2)) d)  '1Î2 (6  8 cos )  2 cos 2)) d)

1Î2

 '1Î2 4 a1  2 cos )  cos# )b d) 1

1Î2 1Î2

1  cos 2) ‰ #

d)  '1Î2 4 ˆ1  2 cos )  1

1  cos 2) ‰ #

d)

1

1Î#

œ c6)  8 sin )  sin 2)d !

 c6)  8 sin )  sin 2)d 11Î# œ 61  16

11. r œ È3 and r# œ 6 cos 2) Ê 3 œ 6 cos 2) Ê cos 2) œ 1 6

Ê )œ

" #

(in the 1st quadrant); we use symmetry of the

graph to find the area, so A œ 4 '0 ” "# (6 cos 2))  "# ŠÈ3‹ • d) #

1Î6

œ 2 '0 (6 cos 2)  3) d) œ 2 c3 sin 2)  3)d ! 1Î6

1Î'

œ 3È3  1 12. r œ 3a cos ) and r œ a(1  cos )) Ê 3a cos ) œ a(1  cos )) Ê 3 cos ) œ 1  cos ) Ê cos ) œ "# Ê ) œ 13 or  13 ; the graph also gives the point of intersection (0ß 0); therefore A œ 2 '0

1Î3

" #

c(3a cos ))#  a# (1  cos ))# d d)

œ '0 a9a# cos# )  a#  2a# cos )  a# cos# )b d) 1Î3

œ '0

1Î3

a8a# cos# )  2a# cos )  a# b d)

œ '0 c4a# (1  cos 2))  2a# cos )  a# d d) 1Î3

œ '0 a3a#  4a# cos 2)  2a# cos )b d) 1Î3

1Î$

œ c3a# )  2a# sin 2)  2a# sin )d !

œ 1a#  2a# ˆ "# ‰  2a# Š

È3 # ‹

œ a# Š1  1  È3‹

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.7 Area and Lengths in Polar Coordinates

663

13. r œ 1 and r œ 2 cos ) Ê 1 œ 2 cos ) Ê cos ) œ  "# Ê )œ

A œ 2'

1

21 3

in quadrant II; therefore c(2 cos ))#  1# d d) œ '21Î3 a4 cos# )  1b d) 1

" 21Î3 #

œ '21Î3 [2(1  cos 2))  1] d) œ '21Î3 (1  2 cos 2)) d) 1

1

œ c)  sin 2)d 1#1Î$ œ 14. (a) A œ 2 '0

21Î3

œ '0

21Î3

" #

1 3



È3 #

(2 cos )  1)# d) œ '0

21Î3

a4 cos# )  4 cos )  1b d) œ '0

21Î3

#1Î$

(3  2 cos 2)  4 cos )) d) œ c3)  sin 2)  4 sin )d ! 3È 3 # ‹

(b) A œ Š21 

 Š1 

3È 3 # ‹

1 6

; therefore A œ '1Î6

51Î6

51 6

or

œ '1Î6 ˆ18  51Î6

9 #

È3 #



4È 3 #

œ 21 

3È 3 #

œ 1  3È3 (from 14(a) above and Example 2 in the text) " #

15. r œ 6 and r œ 3 csc ) Ê 6 sin ) œ 3 Ê sin ) œ Ê )œ

œ 21 

[2(1  cos 2))  4 cos )  1] d)

csc# )‰ d) œ 18) 

" #

a6#  9 csc# )b d)

9 #

cot )‘ 1Î'

&1Î'

œ Š151  9# È3‹  Š31  9# È3‹ œ 121  9È3

16. r# œ 6 cos 2) and r œ Ê

sec ) Ê

3 # #

9 4 %

sec# ) œ 6 cos 2) Ê

œ 2 cos% )  cos ) Ê 2 cos )  cos# ) 

3 8

1 6

(in the first quadrant); thus A œ 2 '0

œ 3 sin 2) 

9 4

tan )‘ !

1Î6

1Î'

17. (a) r œ tan ) and r œ Š

œ 3Š

È2 # ‹

È3 # ‹



9 4È 3

œ

3È 3 #

csc ) Ê tan ) œ Š

" ˆ # 6 cos 2) 3È 3 3È 3 4 œ 4



È2 # ‹

È2 # ‹

cos ) Ê 1  cos# ) œ Š

Ê cos# )  Š

È2 # ‹

cos )  1 œ 0 Ê cos ) œ È2 or 1 4

œ acos# )b a2 cos# )  1b



9 4

È3 #

(the second equation has no real

sec# )‰ d) œ '0 ˆ6 cos 2)  1Î6

9 4

sec# )‰ d)

csc )

Ê sin# ) œ Š

(use the quadratic formula) Ê ) œ

3 8

or cos# ) œ  "4 Ê cos ) œ „

3 4

roots) Ê ) œ

È2 #

œ cos# ) cos 2) Ê

œ 0 Ê 16 cos% )  8 cos# )  3 œ 0

3 8

Ê a4 cos# )  1ba4 cos# )  3b œ 0 Ê cos# ) œ

9 24

È2 # ‹

cos )

(the solution

in the first quadrant); therefore the area of R" is A" œ '0

1Î4

AO œ Š

" #

È2 # ‹

tan# ) d) œ 1 #

csc

œ

È2 #

" #

and OB œ Š

Ê the area of R# is A# œ 2 ˆ "# 

1 8

 4" ‰ œ

3 #



1 4

'01Î4 asec# )  1b d)

" #

Š

rœ (b)

lim

lim

œ

" 4

1 4

1Î%

ctan )  )d !

œ

" #

ˆtan

œ 1 Ê AB œ Ê1#  Š

1 4

 14 ‰ œ

È2 # ‹

#

œ

) Ä 1 Î2 c

r œ sec ) as ) Ä

" ‰ cos ) 1c #



1 8

;

; therefore the area of the region shaded in the text is

1 4

generates the arc OB of r œ tan ) but does not generate the segment AB of the line

tan ) œ _ and the line x œ 1 is r œ sec ) in polar coordinates; then sin ) ˆ cos ) 

" #

È2 #

csc ). Instead the interval generates the half-line from B to _ on the line r œ

) Ä 1 Î2 

=

È2 È2 # ‹Š # ‹

csc

" #

. Note: The area must be found this way since no common interval generates the region. For

example, the interval 0 Ÿ ) Ÿ È2 #

È2 # ‹

œ

œ

lim

) Ä 1 Î2 c

ˆ sincos) ) 1 ‰ œ

lim

) Ä 1 Î2 c

lim

) Ä 1 Î2 c

È2 #

csc ).

(tan )  sec ))

) ‰ ˆ cos sin ) œ 0 Ê r œ tan ) approaches

Ê r œ sec ) (or x œ 1) is a vertical asymptote of r œ tan ). Similarly, r œ  sec )

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

664

Chapter 10 Conic Sections and Polar Coordinates (or x œ 1) is a vertical asymptote of r œ tan ).

18. It is not because the circle is generated twice from ) œ 0 to 21. The area of the cardioid is A œ 2 '0

1

" #

2) (cos )  1)# d) œ '0 acos# )  2 cos )  1b d) œ '0 ˆ 1  cos  2 cos )  1‰ d) # 1

œ  32)  31 #

sin 2) 4 1 51 œ 4 4



1

 2 sin )‘ ! œ

19. r œ )# , 0 Ÿ ) Ÿ È5 Ê

#

È5

È5

œ '0 k)k È)#  4 d) œ (since )   0) '0

) œ È5 Ê u œ 9“ Ä '4

9

20. r œ

e) È2

,0Ÿ)Ÿ1 Ê

dr d)

" #

œ

1 4

. The area of the circle is A œ 1 ˆ "# ‰ œ

œ 2); therefore Length œ '0

dr d)

È5

31 #

1

Èu du œ

e) È2

" #

Ê the area requested is actually

Éa)# b#  (2))# d) œ '

0

) È ) #  4 d ) ; u œ ) #  4 Ê

 23 u$Î# ‘ * œ %

È5

" #

È ) %  4) # d)

du œ ) d); ) œ 0 Ê u œ 4,

19 3

; therefore Length œ '0 ÊŠ Èe 2 ‹  Š Èe 2 ‹ d) œ '0 Ê2 Š e# ‹ d) 1

#

)

#

)

1

2)

œ '0 e) d) œ e) ‘ ! œ e1  1 1

1

21. r œ 1  cos ) Ê

dr d)

œ  sin ); therefore Length œ '0 È(1  cos ))#  ( sin ))# d) 21

1 œ 2 '0 È2  2 cos ) d) œ 2'0 É 4(1 #cos )) d) œ 4 '0 É 1  #cos ) d) œ 4 '0 cos ˆ #) ‰ d) œ 4 2 sin 2) ‘ ! œ 8 1

1

22. r œ a sin#

) #

1

, 0 Ÿ ) Ÿ 1, a  0 Ê

œ '0 Éa# sin% 1

) #

 a# sin#

) #

dr d) ) #

cos#

œ a sin

) #

cos

) #

1

# ; therefore Length œ '0 Ɉa sin# #) ‰  ˆa sin 1

d) œ '0 a ¸sin #) ¸ Ésin# 1

) #

) #

 cos#

1

6 1  cos )

œ '0

1Î2

,0Ÿ)Ÿ

1 #

É (1  36 cos ))# 

œ ˆsince

" 1  cos )

Ê

dr d)

œ

; therefore Length œ '0

1Î2

6 sin ) (1  cos ))#

d) œ 6 '0

1Î2

36 sin# ) a1  cos )b%

" ¸ 1cos ¸ ) É1 

0

1Î2

1Î2

1Î2

1Î2

) #

d)

cos# )  sin# )  0 on 0 Ÿ ) Ÿ 1# ‰ 6 '0 ˆ 1  "cos ) ‰ É 1  2 cos(1)cos d) ) )#

cos ) È ' œ 6 '0 ˆ 1  "cos ) ‰ É (12 2cos ) )# d) œ 6 2 0

œ 3'0 sec$

#

#

6 sin ) ʈ 1  6cos ) ‰  Š (1  cos ))# ‹ d)

sin# ) (1  cos ))#

d) œ 6'0

1Î4

d) (1  cos ))$Î#

œ 6È2 '0

1Î2

1Î% sec$ u du œ (use tables) 6 Œ sec u2tan u ‘ ! 

d) ˆ2 cos# #) ‰$Î# " #

'01Î4

œ 3'0

1Î2

¸sec$ #) ¸ d)

sec u du

1Î% œ 6 Š È"2   2" ln ksec u  tan uk‘ ! ‹ œ 3 ’È2  ln Š1  È2‹“

24. r œ

2 1  cos )

,

1 #

Ÿ)Ÿ1 Ê

4 œ '1Î2 Ê (1  cos ) ) # Š1  1

dr d)

œ

2 sin ) (1  cos ))#

sin# ) ‹ a1  cos )b#

œ ˆsince 1  cos )   0 on

1 #

sin ) ; therefore Length œ '1Î2 ʈ 1  2cos ) ‰  Š (12cos ))# ‹ d) 1

1

#

1

œ '1Î2 csc$ ˆ #) ‰ d) œ ˆsince csc 1

) #

cos ) d) È ' È ' œ 2 '1Î2 ˆ 1  "cos ) ‰ É (12 2cos ))# d) œ 2 2 1Î2 (1  cos ))$Î# œ 2 2 1Î2 1

#

d)

cos )  sin Ÿ ) Ÿ 1‰ 2 '1Î2 ˆ 1  "cos ) ‰ É 1  2 cos(1)cos ) )# 1

) #

  0 on

1 #

1

#

#

)  sin d) œ '1Î2 ¸ 1  2cos ) ¸ É (1 (1cos )cos ) )#

#

d) ˆ2 sin# )# ‰$Î#

)

d)

œ '1Î2 ¸csc$ #) ¸ d) 1

Ÿ ) Ÿ 1‰ 2 '1Î4 csc$ u du œ (use tables) 1Î2

# cos #) ‰ d)

d) œ (since 0 Ÿ ) Ÿ 1) a ' sin ˆ #) ‰ d)

1 œ 2a cos 2) ‘ ! œ 2a

23. r œ

) #

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.7 Area and Lengths in Polar Coordinates 1Î# 2Œ csc u2cot u ‘ 1Î% 

'11ÎÎ42

" #

1Î#

csc u du œ 2 Š È"2   2" ln kcsc u  cot uk‘ 1Î% ‹ œ 2 ’ È"2 

" #

ln ŠÈ2  1‹“

œ È2  ln Š1  È2‹ ) 3

25. r œ cos$ œ '0

Ê

dr d)

) 3

œ  sin

; therefore Length œ '0

1Î4

) 3

cos#

Écos' ˆ 3) ‰  sin# ˆ 3) ‰ cos% ˆ 3) ‰ d) œ '

1Î4

1Î4 1cos ˆ 2) ‰ 3

#

d) œ

" #

) 

3 2

2) ‘ 1Î% 3 !

sin

26. r œ È1  sin 2) , 0 Ÿ ) Ÿ 1È2 Ê 1È 2

Length œ '0 œ '0

È

1 2

É(1  sin 2)) 

sin 2) ' É 212sin 2) d) œ 0

27. r œ È1  cos 2) Ê 1È 2

œ '0

È

1 2

œ

dr d)

" #

cos# 2) (1  sin 2))



È

d) œ '0

1 2

1È 2

d) œ '0

2)

1È# !

#

sin 2)  cos É 1  2 sin 2)1   sin 2)

#

2)

d)

œ 21

È

1È 2

cos 2) ' É 212cos 2 ) d) œ 0

21

É(1  cos 2)) 

È2 d) œ ’È2 )“

œ 0; Length œ '0 Èa#  0# d) œ '0 kak d) œ ca)d #!1 œ 21a

1È# !

sin# 2) (1  cos 2))

21

œ a sin ); Length œ '0 È(a cos ))#  (a sin ))# d) œ '0 Èa# acos# )  sin# )b d)

dr d)

œ a cos ); Length œ '0 È(a cos ))#  (a sin ))# d) œ '0 Èa# acos# )  sin# )b d)

1

œ '0 kak d) œ ca)d 1! œ 1a 1

d)

œ 21

dr d)

(b) r œ a cos ) Ê

(c) r œ a sin ) Ê

cos# ˆ 3) ‰ d)

(1  sin 2))"Î# (2 cos 2)) œ (cos 2))(1  sin 2))"Î# ; therefore

È2 d) œ ’È2 )“

#

1Î4

3 8

1 2

#

dr d)

" #

œ

# cos# 3) ‰ d) 0

(1  cos 2))"Î# (2 sin 2)); therefore Length œ '0

cos 2)  sin É 1  2 cos 21) cos 2)

28. (a) r œ a Ê

dr d)

1 8

œ

) 3

ˆcos# 3) ‰ Écos# ˆ 3) ‰  sin# ˆ 3) ‰ d) œ '

1Î4

0

œ '0

Ɉcos$ 3) ‰#  ˆ sin

1

1

1

œ '0 kak d) œ ca)d 1! œ 1a 1

29. r œ Ècos 2) , 0 Ÿ ) Ÿ œ '0

1Î4

1 4

Ê

dr d)

œ

" #

(cos 2))"Î# ( sin 2))(2) œ

 sin 2) Ècos 2)

; therefore Surface Area

 sin 2) (21r cos )) ÊŠÈcos 2)‹  Š È ‹ d) œ '0 Š21Ècos 2)‹ (cos ))Écos 2)  cos 2) #

#

œ '0 Š21Ècos 2)‹ (cos ))É cos" 2) d) œ '0 1Î4

1Î4

30. r œ È2e)Î2 , 0 Ÿ ) Ÿ

1 #

Ê

dr d)

œ È2 ˆ "# ‰ e)Î2 œ

œ '0 Š21È2 e)Î2 ‹ (sin )) ÊŠÈ2 e)Î2 ‹  Š #

1Î2

1Î4

1Î%

21 cos ) d) œ c21 sin )d ! È2 #

È2 #

sin# 2) cos 2)

d)

œ 1È2

e)Î2 ; therefore Surface Area

e)Î2 ‹ d) œ '0 Š21È2 e)Î2 ‹ (sin )) É2e)  "# e) d) #

1Î2

œ '0 Š21È2 e)Î2 ‹ (sin )) É 5# e) d) œ '0 Š21È2 e)Î2 ‹ (sin )) Š È52 e)Î2 ‹ d) œ 21È5 '0 e) sin ) d) 1Î2

1Î2

)

1Î#

œ 21È5  e2 (sin )  cos ))‘ !

œ 1È5 ae1Î2  1b where we integrated by parts

31. r# œ cos 2) Ê r œ „ Ècos 2) ; use r œ Ècos 2) on 0ß 14 ‘ Ê therefore Surface Area œ 2 '0 Š21Ècos 2)‹ (sin )) Écos 2)  1Î4

œ 41 '0 sin ) d) œ 41 c cos )d ! 1Î4

1Î2

È

1Î%

œ 41 ’

È2 #

dr d)

œ

sin# 2) cos 2)

" #

(cos 2))"Î# ( sin 2))(2) œ

d) œ 41 '0

1Î4

 sin 2) Ècos 2)

Ècos 2) (sin )) É

 (1)“ œ 21 Š2  È2‹

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

;

" cos 2)

d)

665

666

Chapter 10 Conic Sections and Polar Coordinates

32. r œ 2a cos ) Ê

dr d)

œ 2a sin ); therefore Surface Area œ '0 21(2a cos ))(cos ))È(2a cos ))#  (2a sin ))# d) 1

œ 4a1 '0 acos# )b È4a# acos# )  sin# )b d) œ 8a1 '0 acos# )b kak d) œ 8a# 1 '0 cos# ) d) 1

1

1

2) ‰ œ 8a# 1 '0 ˆ 1  cos d) œ 4a# 1 '0 (1  cos 2)) d) œ 4a# 1 )  # 1

1

33. Let r œ f()). Then x œ f()) cos ) Ê

" 2

1

sin 2)‘ ! œ 4a# 1#

‰# œ cf w ()) cos )  f()) sin )d# œ f w ()) cos )  f()) sin ) Ê ˆ dx d)

dx d)

œ cf w ())d# cos# )  2f w ()) f()) sin ) cos )  [f())]# sin# ); y œ f()) sin ) Ê

dy d)

#

œ f w ()) sin )  f()) cos )

# # w w # w # # Ê Š dy d) ‹ œ cf ()) sin )  f()) cos )d œ cf ())d sin )  2f ())f()) sin ) cos )  [f())] cos ). Therefore #

# # w # # # # # w # # ˆ dx ‰#  Š dy ˆ dr ‰# d) d) ‹ œ cf ())d acos )  sin )b  [f())] acos )  sin )b œ cf ())d  [f())] œ r  d) .

' Ér#  ˆ ddr) ‰# d). ‰#  Š dy Thus, L œ '! ʈ dx d) d) ‹ d) œ ! "

"

#

'021 a(1  cos )) d) œ 2a1 c)  sin )d #!1 œ a 21 rav œ 21"0 '0 a d) œ #"1 ca)d #!1 œ a 1Î2 1Î# rav œ ˆ 1 ‰"ˆ 1 ‰ 'c1Î2 a cos ) d) œ 1" ca sin )d 1Î# œ 2a 1

34. (a) rav œ (b) (c)

" 2 1 0

#

#

35. r œ 2f()), ! Ÿ ) Ÿ " Ê

dr d)

œ 2f w ()) Ê r#  ˆ ddr) ‰ œ [2f())]#  c2f w ())d# Ê Length œ '! É4[f())]#  4 cf w ())d# d) "

#

œ 2 '! É[f())]#  cf w ())d# d) which is twice the length of the curve r œ f()) for ! Ÿ ) Ÿ " . "

36. Again r œ 2f()) Ê r#  ˆ ddr) ‰ œ [2f())]2  c2f w ())d# Ê Surface Area œ '! 21[2f()) sin )] É4[f())]#  4 cf w ())d# d) "

#

œ 4 '! 21[f()) sin )] É[f())]#  cf w ())d# d) which is four times the area of the surface generated by revolving "

r œ f()) about the x-axis for ! Ÿ ) Ÿ " . '021 r$ cos ) d) 37. x œ œ '021 r# d) 2 3

œ

2 3

2 3

'021 [a(1  cos ))]$ (cos )) d) œ '021 [a(1  cos ))]# d)

2 3

a$

'021 a1  3 cos )  3 cos# )  cos$ )b (cos )) d) 21 a# '0 a1  2 cos )  cos# )b d) #

2) 1  cos 2) # a '0 ’cos )  3 ˆ 1  cos # ‰  3 a1  sin )b (cos ))  ˆ # ‰ “ d) 21

'0

21

2) 1  2 cos )  ˆ 1  cos # ‰‘ d )

œ (After considerable algebra using

" 4 # ' 15 8 1  cos 2A ‰ a 0 ˆ 12  3 cos )  3 cos 2)  2 cos ) sin )  12 cos 4)‰ d) 21 # " 3 ' ˆ #  2 cos )  # cos 2)‰ d) 21

the identity cos# A œ

0

œ

#1

" 8 2 2 $ ‘ a  15 12 )  3 sin )  3 sin 2)  3 sin )  48 sin 4) !  #3 )  2 sin )  "4 sin 2)‘ #1



!

2 3

2 3

'2a2a  "a u$ du 31

œ

0 31

'01 r# d) œ '01 a# d) œ ca# )d !1 œ a# 1; x œ yœ

2 3

œ

5 6

a;

21 2' $ '021 r$ sin ) d) 3 0 [a(1  cos ))] (sin )) d) œ ; u œ a(1  cos )) Ê  "a du œ sin ) d); ) œ 0 Ê u œ 2a; 21 31 '0 r # d )

) œ 21 Ê u œ 2ad Ä 38.

œ

‰ a ˆ 15 6 1 31

2' $ '0 r$ sin ) d) 3 0 a sin ) d) œ a# 1 '01 r# d) œ 1

1

2 3

œ 0. Therefore the centroid is aBß yb œ ˆ 56 aß 0‰ 2 3

'01 r$ cos ) d) œ '01 r# d)

a$ c cos )d 1! a# 1

œ

ˆ 43 ‰ a$ a# 1

œ

2 3

'01 a$ cos ) d)

4a 31 .

a# 1

œ

2 3

a$ c sin )d 1! a# 1

œ

0 a# 1

œ 0;

Therefore the centroid is axß yb œ ˆ0ß 34a1 ‰ .

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.8 Conic Sections in Polar Coordinates

667

10.8 CONIC SECTIONS IN POLAR COORDINATES 1. r cos ˆ)  16 ‰ œ 5 Ê r ˆcos ) cos œ 10 Ê y œ È3 x  10 2. r cos ˆ)  Ê 

È2 #

3. r cos ˆ)  Ê  1# x

31 ‰ 4

œ 2 Ê r ˆcos ) cos

x

È2 #

1 6

 sin ) sin 16 ‰ œ 5 Ê

31 4

31 ‰ 4

 sin ) sin

È3 #

œ2 Ê 

È2 #

41 ‰ œ3 Ê 3 È3  # yœ3

r cos ) 

È2 #

r cos ) 

È2 #

È3 #

r ˆcos ) cos

41 3

41 ‰ 3

 sin ) sin

œ 3 Ê  #1 r cos )  È3 3

Ê x  È 3 y œ 6 Ê y œ 

È2 #

È2 #

r sin ) œ 4 Ê

x

È2 #

r sin ) œ 2

È2

È2

È3 #

r sin ) œ 3

x  2È3 1 4

 sin ) sin 14 ‰ œ 4

y œ 4 Ê È2 x  È2 y œ 8 Ê y œ x  4È2

5. r cos ˆ)  14 ‰ œ È2 Ê r ˆcos ) cos 14  sin ) sin 14 ‰ œ È2 Ê " r cos )  " r sin ) œ È2 Ê " x  È2

" È2

y

œ È2 Ê x  y œ 2 Ê y œ 2  x

6. r cos ˆ)  Ê 

31 ‰ 4

œ 1 Ê r ˆcos ) cos

È2 2

r cos )  Ê y œ x  È 2

7. r cos ˆ) 

21 ‰ 3

È2 2

È3 2

31 4

 sin ) sin

31 ‰ 4

œ1

r sin ) œ 1 Ê x  y œ È2

œ 3 Ê r ˆcos ) cos

Ê  r cos )  1 2

x  "# y œ 5 Ê È3 x  y

y œ 2 Ê È2 x  È2 y œ 4 Ê y œ x  2È2

4. r cos ˆ)  ˆ 14 ‰‰ œ 4 Ê r cos ˆ)  14 ‰ œ 4 Ê r ˆcos ) cos Ê

r cos )  "# r sin ) œ 5 Ê

21 3

 sin ) sin " #

r sin ) œ 3 Ê  x 

Ê x  È 3 y œ 6 Ê y œ

È3 3

È3 #

21 ‰ 3

œ3

yœ3

x  2È 3

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

668

Chapter 10 Conic Sections and Polar Coordinates

8. r cos ˆ)  13 ‰ œ 2 Ê r ˆcos ) cos Ê

1 2

r cos ) 

È3 2

r sin ) œ 2 Ê

Ê x  È3 y œ 4 Ê y œ

È3 3

1 3

 sin ) sin 13 ‰ œ 2

" #

x

x

È3 #

yœ2

4È 3 3

È 9. È2 x  È2 y œ 6 Ê È2 r cos )  È2 r sin ) œ 6 Ê r Š #2 cos ) 

È2 #

sin )‹ œ 3 Ê r ˆcos

1 4

cos )  sin

œ 3 Ê r cos ˆ)  14 ‰ œ 3 È 10. È3 x  y œ 1 Ê È3 r cos )  r sin ) œ 1 Ê r Š #3 cos ) 

œ

" #

Ê r cos ˆ)  16 ‰ œ

1 #

sin )‹ œ

" #

Ê r ˆcos

1 6

cos )  sin

1 6

sin )‰

" #

11. y œ 5 Ê r sin ) œ 5 Ê r sin ) œ 5 Ê r sin ()) œ 5 Ê r cos ˆ 1#  ())‰ œ 5 Ê r cos ˆ)  1# ‰ œ 5 12. x œ 4 Ê r cos ) œ 4 Ê r cos ) œ 4 Ê r cos ()  1) œ 4 13. r œ 2(4) cos ) œ 8 cos )

14. r œ 2(1) sin ) œ 2 sin )

15. r œ 2È2 sin )

16. r œ 2 ˆ "# ‰ cos ) œ  cos )

17.

18.

19.

20.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

1 4

sin )‰

Section 10.8 Conic Sections in Polar Coordinates 21. (x  6)#  y# œ 36 Ê C œ (6ß 0), a œ 6 Ê r œ 12 cos ) is the polar equation

22. (x  2)#  y# œ 4 Ê C œ (2ß 0), a œ 2 Ê r œ 4 cos ) is the polar equation

23. x#  (y  5)# œ 25 Ê C œ (!ß 5), a œ 5 Ê r œ 10 sin ) is the polar equation

24. x#  (y  7)# œ 49 Ê C œ (!ß 7), a œ 7 Ê r œ 14 sin ) is the polar equation

25. x#  2x  y# œ 0 Ê (x  1)#  y# œ 1 Ê C œ (1ß 0), a œ 1 Ê r œ 2 cos ) is the polar equation

26. x#  16x  y# œ 0 Ê (x  8)#  y# œ 64 Ê C œ (8ß 0), a œ 8 Ê r œ 16 cos ) is the polar equation

# 27. x#  y#  y œ 0 Ê x#  ˆy  "# ‰ œ 4" Ê C œ ˆ!ß  "# ‰ , a œ "# Ê r œ sin ) is the

# 28. x#  y#  43 y œ 0 Ê x#  ˆy  23 ‰ œ 49 Ê C œ ˆ0ß 23 ‰ , a œ 23 Ê r œ 43 sin ) is the

polar equation

polar equation

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

669

670

Chapter 10 Conic Sections and Polar Coordinates

29. e œ 1, x œ 2 Ê k œ 2 Ê r œ

2(1) 1  (1) cos )

œ

2 1cos )

30. e œ 1, y œ 2 Ê k œ 2 Ê r œ

2(1) 1  (1) sin )

œ

2 1sin )

31. e œ 5, y œ 6 Ê k œ 6 Ê r œ

6(5) 1  5 sin )

32. e œ 2, x œ 4 Ê k œ 4 Ê r œ

4(2) 1  2 cos )

33. e œ "# , x œ 1 Ê k œ 1 Ê r œ

ˆ "# ‰ (1) 1  ˆ "# ‰ cos )

35. e œ "5 , x œ 10 Ê k œ 10 Ê r œ

37. r œ

" 1  cos )

38. r œ

6 2  cos )

œ

30 15 sin )

8 12 cos )

œ

ˆ "4 ‰ (2) 1  ˆ "4 ‰ cos )

34. e œ 4" , x œ 2 Ê k œ 2 Ê r œ

36. e œ "3 , y œ 6 Ê k œ 6 Ê r œ

œ

1 2cos )

œ

ˆ "5 ‰ (10) 1  ˆ "5 ‰ sin )

ˆ "3 ‰ (6) 1  ˆ "3 ‰ sin )

œ

2 4cos )

œ

10 5sin )

6 3sin )

Ê e œ 1, k œ 1 Ê x œ 1

œ

3 1  ˆ "# ‰ cos )

Ê eœ

" #

, k œ 6 Ê x œ 6;

#

a a1  e# b œ ke Ê a ’1  ˆ "# ‰ “ œ 3 Ê

3 4

aœ3

Ê a œ 4 Ê ea œ 2

39. r œ

25 10  5 cos )

Ê eœ

" #

Ê rœ

œ

ˆ #5 ‰

1  ˆ "# ‰ cos )

, k œ 5 Ê x œ 5; a a1  e# b œ ke #

Ê a ’1  ˆ "# ‰ “ œ

40. r œ

ˆ 25 ‰ 10

5 ‰ 1  ˆ 10 cos )

4 22 cos )

Ê rœ

5 #

Ê

2 1cos )

3 4



5 #

Ê aœ

10 3

Ê ea œ

5 3

Ê e œ 1, k œ 2 Ê x œ 2

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.8 Conic Sections in Polar Coordinates 41. r œ eœ

400 16  8 sin ) " #

Ê rœ

ˆ 400 ‰ 16

8 ‰ 1  ˆ 16 sin )

25 1  ˆ "# ‰ sin )

, k œ 50 Ê y œ 50; a a1  e# b œ ke #

Ê a ’1  ˆ "# ‰ “ œ 25 Ê Ê ea œ

42. r œ

Ê rœ

a œ 25 Ê a œ

3 4

100 3

50 3

12 3  3 sin )

Ê rœ

4 1  sin )

Ê e œ 1,

43. r œ

kœ4 Ê yœ4

44. r œ

4 2  sin )

Ê rœ

8 2  2 sin )

Ê rœ

4 1  sin )

Ê e œ 1,

k œ 4 Ê y œ 4

2 1  ˆ "# ‰ sin )

Ê eœ

" #

,kœ4 #

Ê y œ 4; a a1  e# b œ ke Ê a ’1  ˆ "# ‰ “ œ 2 Ê

3 4

aœ2 Ê aœ

8 3

Ê ea œ

4 3

45.

46.

47.

48.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

671

672

Chapter 10 Conic Sections and Polar Coordinates

49.

50.

51.

52.

53.

54.

55.

56.

57. (a) Perihelion œ a  ae œ a(1  e), Aphelion œ ea  a œ a(1  e) (b) Planet Perihelion Aphelion Mercury 0.3075 AU 0.4667 AU Venus 0.7184 AU 0.7282 AU Earth 0.9833 AU 1.0167 AU Mars 1.3817 AU 1.6663 AU Jupiter 4.9512 AU 5.4548 AU Saturn 9.0210 AU 10.0570 AU Uranus 18.2977 AU 20.0623 AU Neptune 29.8135 AU 30.3065 AU Pluto 29.6549 AU 49.2251 AU

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 10.8 Conic Sections in Polar Coordinates (0.3871) a1  0.2056# b 0.3707 œ 1  0.2056 1  0.2056 cos ) cos ) (0.7233) a1  0.0068# b 0.7233 Venus: r œ 1  0.0068 cos ) œ 1  0.0068 cos )  0.0167# b 0.9997 Earth: r œ 11a10.0167 cos ) œ 1  0.0617 cos ) a1  0.0934# b 1.511 Mars: r œ (1.524) œ 1  0.0934 1  0.0934 cos ) cos ) (5.203) a1  0.0484# b 5.191 Jupiter: r œ 1  0.0484 cos ) œ 1  0.0484 cos ) a1  0.0543# b 9.511 Saturn: r œ (9.539) œ 1  0.0543 1  0.0543 cos ) cos ) (19.18) a1  0.0460# b 19.14 Uranus: r œ 1  0.0460 cos ) œ 1  0.0460 cos ) a1  0.0082# b 30.06 Neptune: r œ (30.06) œ 1  0.0082 1  0.0082 cos ) cos )

58. Mercury: r œ

59. (a) r œ 4 sin ) Ê r# œ 4r sin ) Ê x#  y# œ 4y; È r œ È3 sec ) Ê r œ cos3) Ê r cos ) œ È3

(b)

#

Ê x œ È3 ; x œ È3 Ê ŠÈ3‹  y# œ 4y Ê y#  4y  3 œ 0 Ê (y  3)(y  1) œ 0 Ê y œ 3 or y œ 1. Therefore in Cartesian coordinates, the points of intersection are ŠÈ3ß 3‹ and ŠÈ3ß 1‹. In polar coordinates, 4 sin ) œ È3 sec ) Ê 4 sin ) cos ) œ È3 Ê 2 sin ) cos ) œ 21 3

Ê )œ

1 6

1 3

or

È3 #

;)œ

Ê sin 2) œ 1 6

È3 #

Ê 2) œ

Ê r œ 2, and ) œ

1 3

or

1 3

Ê r œ 2È3 Ê ˆ2ß 16 ‰ and Š2È3ß 13 ‹ are the points of intersection in polar coordinates. 60. (a) r œ 8 cos ) Ê r# œ 8r cos ) Ê x#  y# œ 8x Ê x#  8x  y# œ 0 Ê (x  4)#  y# œ 16; r œ 2 sec ) Ê r œ cos2 ) Ê r cos ) œ 2

(b)

Ê x œ 2; x œ 2 Ê 2#  8(2)  y# œ 0 Ê y# œ 12 Ê y œ „ 2È3. Therefore Š2ß „ 2È3‹

are the points of intersection in Cartesian coordinates. In polar coordinates, 8 cos ) œ 2 sec ) Ê 8 cos# ) œ 2 Ê cos# ) œ "4 Ê cos ) œ „ #" Ê ) œ 13 , 231 , 431 , or 51 3

Ê r œ 4, and ) œ 231 and 431 Ê r œ 4 Ê ˆ4ß 13 ‰ and ˆ4ß 531 ‰ are the points of intersection in polar coordinates. The points ˆ4ß 231 ‰ and ˆ4ß 431 ‰ are the same points. ;)œ

1 3

and

51 3

61. r cos ) œ 4 Ê x œ 4 Ê k œ 4: parabola Ê e œ 1 Ê r œ 62. r cos ˆ)  1# ‰ œ 2 Ê r ˆcos ) cos Ê rœ

1 #

4 1  cos )

 sin ) sin 1# ‰ œ 2 Ê r sin ) œ 2 Ê y œ 2 Ê k œ 2: parabola Ê e œ 1

2 1  sin )

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

673

674

Chapter 10 Conic Sections and Polar Coordinates

63. (a) Let the ellipse be the orbit, with the Sun at one focus.  rmin Then rmax œ a  c and rmin œ a  c Ê rrmax max  rmin œ

(a  c)  (a  c) (a  c)  (a  c)

œ

2c 2a

œ

c a

œe

(b) Let F" , F# be the foci. Then PF"  PF# œ 10 where P is any point on the ellipse. If P is a vertex, then PF" œ a  c and PF# œ a  c Ê (a  c)  (a  c) œ 10 Ê 2a œ 10 Ê a œ 5. Since e œ ca we have 0.2 œ

c 5

Ê c œ 1.0 Ê the pins should be 2 inches apart. 64. e œ 0.97, Major axis œ 36.18 AU Ê a œ 18.09, Minor axis œ 9.12 AU Ê b œ 4.56 (1 AU ¸ 1.49 ‚ 10) km) (a) r œ

ke 1e cos )

œ

(b) ) œ 0 Ê r œ (c) ) œ 1 Ê r œ

(18.09) c1(0.97)# d a a1  e # b 1.07 œ 10.97 1e cos ) œ 10.97 cos ) cos ) AU 1.07 ( 10.97 ¸ 0.5431 AU ¸ 8.09 ‚ 10 km 1.07 * 10.97 ¸ 35.7 AU ¸ 5.32 ‚ 10 km

65. x#  y#  2ay œ 0 Ê (r cos ))#  (r sin ))#  2ar sin ) œ 0 Ê r# cos# )  r# sin# )  2ar sin ) œ 0 Ê r# œ 2ar sin ) Ê r œ 2a sin )

66. y# œ 4ax  4a# Ê (r sin ))# œ 4ar cos )  4a# Ê r# sin# ) œ 4ar cos )  4a# Ê r# a1  cos# )b œ 4ar cos )  4a# Ê r#  r# cos# ) œ 4ar cos )  4a# Ê r# œ r# cos# )  4ar cos )  4a# Ê r# œ (r cos )  2a)# Ê r œ „ (r cos )  2a) Ê r  r cos ) œ 2a or 2a r  r cos ) œ 2a Ê r œ 12a cos ) or r œ 1cos ) ; the equations have the same graph, which is a parabola opening to the right 67. x cos !  y sin ! œ p Ê r cos ) cos !  r sin ) sin ! œ p Ê r(cos ) cos !  sin ) sin !) œ p Ê r cos ()  !) œ p

#

68. ax#  y# b  2ax ax#  y# b  a# y# œ 0 Ê Ê Ê Ê Ê Ê Ê

#

ar# b  2a(r cos )) ar# b  a# (r sin ))# œ 0 r%  2ar$ cos )  a# r# sin# ) œ 0 r# cr#  2ar cos )  a# a1  cos# )bd œ 0 (assume r Á 0) r#  2ar cos )  a#  a# cos# ) œ 0 ar#  2ar cos )  a# cos# )b  a# œ 0 (r  a cos ))# œ a# Ê r  a cos ) œ „ a r œ a(1  cos )) or r œ a(1  cos ));

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 10 Practice Exercises the equations have the same graph, which is a cardioid 69 - 70. Example CAS commands: Maple: with( plots );#69 f := (r,k,e) -> k*e/(1+e*cos(theta)); elist := [3/4,1,5/4]; # (a) P1 := seq( plot( f(r,-2,e), theta=-Pi..Pi, coords=polar ), e=elist ): display( [P1], insequence=true, view=[-20..20,-20..20], title="#69(a) (Section 10.8)\nk=-2" ); P2 := seq( plot( f(r,2,e), theta=-Pi..Pi, coords=polar ), e=elist ): display( [P2], insequence=true, view=[-20..20,-20..20], title="#69(a) (Section 10.8)\nk=2" ); elist2 := [7/6,5/4,4/3,3/2,2,3,5,10,20]; # (b) P3 := seq( plot( f(r,-1,e), theta=-Pi..Pi, coords=polar ), e=elist2 ): display( [P3], insequence=true, view=[-20..20,-20..20], title="#69(b) (Section 10.8)\nk=-1, e>1" ); elist3 := [1/2,1/3,1/4,1/10,1/20]; P4 := seq( plot( f(r,-1,e), theta=-Pi..Pi, coords=polar ), e=elist3 ): display( [P4], insequence=true, title="#69(b) (Section 10.8)\nk=-1, e; t0 := sqrt(3); rr := eval( r, t=t0 ); v := map( diff, r, t ); vv := eval( v, t=t0 ); a := map( diff, v, t ); aa := eval( a, t=t0 ); s := simplify(Norm( v, 2 )) assuming t::real; ss := eval( s, t=t0 ); T := v/s; TT := vv/ss ; q1 := map( diff, simplify(T), t ): NN := simplify(eval( q1/Norm(q1,2), t=t0 )); Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

850

Chapter 13 Vector-Valued Functions and Motion in Space

BB := CrossProduct( TT, NN ); kappa := Norm(CrossProduct(vv,aa),2)/ss^3; tau := simplify( Determinant(< vv, aa, eval(map(diff,a,t),t=t0) >)/Norm(CrossProduct(vv,aa),2)^3 ); a_t := eval( diff( s, t ), t=t0 ); a_n := evalf[4]( kappa*ss^2 ); Mathematica: (assigned functions and value for t0 will vary) Clear[t, v, a, t] mag[vector_]:=Sqrt[vector.vector] Print["The position vector is ", r[t_]={t Cos[t], t Sin[t], t}] Print["The velocity vector is ", v[t_]= r'[t]] Print["The acceleration vector is ", a[t_]= v'[t]] Print["The speed is ", speed[t_]= mag[v[t]]//Simplify] Print["The unit tangent vector is ", utan[t_]= v[t]/speed[t] //Simplify] Print["The curvature is ", curv[t_]= mag[Cross[v[t],a[t]]] / speed[t]3 //Simplify] Print["The torsion is ", torsion[t_]= Det[{v[t], a[t], a'[t]}] / mag[Cross[v[t],a[t]]]2 //Simplify] Print["The unit normal vector is ", unorm[t_]= utan'[t] / mag[utan'[t]] //Simplify] Print["The unit binormal vector is ", ubinorm[t_]= Cross[utan[t],unorm[t]] //Simplify] Print["The tangential component of the acceleration is ", at[t_]=a[t].utan[t] //Simplify] Print["The normal component of the acceleration is ", an[t_]=a[t].unorm[t] //Simplify] You can evaluate any of these functions at a specified value of t. t0= Sqrt[3] {utan[t0], unorm[t0], ubinorm[t0]} N[{utan[t0], unorm[t0], ubinorm[t0]}] {curv[t0], torsion[t0]} N[{curv[t0], torsion[t0]}] {at[t0], an[t0]} N[{at[t0], an[t0]}] To verify that the tangential and normal components of the acceleration agree with the formulas in the book: at[t]== speed'[t] //Simplify an[t]==curv [t] speed[t]2 //Simplify 13.6 PLANETARY MOTION AND SATELLITES 1.

T# a$

œ

41 # GM

Ê T# œ

41 # GM

a$ Ê T# œ

41 # a6.6726‚10"" Nm# kg# b a5.975‚10#% kgb

(6,808,000 m)$

¸ 3.125 ‚ 10( sec# Ê T ¸ È3125 ‚ 10% sec# ¸ 55.90 ‚ 10# sec ¸ 93.2 min 2. e œ 0.0167 and perihelion distance œ 149,577,000 km and e œ Ê 0.0167 œ

(149,577,000,000 m)v#! a6.6726‚10"" Nm# kg# b a1.99‚10$! kgb

r! v#! GM

1

 1 Ê v#! ¸ 9.03 ‚ 10) m# /sec#

Ê v! ¸ È9.03 ‚ 10) m# /sec# ¸ 3.00 ‚ 10% m/sec T# 41 # GM # $ a$ œ GM Ê a œ 41# T c"" # # #% $ a6.6726‚10 Nm kg b ˆ5.975‚10 kg‰ Ê a$ œ (5535 sec)# œ 3.094 ‚ 10#! m$ Ê a ¸ È3.094 41 # œ 6.764 ‚ 10' m ¸ 6764 km. Note that 6764 km ¸ "# a12,757 km  183 km  589 kmb.

3. 92.25 min œ 5535 sec and

‚ 10#! m$

# 4. T œ 1639 min œ 98,340 sec and mass of Mars œ 6.418 ‚ 10#$ kg Ê a$ œ GM 41# T "" # # #$ # $ ‚10 kgb (98,340 sec) œ a6.6726‚10 Nm kg b 4a6.418 ¸ 1.049 ‚ 10## m$ Ê a ¸ È1.049 ‚ 10## m$ 1#

œ 2.19 ‚ 10( m œ 21,900 km

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 13.6 Planetary Motion and Satellites 5. 2a œ diameter of Mars  perigee height  apogee height œ D  1499 km  35,800 km Ê 2(21,900) km œ D  37,299 km Ê D œ 6501 km 6. a œ 22,030 km œ 2.203 ‚ 10( m and T# œ Ê T# œ

#

41 a6.6720‚10"" Nm# kg# b a6.418‚10#$ kgb

41 # GM

a$

(2.203 ‚ 10( m)$ ¸ 9.856 ‚ 10* sec#

Ê T ¸ È9.856 ‚ 10) sec# ¸ 9.928 ‚ 10% sec ¸ 1655 min 7. (a) Period of the satellite œ rotational period of the Earth Ê period of the satellite œ 1436.1 min œ 86,166 sec; a$ œ

a6.6726‚10"" Nm# kg# b ˆ5.975‚10#% kg‰ (86,166 sec)#

GMT# 41 # $

Ê a$ œ 41 # $ ## È #" $ ¸ 7.4980 ‚ 10 m Ê a ¸ 74.980 ‚ 10 m ¸ 4.2168 ‚ 10( m œ 42,168 km (b) The radius of the Earth is approximately 6379 km Ê the height of the orbit is 42,168  6379 œ 35,789 km (c) Symcom 3, GOES 4, and Intelsat 5 GMT# 41 # a6.6726‚10c"" Nm# kg# b a6.418‚10#$ kgb (88,644 sec)# œ 41 # (

8. T œ 1477.4 min œ 88,644 sec Ê a$ œ œ

$ 8.524 ‚ 10#" m$ Ê a ¸ È 8.524 ‚ 10#" m$

¸ 2.043 ‚ 10 m œ 20,430 km

9. Period of the Moon œ 2.36055 ‚ 10' sec Ê a$ œ œ

a6.6726‚10c"" Nm# kg# b ˆ5.975‚10#% kg‰ (2.36055‚10' sec)# 41 # )

GMT# 41 #

$ ¸ 5.627 ‚ 10#& m$ Ê a ¸ È 5.627 ‚ 10#& m$

¸ 3.832 ‚ 10 m œ 383,200 km from the center of the Earth. 10. r œ

Ê v# œ

GM v#

11. Solar System:

T# a$

œ

É a6.6726‚10 Ê kvk œ É GM r œ

"" Nm# kg# b a5.975‚10#% kgb

41 # a6.6726‚10"" Nm# kg# b a1.99‚10$! kgb

¸ 2.97 ‚ 10"* sec# /m$ ;

#

r

¸ 1.9967 ‚ 10( r"Î# m/sec

Earth:

#

T a$

œ

41 a6.6726‚10"" Nm# kg# b a5.975‚10#% kgb

¸ 9.902 ‚ 10"% sec# /m$ ;

Moon:

T# a$

œ

41 # a6.6726‚10"" Nm# kg# b a7.354‚10## kgb

¸ 8.045 ‚ 10"# sec# /m$ ;

r! v#! GM

12. e œ

GM r

 1 Ê v#! œ

GM(e  1) r!

Ê v! œ É GM(er!  1) ;

Circle: e œ 0 Ê v! œ É GM r! 2GM Ellipse: 0  e  1 Ê É GM r!  v!  É r!

Parabola: e œ 1 Ê v! œ É 2GM r! Hyperbola: e  1 Ê v!  É 2GM r! 13. r œ

Ê v# œ

GM v#

14. ?A œ

" #

GM r

Ê v œ É GM r which is constant since G, M, and r (the radius of orbit) are constant

kr(t  ?t) ‚ r(t)k Ê

œ

" #

¹ r(t  ??t)t  r(t) ‚ r(t) 

œ

" #

¸ ddtr ‚ r(t)¸ œ

" #

?A ?t

œ

" #

?t) ‚ r(t)¹ œ ¹ r(t  ?t

" #

 r(t)  r(t) ‚ r(t)¹ ¹ r(t  ?t) ? t

r(t) ‚ r(t)¹ œ #" ¹ r(t  ??t)t  r(t) ‚ r(t)¹ Ê ¸r(t) ‚ ddtr ¸ œ "# kr ‚ rÞ k " ?t

dA dt

œ lim

"

?t Ä 0 #

¹ r(t  ??t)t  r(t) ‚ r(t)¹

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

851

852

Chapter 13 Vector-Valued Functions and Motion in Space #

# %

r v#

# %

#

! ! 15. T œ Š 2r!1va! ‹ È1  e# Ê T# œ Š 4r1# va# ‹ a1  e# b œ Š 4r1# va# ‹ ”1  Š GM  1‹ • (from Equation 32) ! ! ! !

r# v %

# %

r v#

# %

! ! œ Š 4r1# va# ‹ ’ G!# M!#  2 Š GM ‹“ œ Š 4r1# va# ‹ ’ !

!

# %

œ a41 a

!

2GM  r v# 2 ‰ b Š 2r! GM! ! ‹ ˆ GM

!

2GMr! v#!  r#! v%! “ G# M#

œ

ˆ41# a% ‰ a2GM  r! v#! b r! G# M#

" ‰ˆ 2 ‰ # œ a41 a b ˆ 2a GM (from Equation 35) Ê T œ # %

4 1 # a$ GM

Ê

T# a$

œ

41 # GM

16. Let rAB (t) denote the vector from planet A to planet B at time t. Then rAB (t) œ rB (t)  rA (t) œ [3 cos (1t)  2 cos (21t)]i  [3 sin (1t)  2 sin (21t)]j œ c3 cos (1t)  2 acos# (1t)  sin# (1t)bd i  [3 sin (1t)  4 sin (1t) cos (1t)]j œ c3 cos (1t)  4 cos# (1t)  2d i  [(3  4 cos (1t)) sin (1t)]j Ê parametric equations for the path are x(t) œ 2  [3  4 cos (1t)] cos (1t) and y(t) œ [3  4 cos (1t)] sin (1t) 17. The graph of the path of planet B is the limacon ¸ at the right.

18. (i) (ii) (iii) (iv) (v)

Perihelion is the time t such that kr(t)k is a minimum. Aphelion is the time t such that kr(t)k is a maximum. Equinox is the time t such that r(t) † w œ 0 . Summer solstice is the time t such that the angle between r(t) and w is a maximum. Winter solstice is the time t such that the angle between r(t) and w is a minimum.

CHAPTER 13 PRACTICE EXERCISES 1. r(t) œ (4 cos t)i  ŠÈ2 sin t‹ j Ê x œ 4 cos t and y œ È2 sin t Ê

x# 16



y# #

œ 1;

v œ (4 sin t)i  ŠÈ2 cos t‹ j and a œ (4 cos t)i  ŠÈ2 sin t‹ j ; r(0) œ 4 i , v(0) œ È2j , a(0) œ 4i ; r ˆ 14 ‰ œ 2È2i  j , v ˆ 14 ‰ œ 2È2i  j , a ˆ 1 ‰ œ 2È2i  j ; kvk œ È16 sin# t  2 cos# t 4

Ê aT œ

d dt

kvk œ

at t œ 14 : aT œ

14 sin t cos t È16 sin# t2 cos# t

7 È 8 1

œ

7 3

; at t œ 0: aT œ 0, aN œ Ékak#  0 œ 4, , œ

, aN œ É9 

49 9

œ

4È 2 3

,,œ

aN kv k #

œ

aN kv k #

œ

4 2

œ 2;

4È 2 27

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 13 Practice Exercises 2. r(t) œ ŠÈ3 sec t‹ i  ŠÈ3 tan t‹ j Ê x œ È3 sec t and y œ È3 tan t Ê

x# 3



y# 3

853

œ sec# t  tan# t œ 1;

Ê x#  y# œ 3; v œ ŠÈ3 sec t tan t‹ i  ŠÈ3 sec# t‹ j and a œ ŠÈ3 sec t tan# t  È3 sec$ t‹ i  Š2È3 sec# t tan t‹ j ; r(0) œ È3i , v(0) œ È3j , a(0) œ È3i ; kvk œ È3 sec# t tan# t  3 sec% t Ê aT œ

d dt

kvk œ

6 sec# t tan$ t  18 sec% t tan t 2È3 sec# t tan# t  3 sec% t

;

at t œ 0: aT œ 0, aN œ Ékak#  0 œ È3, ,œ 3. r œ

œ

È3 3

œ

" È1  t#

i

t È1  t#

aN kv k #

" È3

j Ê v œ  t a1  t# b

$Î#

i  a 1  t# b

#

#

Ê kvk œ Ê’t a1  t# b$Î# “  ’a1  t# b$Î# “ œ d kv k dt

œ0 Ê

2t a1  t# b#

œ 0 Ê t œ 0. For t  0,

" 1  t#

2t a1  t# b#

$Î#

j

. We want to maximize kvk :

 0; for t  0,

2t a1  t# b#

d kv k dt

œ

2t a1  t# b#

and

 0 Ê kvk max occurs when

t œ 0 Ê kvk max œ 1 4. r œ aet cos tb i  aet sin tb j Ê v œ aet cos t  et sin tb i  aet sin t  et cos tb j Ê a œ aet cos t  et sin t  et sin t  et cos tb i  aet sin t  et cos t  et cos t  et sin tb j œ a2et sin tb i  a2et cos tb j . Let ) be the angle between r and a . Then ) œ cos" Š krrk†kaak ‹ œ cos" 

2e2t sin t cos t2e2t sin t cos t Éaet cos tb# aet sin tb# Éa2et sin tb# a2et cos tb# 

â âi â 5. v œ 3i  4j and a œ 5i  15j Ê v ‚ a œ â 3 â â5 Ê ,œ 6. , œ

kv ‚ a k kv k $

kyww k $Î# 1  ayw b# ‘

œ ex a1  e2x b d, dx

œ

25 5$

œ

$Î#

&Î#

œ 0 Ê a1  2e2x b œ 0 Ê e2x œ

maximum at the point Š ln È2ß

x#  y# œ 1, 2x

dx dt

dx dt

i

 2y

dy dt

dy dt

d, dx

Ê

 3e3x a1  e2x b

7. r œ xi  yj Ê v œ

for all t

â kâ â 0 â œ 25k Ê kv ‚ ak œ 25; kvk œ È3#  4# œ 5 â 0â

j 4 "5

" 5

œ ex a1  e2x b $Î#

1 #

œ cos" Š 2e02t ‹ œ cos" 0 œ

" #

œ ex a1  e2x b

œ ex a1  e2x b

$Î#

 ex ’ #3 a1  e2x b

&Î#

&Î#

a2e2x b“ &Î#

ca1  e2x b  3e2x d œ ex a1  e2x b a1  2e2x b ; Ê 2x œ  ln 2 Ê x œ  "# ln 2 œ  ln È2 Ê y œ È"2 ; therefore , is at a

" È2 ‹

j and v † i œ y Ê

œ0 Ê

dy dt

œ

x dx y dt

dx dt

œ y. Since the particle moves around the unit circle

Ê

dy dt

œ  yx (y) œ x. Since

dx dt

œ y and

dy dt

œ x, we have

v œ yi  xj Ê at (1ß 0), v œ j and the motion is clockwise. dy dy " # dx # dx dt œ 3x dt Ê dt œ 3 x dt . If r œ xi  yj , where x and y are differentiable functions of dy dy dx " # dx " # then v œ dx dt i  dt j. Hence v † i œ 4 Ê dt œ 4 and v † j œ dt œ 3 x dt œ 3 (3) (4) œ 12 at (3ß 3). Also, # # # # # ‰#  ˆ 3" x# ‰ ddt#x . Hence a † i œ 2 Ê ddt#x œ 2 and a œ ddt#x i  ddt#y j and ddt#y œ ˆ 23 x‰ ˆ dx dt # a † j œ ddt#y œ 23 (3)(4)#  "3 (3)# (2) œ 26 at the point (xß y) œ (3ß 3).

8. 9y œ x$ Ê 9

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

t,

854 9.

Chapter 13 Vector-Valued Functions and Motion in Space dr dt

orthogonal to r Ê 0 œ

†rœ

dr dt

" dr # dt

† r  "# r †

œ

dr dt

#

" d # dt #

(r † r) Ê r † r œ K, a constant. If r œ xi  yj , where

x and y are differentiable functions of t, then r † r œ x  y Ê x#  y# œ K, which is the equation of a circle centered at the origin. 10. (b) v œ (1  1 cos 1t)i  (1 sin 1t)j Ê a œ a1# sin 1tb i  a1# cos 1tb j ; v(0) œ 0 and a(0) œ 1# j ; v(1) œ 21i and a(1) œ 1# j ; v(2) œ 0 and a(2) œ 1# j ; v(3) œ 21i and a(3) œ 1# j

(c) Forward speed at the topmost point is kv(1)k œ kv(3)k œ 21 ft/sec; since the circle makes

" #

revolution per

second, the center moves 1 ft parallel to the x-axis each second Ê the forward speed of C is 1 ft/sec. 11. y œ y!  (v! sin !)t  "# gt# Ê y œ 6.5  (44 ft/sec)(sin 45°)(3 sec)  "# a32 ft/sec# b (3 sec)# œ 6.5  66È2  144 ¸ 44.16 ft Ê the shot put is on the ground. Now, y œ 0 Ê 6.5  22È2t  16t# œ 0 Ê t ¸ 2.13 sec (the positive root) Ê x ¸ (44 ft/sec)(cos 45°)(2.13 sec) ¸ 66.27 ft or about 66 ft, 3 in. from the stopboard 12. ymax œ y! 

(v! sin !)# #g

œ 7 ft 

[(80 ft/sec)(sin 45°)]# (2) a32 ft/sec# b

¸ 57 ft (v! sin !)t  "# gt# (v sin !)  " gt y œ ! v! cos ! # x œ (v! cos !)t 2v! sin !  2v! cos ! tan 9 , which is the time when g

13. x œ (v! cos !)t and y œ (v! sin !)t  "# gt# Ê tan 9 œ Ê v! cos ! tan 9 œ v! sin !  "# gt Ê t œ

the golf ball

hits the upward slope. At this time x œ (v! cos !) Š 2v! sin !  2vg ! cos ! tan 9 ‹ œ Š 2g ‹ av#! sin ! cos !  v#! cos# ! tan 9b . Now OR œ

x cos 9

Ê OR œ Š g2 ‹ Š

v#! sin ! cos !  v#! cos# ! tan 9 ‹ cos 9

œŠ

2v#! cos ! sin ! ‹ Š cos g 9

œŠ

2v#! cos ! 9  cos ! sin 9 ‹ Š sin ! cos cos ‹ #9 g

œŠ

2v#! cos ! g cos# 9 ‹ [sin (!

cos ! tan 9 cos 9 ‹



 9)]. The distance OR is maximized

when x is maximized:

dx d!

œŠ

2v#! g ‹(cos

Ê cot 2! œ tan (9) Ê 2! œ 14. R œ

v#! g

1 #

2!  sin 2! tan 9) œ 0 Ê (cos 2!  sin 2! tan 9) œ 0 Ê cot 2!  tan 9 œ 0

9 Ê !œ

9 #



1 4 #

ft) a32 ft/sec b sin 2! Ê v! œ É sinRg2! ; for 4325 yards: 4325 yards œ 12,975 ft Ê v! œ É (12,975(sin 90°) #

ft) a32 ft/sec b ¸ 644 ft/sec; for 4752 yards: 4752 yards œ 14,256 ft Ê v! œ É (14,256(sin ¸ 675 ft/sec 90°)

15. (a) R œ

v#! g

v#

# # # ! sin 2! Ê 109.5 ft œ Š 32 ft/sec Ê v! œ È3504 ft# /sec# # ‹ (sin 90°) Ê v! œ 3504 ft /sec

¸ 59.19 ft/sec (b) x œ (v! cos !)t and y œ 4  (v! sin !)t  "# gt# ; when the cork hits the ground, x œ 177.75 ft and y œ 0 Ê 177.75 œ Šv! Ê v! œ

(177.75)È2 t

" È2 ‹ t

œ

and 0 œ 4  Šv!

4(177.75)È2 È181.75

" È2 ‹ t

 16t# Ê 16t# œ 4  177.75 Ê t œ

È181.75 4

¸ 74.58 ft/sec

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 13 Practice Exercises

855

5 16. (a) x œ v! (cos 40°)t and y œ 6.5  v! (sin 40°)t  "# gt# œ 6.5  v! (sin 40°)t  16t# ; x œ 262 12 ft and y œ 0 ft 5 Ê 262 12 œ v! (cos 40°)t or v! œ

262.4167 # # and 0 œ 6.5  ’ (cos 40°)t “ (sin 40°)t  16t Ê t œ 14.1684

262.4167 (cos 40°)t

Ê t ¸ 3.764 sec. Therefore, 262.4167 ¸ v! (cos 40°)(3.764 sec) Ê v! ¸ #

(v! sin !) 2g

(b) ymax œ y! 

a(91)(sin 40°)b (2)(32)

¸ 6.5 

2

262.4167 (cos 40°)(3.764 sec)

Ê v! ¸ 91 ft/sec

¸ 60 ft

#

#

17. x# œ av!# cos# !b t# and ˆy  "# gt# ‰ œ av!# sin# !b t# Ê x#  ˆy  "# gt# ‰ œ v!# t# Þ ÞÞ Þ ÞÞ ÞÞ# ÞÞ# ÞÞ# ÞÞ# ÞÞ# axÞ ÞÞx  yÞ ÞÞyb# x x y y Ê x  y  s œ x  y  xÞ #  yÞ # Þ Þ # # Èx  y ÞÞ# ÞÞ# Þ # Þ # Þ # ÞÞ# Þ ÞÞ Þ ÞÞ Þ # ÞÞ# Þ ÞÞ Þ ÞÞ Þ ÞÞ Þ ÞÞ Þ ÞÞ Þ ÞÞ ax  y b ax  y b  ax x  2x x y y  y y b ax y  y x b# x# y#  y# x#  2x x y y œ œ œ Þ# Þ# Þ# Þ# Þ Þ x y x y x#  y# Þ ÞÞ Þ ÞÞ Þ # Þ # $Î# Þ Þ # # kx y  y x k ax  y b ÞÞ ÞÞ ÞÞ x y Ê È x#  y#  s # œ È Þ # Þ # Ê ÈÞÞ# ÞÞ# ÞÞ# œ kxÞ ÞÞy  yÞ ÞÞxk œ ," œ 3 x y x y s

ÞÞ 18. s œ

d dt

ÈxÞ #  yÞ # œ

19. r(t) œ ’'0 cos ˆ "# 1)# ‰ d)“ i  ’'0 sin ˆ "# 1)# ‰ d)“ j Ê v(t) œ cos Š 1#t ‹ i  sin Š 1#t â i j â â # 1t# # # â sin Š 1#t ‹ a(t) œ 1t sin Š 1#t ‹ i  1t cos Š 1#t ‹ j Ê v ‚ a œ â cos Š # ‹ â â 1t sin Š 1t# ‹ 1t cos Š 1t# ‹ â # # t

t

œ 1 tk Ê , œ 20. s œ a) Ê ) œ

kv ‚ a k kv k $ s a

#

œ 1t; kv(t)k œ

Ê 9œ

s a



1 #

ds dt

Ê

#

‹ j Ê kvk œ 1; k ââ â 0 ââ â 0 ââ

œ 1 Ê s œ t  C; r(0) œ 0 Ê s(0) œ 0 Ê C œ 0 Ê , œ 1s d9 ds

œ

" a

Ê , œ ¸ "a ¸ œ

" a

since a  0

21. r œ (2 cos t)i  (2 sin t)j  t# k Ê v œ (2 sin t)i  (2 cos t)j  2tk Ê kvk œ È(2 sin t)#  (2 cos t)#  (2t)# œ 2È1  t# Ê Length œ '0 2È1  t# dt œ ’tÈ1  t#  ln ¹t  È1  t# ¹“ 1Î4

1Î% !

œ

1 4

É1 

1# 16

 ln Š 14  É1 

22. r œ (3 cos t)i  (3 sin t)j  2t$Î# k Ê v œ (3 sin t)i  (3 cos t)j  3t"Î# k

1# 16 ‹

$ # Ê kvk œ É(3 sin t)#  (3 cos t)#  a3t"Î# b œ È9  9t œ 3È1  t Ê Length œ '0 3È1  t dt œ 2(1  t)$Î# ‘ ! 3

œ 14 23. r œ

4 9

(1  t)$Î# i  49 (1  t)$Î# j  3" tk Ê v œ #

2 3

(1  t)"Î# i  32 (1  t)"Î# j  3" k

#

#

Ê kvk œ É 23 (1  t)"Î# ‘   23 (1  t)"Î# ‘  ˆ 3" ‰ œ 1 Ê T œ i  23 j  3" k ;

" 3

(1  t)"Î# i  â â â Ê N(0) œ È" i  È" j ; B(0) œ T(0) ‚ N(0) œ ââ 2 2 â â Ê T(0) œ

2 3

dT dt

œ

2 3

(1  t)"Î# i  23 (1  t)"Î# j  3" k

" 3

(1  t)"Î# j Ê ddtT (0) œ 3" i  3" j Ê ¸ ddtT (0)¸ œ â i j kâ 2 " â " " 4 â  23 3 3 â œ  È i  È j  È k; 3 2 3 2 3 2 " " 0 ââ È2 È2

a œ "3 (1  t)"Î# i  3" (1  t)"Î# j Ê a(0) œ 3" i  3" j and v(0) œ 32 i  32 j  3" k Ê v(0) ‚ a(0) â i j k ââ È â Š 32 ‹ È2 È2 â 2 2 "â kv ‚a k " " 4 i j k k v a k œâ 3 œ    Ê ‚ œ Ê , (0) œ œ â 3 3 9 9 9 3 1$ œ 3 ; kv k $ â " â " â 3 0â 3 Þ Þ a œ  "6 (1  t)$Î# i  "6 (1  t)$Î# j Ê a(0) œ  6" i  6" j Ê 7 (0) œ

â 2 â 3 â â " â 3 â " â 6

 23 " 3 " 6

kv ‚a k #

â â â 0 ââ 0 ââ " 3

œ

2 ‰ ˆ "3 ‰ ˆ 18

Š

È2 ‹# œ 3

t œ 0 Ê ˆ 49 ß 49 ß 0‰ is the point on the curve

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

" 6

;

È2 3

856

Chapter 13 Vector-Valued Functions and Motion in Space

24. r œ aet sin 2tb i  aet cos 2tb j  2et k Ê v œ aet sin 2t  2et cos 2tb i  aet cos 2t  2et sin 2tb j  2et k Ê kvk œ Éaet sin 2t  2et cos 2tb#  aet cos 2t  2et sin 2tb#  a2et b# œ 3et Ê T œ œ ˆ "3 sin 2t  dT dt

2 3

cos 2t‰ i  ˆ 3" cos 2t 

œ ˆ 23 cos 2t 

Ê N(0) œ

2 3

sin 2t‰ j  23 k Ê T(0) œ

sin 2t‰ i  ˆ 23 sin 2t 

4 3

4 3

cos 2t‰ j Ê

dT dt

È

Š2 3 5‹

i  3" j  32 k ;

i  43 j Ê ¸ ddtT (0)¸ œ 23 È5 â j kâ 1 2 â 4 2 5 â 3 3 â œ È i  È j  È k; 3 5 3 5 3 5 2 â  È5 0 â

(0) œ

â â i â 2 2 " œ È5 i  È5 j ; B(0) œ T(0) ‚ N(0) œ ââ 3 â " â È5

ˆ 23 i 43 j‰

2 3 2 3

v kv k

a œ a4et cos 2t  3et sin 2tb i  a3et cos 2t  4et sin 2tb j  2et k Ê a(0) œ 4i  3j  2k and v(0) œ 2i  j  2k â â j kâ âi â â Ê v(0) ‚ a(0) œ â 2 " 2 â œ 8i  4j  10k Ê kv ‚ ak œ È64  16  100 œ 6È5 and kv(0)k œ 3 â â â 4 3 2 â Ê ,(0) œ

6È 5 3$

œ

2È 5 9 t

â â 2 â â 4 â â 2

1 3 11

; Þ t a œ a4e cos 2t  8e sin 2t  3et sin 2t  6et cos 2tb i  a3et cos 2t  6et sin 2t  4et sin 2t  8et cos 2tb j  2et k Þ œ a2et cos 2t  11et sin 2tb i  a11 et cos 2t  2et sin 2tb j  2et k Ê a(0) œ 2i  11j  2k Ê 7 (0) œ

kv ‚ a k #

â 2â â 2â â 2â

œ

80 180

œ  94 ; t œ 0 Ê (!ß "ß 2) is on the curve

25. r œ ti  "# e2t j Ê v œ i  e2t j Ê kvk œ È1  e4t Ê T œ dT dt

œ

2 e ˆ1  e4t ‰$Î# 4t

i

2t

2e ˆ1  e4t ‰$Î#

j Ê

dT dt

(ln 2) œ

32 17È17

i

8 17È17

" È1  e4t

i

e2t È1  e4t

j Ê T (ln 2) œ

j Ê N (ln 2) œ  È417 i 

" È17

" È17

i

4 È17

j;

j;

â i j k ââ â â " 4 0 ââ œ k ; a œ 2e2t j Ê a(ln 2) œ 8j and v(ln 2) œ i  4j È17 B (ln 2) œ T(ln 2) ‚ N(ln 2) œ ââ È17 â " â 4 â â È17 È17 0 â â â â i j kâ â â Þ 8 Ê v(ln 2) ‚ a(ln 2) œ â " 4 0 â œ 8k Ê kv ‚ ak œ 8 and kv(ln 2)k œ È17 Ê ,(ln 2) œ 17È ; a œ 4e2t j 17 â â â0 8 0â Þ Ê a(ln 2) œ 16j Ê 7 (ln 2) œ

â â1 â â0 â â0

4 8 16 kv ‚a k #

â 0â â 0â â 0â

œ 0; t œ ln 2 Ê (ln 2ß 2ß 0) is on the curve

26. r œ (3 cosh 2t)i  (3 sinh 2t)j  6tk Ê v œ (6 sinh 2t)i  (6 cosh 2t)j  6k Ê kvk œ È36 sinh# 2t  36 cosh# 2t  36 œ 6È2 cosh 2t Ê T œ kvvk œ Š È" tanh 2t‹ i  2

Ê T(ln 2) œ #

15 17È2

i

" È2

j

8 17È2

k;

8 ‰ 8 ‰ ˆ 15 ‰ œ Š È22 ‹ ˆ 17 i  Š È22 ‹ˆ 17 17 k œ

dT dt

œ

Š È22

sech 2t‹ i 

Š È22

sech 2t tanh 2t‹ k Ê

j  Š È" sech 2t‹ k

dT dt

(ln 2)

2

#

#

È

8 2 128 240 k Ê ¸ ddtT (ln 2)¸ œ ÊŠ 289 È2 ‹  Š 289È2 ‹ œ 17 â â j k â â i â â " 15 8 " 8 15 8 Ê N(ln 2) œ 17 i  17 k ; B(ln 2) œ T(ln 2) ‚ N(ln 2) œ ââ 17È2 È2 17È2 ââ œ  1715 È2 i  È2 j  17È2 k ; â 8 â 0  15 â 17 17 â 17 ‰ 15 ‰ 51 ˆ ˆ a œ (12 cosh 2t)i  (12 sinh 2t)j Ê a(ln 2) œ 12 8 i  12 8 j œ # i  45 # j and â i j k ââ â â 45 51 45 51 ‰ ˆ 17 ‰ 6 ââ v(ln 2) œ 6 ˆ 15 4 8 i  6 8 j  6k œ 4 i  4 j  6k Ê v(ln 2) ‚ a(ln 2) œ ââ 4 â 45 â 51 0â 2 # 128 289È2

i

#

" È2

240 289È2

œ 135i  153j  72k Ê kv ‚ ak œ 153È2 and kv(ln 2)k œ

51 4

È2 Ê ,(ln 2) œ

153È2 $ Š 51 È2‹

œ

4

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

32 867

;

Chapter 13 Practice Exercises

Þ Þ a œ (24 sinh 2t)i  (24 cosh 2t)j Ê a(ln 2) œ 45i  51j Ê 7 (ln 2) œ

â 45 â 4 â 5" â 2 â â 45

51 4 45 2

51 kv ‚a k #

â 6â â 0â â 0â

œ

32 867

857

;

45 ‰ t œ ln 2 Ê ˆ 51 8 ß 8 ß 6 ln 2 is on the curve

27. r œ a2  3t  3t# b i  a4t  4t# b j  (6 cos t)k Ê v œ (3  6t)i  (4  8t)j  (6 sin t)k Ê kvk œ È(3  6t)#  (4  8t)#  (6 sin t)# œ È25  100t  100t#  36 sin# t "Î#

" #

a25  100t  100t#  36 sin# tb (100  200t  72 sin t cos t) Ê aT (0) œ ddtkvk (0) œ 10; a œ 6i  8j  (6 cos t)k Ê kak œ È6#  8#  (6 cos t)# œ È100  36 cos# t Ê ka(0)k œ È136 Ê

d kv k dt

œ

Ê aN œ Ékak#  a#T œ È136  10# œ È36 œ 6 Ê a(0) œ 10T  6N 28. r œ (2  t)i  at  2t# b j  a1  t# b k Ê v œ i  (1  4t)j  2tk Ê kvk œ È1#  (1  4t)#  (2t)# "Î# œ È2  8t  20t# Ê ddtkvk œ "# a2  8t  20t# b (8  40t) Ê aT œ ddtkvk (0) œ 2È2; a œ 4j  2k #

Ê kak œ È4#  2# œ È20 Ê aN œ Ékak#  aT# œ Ê20  Š2È2‹ œ È12 œ 2È3 Ê a(0) œ 2È2T  2È3N 29. r œ (sin t)i  ŠÈ2 cos t‹ j  (sin t)k Ê v œ (cos t)i  ŠÈ2 sin t‹ j  (cos t)k #

Ê kvk œ Ê(cos t)#  ŠÈ2 sin t‹  (cos t)# œ È2 Ê T œ

v kv k

œ Š È"2 cos t‹ i  (sin t)j  Š È"2 cos t‹ k ; #

#

œ Š È"2 sin t‹ i  (cos t)j  Š È"2 sin t‹ k Ê ¸ ddtT ¸ œ ÊŠ È"2 sin t‹  ( cos t)#  Š È"2 sin t‹ œ 1 â â i j k â â â " cos t  sin t â " ˆ ddtT ‰ cos t " " â â È2 Ê N œ ¸ dT ¸ œ Š È2 sin t‹ i  (cos t)j  Š È2 sin t‹ k ; B œ T ‚ N œ â È2 â dt â  " sin t  cos t  " sin t â â È2 â È2 â i â j k â â â â œ È"2 i  È"2 k ; a œ ( sin t)i  ŠÈ2 cos t‹ j  (sin t)k Ê v ‚ a œ â cos t È2 sin t cos t â â â â  sin t È2 cos t  sin t â Þ œ È2 i  È2 k Ê kv ‚ ak œ È4 œ 2 Ê , œ kv‚$ak œ 2 $ œ " ; a œ ( cos t)i  ŠÈ2 sin t‹ j  (cos t)k

dT dt

kv k

Ê 7œ

â â cos t â â  sin t â â â  cos t

â cos t ââ È2 sin t È2 cos t  sin t ââ È2 sin t  cos t ââ kv ‚a k #

œ

ŠÈ2‹

È2

(cos t) ŠÈ2‹  ŠÈ2 sin t‹ (0)  (cos t) ŠÈ2‹ 4

œ0

30. r œ i  (5 cos t)j  (3 sin t)k Ê v œ (5 sin t)j  (3 cos t)k Ê a œ (5 cos t)j  (3 sin t)k Ê v † a œ 25 sin t cos t  9 sin t cos t œ 16 sin t cos t; v † a œ 0 Ê 16 sin t cos t œ 0 Ê sin t œ 0 or cos t œ 0 Ê t œ 0, 1# or 1 31. r œ 2i  ˆ4 sin #t ‰ j  ˆ3  1t ‰ k Ê 0 œ r † (i  j) œ 2(1)  ˆ4 sin #t ‰ (1) Ê 0 œ 2  4 sin Ê tœ

1 3

t #

Ê sin

t #

œ

" #

Ê

t #

œ

(for the first time)

32. r(t) œ ti  t# j  t$ k Ê v œ i  2tj  3t# k Ê kvk œ È1  4t#  9t% Ê kv(1)k œ È14 Ê T(1) œ È"14 i  È214 j  È314 k , which is normal to the normal plane Ê

" È14

(x  1) 

2 È14

(y  1) 

3 È14

(z  1) œ 0 or x  2y  3z œ 6 is an equation of the normal plane. Next we

calculate N(1) which is normal to the rectifying plane. Now, a œ 2j  6tk Ê a(1) œ 2j  6k Ê v(1) ‚ a(1)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

1 6

858

Chapter 13 Vector-Valued Functions and Motion in Space â âi â œ â" â â0 œ

" #

œ

22 È14

â j kâ â 2 3 â œ 6i  6j  2k Ê kv(1) ‚ a(1)k œ È76 Ê ,(1) œ â 2 6â

a1  4t#  9t% b

"Î#

2j3k Š iÈ ‹ 14

a8t  36t$ b¹

È19 7È14

#

œ

tœ1

22 È14

, so a œ

ŠÈ14‹ N Ê N œ

È14 2È19

d# s dt#

È76 $ È Š 14‹

œ

È19 7È14

;

ds dt

œ kv(t)k Ê

d# s dt# ¹ tœ1

#

‰ N Ê 2j  6k T  , ˆ ds dt

8 9 ‰ 11 8 9 ˆ 11 7 i  7 j  7 k Ê  7 (x  1)  7 (y  1)  7 (z  1)

œ 0 or 11x  8y  9z œ 10 is an equation of the rectifying plane. Finally, B(1) œ T(1) ‚ N(1) â â j kâ â i È14 â â 2 3 â œ È" (3i  3j  k) Ê 3(x  1)  3(y  1)  (z  1) œ 0 or 3x  3y  z œ Š 2È19 ‹ Š È" ‹ ˆ 7" ‰ â " 19 14 â â â 11 8 9 â œ 1 is an equation of the osculating plane. " ‰ 33. r œ et i  (sin t)j  ln (1  t)k Ê v œ et i  (cos t)j  ˆ 1  t k Ê v(0) œ i  j  k ; r(0) œ i Ê (1ß 0ß 0) is on the line

Ê x œ 1  t, y œ t, and z œ t are parametric equations of the line

34. r œ ŠÈ2 cos t‹ i  ŠÈ2 sin t‹ j  tk Ê v œ ŠÈ2 sin t‹ i  ŠÈ2 cos t‹ j  k Ê v ˆ 14 ‰ œ ŠÈ2 sin 14 ‹ i  ŠÈ2 cos 14 ‹ j  k œ i  j  k is a vector tangent to the helix when t œ is parallel to v ˆ 14 ‰ ; also r ˆ 14 ‰ œ ŠÈ2 cos 14 ‹ i  ŠÈ2 sin 14 ‹ j  Ê x œ 1  t, y œ 1  t, and z œ 35. (a) ?SOT ¸ ?TOD Ê Ê y! œ

6380# 6817

DO OT

œ

1 4

1 4

1 4

Ê the tangent line

k Ê the point ˆ1ß 1ß 14 ‰ is on the line

 t are parametric equations of the line

OT SO

Ê

y! 6380

œ

6380 6380437

Ê y! ¸ 5971 km;

(b) VA œ '5971 21x Ê1  Š dx dy ‹ dy #

6380

6380 œ 21'5971 È6380#  y# Š È6380 #  y# ‹ dy 6817

œ 21 '5971 6380 dy œ 21 c6380yd ')"( &*(" 6817

œ 16,395,469 km# ¸ 1.639 ‚ 10( km# ; (c) percentage visible ¸

16,395,469 km# 41(6380 km)#

¸ 3.21%

CHAPTER 13 ADDITIONAL AND ADVANCED EXERCISES 1. (a) The velocity of the boat at (xß y) relative to land is the sum of the velocity due to the rower and the " velocity of the river, or v œ  250 (y  50)#  10‘ i  20j . Now, dy dt œ 20 Ê y œ 20t  c; y(0) œ 100 " Ê c œ 100 Ê y œ 20t  100 Ê v œ  250 (20t  50)#  10‘ i  20j œ ˆ 85 t#  8t‰ i  20j 8 $ Ê r(t) œ ˆ 15 t  4t# ‰ i  20tj  C" ; r(0) œ 0i  100j Ê 100j œ C" Ê r(t) 8 $ œ ˆ 15 t  4t# ‰ i  (100  20t) j

(b) The boat reaches the shore when y œ 0 Ê 0 œ 20t  100 from part (a) Ê t œ 5 8 100 ‰ Ê r(5) œ ˆ 15 † 125  4 † 25‰ i  (100  20 † 5)j œ ˆ 200 3  100 i œ 3 i ; the distance downstream is therefore

100 3

m

2. (a) Let ai  bj be the velocity of the boat. The velocity of the boat relative to an observer on the bank of the river is v œ ai  ’b 

3x(20  x) “j. 100

x œ at Ê v œ ai  ’b 

The distance x of the boat as it crosses the river is related to time by

3at(20  at) “j 100

œ ai  Šb 

3a# t#  60at ‹j 100

Ê r(t) œ ati  Šbt 

a# t$ 100

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley



30at# 100 ‹ j

 C;

Chapter 13 Additional and Advanced Exercises a# t$  30at# ‹j. 100

r(0) œ 0i  0j Ê C œ 0 Ê r(t) œ ati  Šbt  Ê 20 œ at Ê t œ œ

2000b  8000  12,000 100a

#

ˆ 20 ‰$ a

The boat reaches the shore when x œ 20

‰  30a ˆ 20 a 100

#

$

#

(20) 30(20) œ 20b a  100a # # È È Ê b œ 2; the speed of the boat is 20 œ kvk œ a  b œ Èa#  4 Ê a# œ 16 20 a

‰ and y œ 0 Ê 0 œ b ˆ 20 a 

a

Ê a œ 4; thus, v œ 4i  2j is the velocity of the boat a# t$  30at# ‹j 100

(b) r(t) œ ati  Šbt 

$

(c) x œ 4t and y œ 2t  œ œ

16t$ 100

œ 4ti  Š2t 

120t# 100 ‹ j



by part (a), where 0 Ÿ t Ÿ 5

#

16t 120t 100  100 4 $ 6 # 2 # 25 t  5 t  2t œ 25 t a2t  15t  25b 2 25 t(2t  5)(t  5), which is the graph of

the cubic displayed here

3. (a) r()) œ (a cos ))i  (a sin ))j  b)k Ê œ Èa#  b# (b)

d) dt

d) dt

Ê

) œ É a#2gb  b# Ê

d) dt

d) È)

dr dt

œ [(a sin ))i  (a cos ))j  bk]

) É a#2gb œ É a#2gz  b# œ  b# Ê

gbt# 2 aa #  b # b

; z œ b) Ê z œ

œ [(a sin ))i  (a cos ))j  bk]

d) dt

; kvk œ È2gz œ ¸ ddtr ¸

œ É a#41gbb# œ 2É a#1gbb#

gb# t# 2 aa #  b # b

œ [(a sin ))i  (a cos ))j  bk] Š a# gbt  b# ‹ , from part (b)

i  (a cos ))j  bk Ê v(t) œ ’ (a sin ))È “ Š Èagbt ‹œ #  b# a#  b# d# r dt#

d) ¸ dt )œ#1

d) dt

"Î# œ É a#2gb œ É a#2gb  b# dt Ê 2)  b# t  C; t œ 0 Ê ) œ 0 Ê C œ 0

Ê 2)"Î# œ É a#2gb  b# t Ê ) œ (c) v(t) œ

dr dt

gbt È a#  b #

T;

#

œ [(a cos ))i  (a sin ))j] ˆ ddt) ‰  [(a sin ))i  (a cos ))j  bk] #

d# ) dt#

gb œ Š a# gbt  b# ‹ [(a cos ))i  (a sin ))j]  [(a sin ))i  (a cos ))j  bk] Š a#  b# ‹ #

i  (a cos ))j  bk œ ’ (a sin ))È “ Š Èa#gb b# ‹  a Š a# gbt  b# ‹ [( cos ))i  (sin ))j] a#  b#

œ

gb È a#  b#

#

T  a Š a# gbt  b# ‹ N (there is no component in the direction of B).

4. (a) r()) œ (a) cos ))i  (a) sin ))j  b)k Ê

dr dt

# "Î#

kvk œ È2gz œ ¸ ddtr ¸ œ aa#  a# )#  b b (b) s œ '0 kvk dt œ '0 aa#  a# )#  b# b t

t

œ '0 aÉ a )

#

 b# a#

(1  e)r! 1  e cos )

Ê

dr d)

ˆ ddt) ‰ Ê

d) dt

œ

œ

c# #

)

ln ¹u  Èc#  u# ¹“ œ

(1  e)r! (e sin )) (1  e cos ))#

!

;

dr d)

œ0 Ê

Ê sin ) œ 0 Ê ) œ 0 or 1. Note that

dr d)

a #

;

È a#  a# ) #  b#

dt œ '0 aa#  a# )#  b# b

 u# du œ a '0 Èc#  u# du, where c œ

d) dt

È2gb)

t

)

Ê s œ a ’ u# Èc#  u#  5. r œ

"Î# d) dt

œ [(a cos )  a) sin ))i  (a sin )  a) cos ))j  bk]

"Î#

d) œ '0 aa#  a# u#  b# b )

"Î#

du

È a#  b# ka k

Š)Èc#  )#  c# ln ¹)  Èc#  )# ¹  c# ln c‹

(1  e)r! (e sin )) (1  e cos ))#

œ 0 Ê (1  e)r! (e sin )) œ 0

 0 when sin )  0 and

dr d)

 0 when sin )  0. Since sin )  0 on

1  )  0 and sin )  0 on 0  )  1, r is a minimum when ) œ 0 and r(0) œ

(1  e)r! 1 e cos 0

œ r!

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

859

860

Chapter 13 Vector-Valued Functions and Motion in Space

6. (a) f(x) œ x  1 

" #

sin x œ 0 Ê f(0) œ 1 and f(2) œ 2  1 

" #

sin 2  

" #

since ksin 2k Ÿ 1; since f is continuous

on [0ß 2], the Intermediate Value Theorem implies there is a root between 0 and 2 (b) Root ¸ 1.4987011335179 7. (a) v œ

dx dt

i

v†iœ Ê

j and v œ

dr dt

œ

dr dt

d) ˆ dr ‰ ˆ d) ‰ dt u) œ dt [(cos ))i  (sin ))j]  r dt [( sin ))i  (cos ))j] Ê dy dx dr d) dr d) dt œ dt cos )  r dt sin ); v † j œ dt and v † j œ dt sin )  r dt cos )

ur  r

cos )  r ddt) sin ) Ê

dr dt

dy dt

dy dt

v†i œ

dx dt

and

sin )  r ddt) cos )

dy (b) ur œ (cos ))i  (sin ))j Ê v † ur œ dx dt cos )  dt sin ) d) d) ‰ ˆ dr ‰ œ ˆ dr dt cos )  r dt sin ) (cos ) )  dt sin )  r dt cos ) (sin ) ) by part (a),

Ê v † ur œ

dr dt

; therefore,

œ

dr dt

dx dt

cos ) 

dy dt

sin );

u) œ (sin ))i  (cos ))j Ê v † u) œ  sin )  dy dt cos ) dr d) dr d) ˆ ‰ ˆ œ dt cos )  r dt sin ) ( sin ))  dt sin )  r dt cos )‰ (cos )) by part (a) Ê v † u) œ r ddt) ; dx dt

therefore, r ddt) œ  dx dt sin )  8. r œ f()) Ê

dr dt

œ f w () )

d) dt

Ê

d# r dt#

dy dt

cos ) #

œ f ww ()) ˆ ddt) ‰  f w ())

d# ) dt#

;vœ

dr dt

ur  r

d) dt

u) "Î#

"Î#

# d) ‰  r sin ) ddt) ‰ i  ˆsin ) dr  r# ˆ ddt) ‰ “ œ ’af w b#  f # “ dt  r cos ) dt j Ê kvk œ Þ ÞÞ Þ ÞÞ d) dr kv ‚ ak œ kx y  y xk , where x œ r cos ) and y œ r sin ). Then dx dt œ (r sin )) dt  (cos )) dt

œ ˆcos )

‰# ’ˆ dr dt

dr dt

# # d) dr d) ˆ d) ‰#  (r sin )) ddt#)  (cos )) ddt#r ; dy dt dt  (r cos )) dt dt œ (r cos )) dt  (sin # # ˆ d) ‰#  (r cos )) ddt#)  (sin )) ddt#r . Then kv ‚ ak Ê œ (2 cos )) ddt) dr dt  (r sin )) dt # $ $ d) d# r d) ˆ dr ‰# œ (after much algebra) r# ˆ ddt) ‰  r ddt#) dr œ ˆ ddt) ‰ Šf 2  f † f ww  2af w b2 ‹ dt  r dt dt#  2 dt dt

Ê

d# x dt# d# y dt#

Ê ,œ

œ (2 sin ))

kv ‚a k kv k

œ

dr dt

dr dt

f 2  f†f ww  2af w b2 $Î# af w b#  f # ‘

9. (a) Let r œ 2  t and ) œ 3t Ê vœ

))

ˆ ddt) ‰ ;

dr dt

œ 1 and

d) dt

d# r dt#

œ3 Ê #

ur  r ddt) u) Ê v(1) œ ur  3u) ; a œ ’ ddt#r 

œ

d# ) dt#

# r ˆ ddt) ‰ “ ur

œ 0. The halfway point is (1ß 3) Ê t œ 1; #

 ’r ddt#)  2 dr dt

d) dt “ u)

Ê a(1) œ 9ur  6u)

(b) It takes the beetle 2 min to crawl to the origin Ê the rod has revolved 6 radians # # Ê L œ '0 É[f())]#  cf w ())d# d) œ '0 Ɉ2  3) ‰  ˆ "3 ‰ d) œ '0 É4  6

6

œ '0 É 37  129 )  ) d) œ 6

#

œ È37 

" 6

dL dt

4) 3



)# 9



" 9

'06 È()  6)#  1 d) œ "3 ’ ()#6) È()  6)#  1  "# ln ¸)  6  È()  6)#  1¸“ ' !

dL dt

œ ˆ ddtr ‚ mv‰  Šr ‚ m

d# r dt# ‹

Ê

dL dt

œ (v ‚ mv)  (r ‚ ma) œ r ‚ ma ; F œ ma Ê  krck$ r

œ r ‚ ma œ r ‚ Š krck$ r‹ œ  krck$ (r ‚ r) œ 0 Ê L œ constant vector

â â i â 11. (a) ur ‚ u) œ â cos ) â â  sin )

j sin ) cos )

â kâ â 0 â œ k Ê a right-handed frame of unit vectors â 0â

œ ( sin ))i  (cos ))j œ u) and ddu)) œ ( cos ))i  (sin ))j œ ur Þ ÞÞ Þ Þ Þ ÞÞ ÞÞ ÞÞ Þ Þ ÞÞ (c) From Eq. (7), v œ rur  r)u)  zk Ê a œ v œ a r ur  r ur b  ˆr )u)  r) u)  r) u) ‰  z k Þ# ÞÞ ÞÞ ÞÞ ÞÞ œ Š r  r) ‹ ur  ˆr)  2r )‰ u)  z k (b)

d)

ln ŠÈ37  6‹ ¸ 6.5 in.

10. L(t) œ r(t) ‚ mv(t) Ê œ ma Ê

" 3

6

dur d)

12. (a) x œ r cos ) Ê dx œ cos ) dr  r sin ) d); y œ r sin ) Ê dy œ sin ) dr  r cos ) d); thus dx# œ cos# ) dr#  2r sin ) cos ) dr d)  r# sin# ) d)# and Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Chapter 13 Additional and Advanced Exercises dy# œ sin# ) dr#  2r sin ) cos ) dr d)  r# cos# ) d)# Ê dx#  dy#  dz# œ dr#  r# d)#  dz# (b) (c) r œ e) Ê dr œ e) d) Ê L œ '0

ln 8

Èdr#  r# d)#  dz#

œ '0 Èe#)  e#)  e#) d) ln 8

œ '0 È3e) d) œ ’È3 e) “ ln 8

ln 8 0

œ 8È3  È3 œ 7È3

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

861

862

Chapter 13 Vector-Valued Functions and Motion in Space

NOTES:

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

CHAPTER 14 PARTIAL DERIVATIVES 14.1 FUNCTIONS OF SEVERAL VARIABLES 1. (a) (b) (c) (d) (e) (f)

Domain: all points in the xy-plane Range: all real numbers level curves are straight lines y  x œ c parallel to the line y œ x no boundary points both open and closed unbounded

2. (a) (b) (c) (d)

Domain: set of all (xß y) so that y  x   0 Ê y   x Range: z   0 level curves are straight lines of the form y  x œ c where c   0 boundary is Èy  x œ 0 Ê y œ x, a straight line

(e) closed (f) unbounded 3. (a) Domain: all points in the xy-plane (b) Range: z   0 (c) level curves: for f(xß y) œ 0, the origin; for f(xß y) œ c  0, ellipses with center (!ß 0) and major and minor axes along the x- and y-axes, respectively (d) no boundary points (e) both open and closed (f) unbounded 4. (a) Domain: all points in the xy-plane (b) Range: all real numbers (c) level curves: for f(xß y) œ 0, the union of the lines y œ „ x; for f(xß y) œ c Á 0, hyperbolas centered at (0ß 0) with foci on the x-axis if c  0 and on the y-axis if c  0 (d) no boundary points (e) both open and closed (f) unbounded 5. (a) Domain: all points in the xy-plane (b) Range: all real numbers (c) level curves are hyperbolas with the x- and y-axes as asymptotes when f(xß y) Á 0, and the x- and y-axes when f(xß y) œ 0 (d) no boundary points (e) both open and closed (f) unbounded 6. (a) Domain: all (xß y) Á (0ß y) (b) Range: all real numbers (c) level curves: for f(xß y) œ 0, the x-axis minus the origin; for f(xß y) œ c Á 0, the parabolas y œ cx# minus the origin (d) boundary is the line x œ 0

864

Chapter 14 Partial Derivatives

(e) open (f) unbounded 7. (a) Domain: all (xß y) satisfying x#  y#  16 (b) Range: z   "4 (c) (d) (e) (f)

level curves are circles centered at the origin with radii r  4 boundary is the circle x#  y# œ 16 open bounded

8. (a) (b) (c) (d) (e) (f)

Domain: all (xß y) satisfying x#  y# Ÿ 9 Range: 0 Ÿ z Ÿ 3 level curves are circles centered at the origin with radii r Ÿ 3 boundary is the circle x#  y# œ 9 closed bounded

9. (a) (b) (c) (d) (e) (f)

Domain: (xß y) Á (0ß 0) Range: all real numbers level curves are circles with center (!ß 0) and radii r  0 boundary is the single point (0ß 0) open unbounded

10. (a) (b) (c) (d) (e) (f)

Domain: all points in the xy-plane Range: 0  z Ÿ 1 level curves are the origin itself and the circles with center (0ß 0) and radii r  0 no boundary points both open and closed unbounded

11. (a) Domain: all (xß y) satisfying 1 Ÿ y  x Ÿ 1 (b) Range:  1# Ÿ z Ÿ 1# (c) (d) (e) (f)

level curves are straight lines of the form y  x œ c where 1 Ÿ c Ÿ 1 boundary is the two straight lines y œ 1  x and y œ 1  x closed unbounded

12. (a) Domain: all (xß y), B Á 0 (b) Range:  1#  z  1# (c) (d) (e) (f)

level curves are the straight lines of the form y œ cx, c any real number and x Á 0 boundary is the line x œ 0 open unbounded

13. f

14. e

15. a

16. c

17. d

18. b

Section 14.1 Functions of Several Variables 19. (a)

(b)

20. (a)

(b)

21. (a)

(b)

22. (a)

(b)

865

866

Chapter 14 Partial Derivatives

23. (a)

(b)

24. (a)

(b)

25. (a)

(b)

Section 14.1 Functions of Several Variables 26. (a)

(b)

27. (a)

(b)

28. (a)

(b)

#

#

867

29. f(xß y) œ 16  x#  y# and Š2È2ß È2‹ Ê z œ 16  Š2È2‹  ŠÈ2‹ œ 6 Ê 6 œ 16  x#  y# Ê x#  y# œ 10 30. f(xß y) œ Èx#  1 and (1ß 0) Ê D œ È1#  1 œ 0 Ê x#  1 œ 0 Ê x œ 1 or x œ 1 31. f(xß y) œ 'x

y

1 1  t#

dt at ŠÈ2ß È2‹ Ê z œ tan" y  tan" x; at ŠÈ2ß È2‹ Ê z œ tan" È2  tan" ŠÈ2‹

œ 2 tan" È2 Ê tan" y  tan" x œ 2 tan" È2

_

n

32. f(xß y) œ ! Š xy ‹ at (1ß 2) Ê z œ

œ

n 0

Ê y œ 2x

" 1  Š xy ‹

œ

y yx

; at (1ß 2) Ê z œ

2 #1

œ2 Ê 2œ

y yx

Ê 2y  2x œ y

868

Chapter 14 Partial Derivatives

33.

34.

35.

36.

37.

38.

39.

40.

41. f(xß yß z) œ Èx  y  ln z at (3ß 1ß 1) Ê w œ Èx  y  ln z; at (3ß 1ß 1) Ê w œ È3  (1)  ln 1 œ 2 Ê Èx  y  ln z œ 2

Section 14.1 Functions of Several Variables

869

42. f(xß yß z) œ ln ax#  y  z# b at ("ß #ß ") Ê w œ ln ax#  y  z# b ; at ("ß #ß ") Ê w œ ln (1  2  1) œ ln 4 Ê ln 4 œ ln ax#  y  z# b Ê x#  y  z# œ 4 _

(x b y)n n! zn

43. g(xß yß z) œ !

nœ0

_

at (ln 2ß ln 4ß 3) Ê w œ !

œ eÐln 8ÑÎ3 œ eln 2 œ 2 Ê 2 œ eÐxyÑÎz Ê 44. g(xß yß z) œ 'x

y

d) È1  )#

 'È2 z

dt tÈt#  1

xy z

nœ0

(x b y)n n! zn

œ eÐxyÑÎz ; at (ln 2ß ln 4ß 3) Ê w œ eÐln 2ln 4ÑÎ3

œ ln 2

at ˆ0ß "# ß 2‰ Ê w œ csin" )d x  csec" td È2 y

z

œ sin" y  sin" x  sec" z  sec" ŠÈ2‹ Ê w œ sin" y  sin" x  sec" z  Ê w œ sin"

" #

 sin" 0  sec" 2 

1 4

œ

1 4

Ê

1 #

1 4

; at ˆ0ß "# ß 2‰

œ sin" y  sin" x  sec" z

45. f(xß yß z) œ xyz and x œ 20  t, y œ t, z œ 20 Ê w œ (20  t)(t)(20) along the line Ê w œ 400t  20t# Ê

dw dt

œ 400  40t;

dw dt

œ 0 Ê 400  40t œ 0 Ê t œ 10 and

d# w dt#

œ 40 for all t Ê yes, maximum at t œ 10

Ê x œ 20  10 œ 10, y œ 10, z œ 20 Ê maximum of f along the line is f(10ß 10ß 20) œ (10)(10)(20) œ 2000 46. f(xß yß z) œ xy  z and x œ t  1, y œ t  2, z œ t  7 Ê w œ (t  1)(t  2)  (t  7) œ t#  4t  5 along the line Ê

dw dt

œ 2t  4;

dw dt

œ 0 Ê 2t  4 œ 0 Ê t œ 2 and

d# w dt#

œ 2 for all t Ê yes, minimum at t œ 2 Ê x œ 2  1 œ 1,

y œ 2  2 œ 0, and z œ 2  7 œ 9 Ê minimum of f along the line is f(1ß 0ß 9) œ (1)(0)  9 œ 9 ‰ 47. w œ 4 ˆ Th d

"Î#

"Î#

km) œ 4 ’ (290 5K)(16.8 “ K/km

¸ 124.86 km Ê must be

" #

(124.86) ¸ 63 km south of Nantucket

48. The graph of f(x" ß x# ß x$ ß x% ) is a set in a five-dimensional space. It is the set of points (x" ß x# ß x$ ß x% ß f(x" ß x# ß x$ ß x% )) for (x" ß x# ß x$ ß x% ) in the domain of f. The graph of f(x" ß x# ß x$ ß á ß xn ) is a set in an (n  1)-dimensional space. It is the set of points (x" ß x# ß x$ ß á ß xn ß f(x" ß x# ß x$ ß á ß xn )) for (x" ß x# ß x$ ß á ß xn ) in the domain of f. 49-52. Example CAS commands: Maple: with( plots ); f := (x,y) -> x*sin(y/2) + y*sin(2*x); xdomain := x=0..5*Pi; ydomain := y=0..5*Pi; x0,y0 := 3*Pi,3*Pi; plot3d( f(x,y), xdomain, ydomain, axes=boxed, style=patch, shading=zhue, title="#49(a) (Section 14.1)" ); plot3d( f(x,y), xdomain, ydomain, grid=[50,50], axes=boxed, shading=zhue, style=patchcontour, orientation=[-90,0], title="#49(b) (Section 14.1)" ); # (b) L := evalf( f(x0,y0) ); # (c) plot3d( f(x,y), xdomain, ydomain, grid=[50,50], axes=boxed, shading=zhue, style=patchcontour, contours=[L], orientation=[-90,0], title="#49(c) (Section 14.1)" ); 53-56. Example CAS commands: Maple: eq := 4*ln(x^2+y^2+z^2)=1; implicitplot3d( eq, x=-2..2, y=-2..2, z=-2..2, grid=[30,30,30], axes=boxed, title="#53 (Section 14.1)" );

870

Chapter 14 Partial Derivatives

57-60. Example CAS commands: Maple: x := (u,v) -> u*cos(v); y := (u,v) ->u*sin(v); z := (u,v) -> u; plot3d( [x(u,v),y(u,v),z(u,v)], u=0..2, v=0..2*Pi, axes=boxed, style=patchcontour, contours=[($0..4)/2], shading=zhue, title="#57 (Section 14.1)" ); 49-60. Example CAS commands: Mathematica: (assigned functions and bounds will vary) For 49 - 52, the command ContourPlot draws 2-dimensional contours that are z-level curves of surfaces z = f(x,y). Clear[x, y, f] f[x_, y_]:= x Sin[y/2]  y Sin[2x] xmin= 0; xmax= 51; ymin= 0; ymax= 51; {x0, y0}={31, 31}; cp= ContourPlot[f[x,y], {x, xmin, xmax}, {y, ymin, ymax}, ContourShading Ä False]; cp0= ContourPlot[[f[x,y], {x, xmin, xmax}, {y, ymin, ymax}, Contours Ä {f[x0,y0]}, ContourShading Ä False, PlotStyle Ä {RGBColor[1,0,0]}]; Show[cp, cp0] For 53 - 56, the command ContourPlot3D will be used and requires loading a package. Write the function f[x, y, z] so that when it is equated to zero, it represents the level surface given. For 53, the problem associated with Log[0] can be avoided by rewriting the function as x2 + y2 +z2 - e1/4 1/x/y; q1 := Int( Int( f(x,y), y=1..x ), x=1..3 ); evalf( q1 ); value( q1 ); evalf( value(q1) ); 71-76. Example CAS commands: Maple: f := (x,y) -> exp(x^2); c,d := 0,1; g1 := y ->2*y; g2 := y -> 4; q5 := Int( Int( f(x,y), x=g1(y)..g2(y) ), y=c..d ); value( q5 ); plot3d( 0, x=g1(y)..g2(y), y=c..d, color=pink, style=patchnogrid, axes=boxed, orientation=[-90,0], scaling=constrained, title="#71 (Section 15.1)" ); r5 := Int( Int( f(x,y), y=0..x/2 ), x=0..2 ) + Int( Int( f(x,y), y=0..1 ), x=2..4 ); value( r5); value( q5-r5 ); 67-76. Example CAS commands: Mathematica: (functions and bounds will vary) You can integrate using the built-in integral signs or with the command Integrate. In the Integrate command, the integration begins with the variable on the right. (In this case, y going from 1 to x).

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

949

950

Chapter 15 Multiple Integrals

Clear[x, y, f] f[x_, y_]:= 1 / (x y) Integrate[f[x, y], {x, 1, 3}, {y, 1, x}] To reverse the order of integration, it is best to first plot the region over which the integration extends. This can be done with ImplicitPlot and all bounds involving both x and y can be plotted. A graphics package must be loaded. Remember to use the double equal sign for the equations of the bounding curves. Clear[x, y, f] t^2; k := t -> 3*t^2; a,b := 0,2; ds := ( D(g)^2 + D(h)^2 + D(k)^2 )^(1/2): 'ds' = ds(t)*'dt'; F := f(g,h,k): 'F(t)' = F(t); Int( f, s=C..NULL ) = Int( simplify(F(t)*ds(t)), t=a..b ); `` = value(rhs(%)); Mathematica: (functions and domains may vary) Clear[x, y, z, r, t, f] f[x_,y_,z_]:= Sqrt[1  30x2  10y]

#

# (a) # (b) # (c)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

32 20

œ 1, 232 45

;

Section 16.2 Vector Fields, Work, Circulation, and Flux 1001 {a,b}= {0, 2}; x[t_]:= t y[t_]:= t2 z[t_]:= 3t2 r[t_]:= {x[t], y[t], z[t]} v[t_]:= D[r[t], t] mag[vector_]:=Sqrt[vector.vector] Integrate[f[x[t],y[t],z[t]] mag[v[t]], {t, a, b}] N[%] 16.2 VECTOR FIELDS, WORK, CIRCULATION, AND FLUX 1. f(xß yß z) œ ax#  y#  z# b `f `y

"Î#

# $Î#

œ  y a x#  y #  z b

and

similarly,

œ

y x #  y #  z#

and

`f `z

" #

2. f(xß yß z) œ ln Èx#  y#  z# œ `f `y

`f `x

Ê

`f `z

$Î#

# $Î#

œ  z a x#  y #  z b

`f `x

ln ax#  y#  z# b Ê

œ

3. g(xß yß z) œ ez  ln ax#  y# b Ê

œ  "# ax#  y#  z# b

Ê ™fœ

z x #  y #  z#

`g `x

`g `y

œ  x# 2x  y# ,

(2x) œ x ax#  y#  z# b

Ê ™fœ

œ

" #

$Î#

; similarly,

x i  y j  z k ax#  y#  z# b$Î#

Š x# y"# z# ‹ (2x) œ

x x #  y #  z#

;

x i  y j  zk x#  y#  z#

œ  x# 2y  y# and

`g `z

œ ez

z Ê ™ g œ Š x#2xy# ‹ i  Š x# 2y  y# ‹ j  e k

`g `x

4. g(xß yß z) œ xy  yz  xz Ê

œ y  z,

`g `y

`g `z

œ x  z, and

œ y  x Ê ™ g œ (y  z)i  (B  z)j  (x  y)k

5. kFk inversely proportional to the square of the distance from (xß y) to the origin Ê È(M(xß y))#  (N(xß y))# œ

k x#  y#

, k  0; F points toward the origin Ê F is in the direction of n œ

Ê F œ an , for some constant a  0. Then M(xß y) œ Ê È(M(xß y))#  (N(xß y))# œ a Ê a œ

k x#  y#

ax È x#  y#

Ê Fœ

x È x#  y#

and N(xß y) œ

kx ax#  y# b$Î#

i

i

y È x#  y#

j

ay È x#  y#

ky ax#  y# b$Î#

j , for any constant k  0

6. Given x#  y# œ a#  b# , let x œ Èa#  b# cos t and y œ Èa#  b# sin t. Then r œ ŠÈa#  b# cos t‹ i  ŠÈa#  b# sin t‹ j traces the circle in a clockwise direction as t goes from 0 to 21 Ê v œ ŠÈa#  b# sin t‹ i  ŠÈa#  b# cos t‹ j is tangent to the circle in a clockwise direction. Thus, let F œ v Ê F œ yi  xj and F(0ß 0) œ 0 . 7. Substitute the parametric representations for r(t) œ x(t)i  y(t)j  z(t)k representing each path into the vector field F , and calculate the work W œ 'C F † (a) F œ 3ti  2tj  4tk and

dr dt

(b) F œ 3t# i  2tj  4t% k and œ

7 3

2œ

dr dt

.

œijk Ê F† dr dt

dr dt

œ 9t Ê W œ '0 9t dt œ 1

œ i  2tj  4t$ k Ê F †

dr dt

œ 7t#  16t( Ê W œ '0 a7t#  16t( b dt œ  73 t$  2t) ‘ ! 1

13 3

(c) r" œ ti  tj and r# œ i  j  tk ; F" œ 3ti  2tj and F# œ 3i  2j  4tk and

d r# dt

œ k Ê F# †

d r# dt

d r" dt

9 #

œ i  j Ê F" †

d r" dt

"

œ 5t Ê W" œ '0 5t dt œ 1

œ 4t Ê W# œ '0 4t dt œ 2 Ê W œ W"  W# œ 1

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

9 #

5 #

;

1002 Chapter 16 Integration in Vector Fields 8. Substitute the parametric representation for r(t) œ x(t)i  y(t)j  z(t)k representing each path into the vector field F, and calculate the work W œ 'C F †

dr dt

.

" ‰ (a) F œ ˆ t#  1 j and

dr dt

œijk Ê F†

" ‰ (b) F œ ˆ t#  1 j and

dr dt

œ i  2tj  4t$ k Ê F †

dr dt

Ê F# †

d r# dt

œ 0 Ê W œ '0

" t#  1

dt œ

1

œ

2t t#  1 Ê W and ddtr" œ i  j

dr dt

" ‰ (c) r" œ ti  tj and r# œ i  j  tk ; F" œ ˆ t#  1 j 1

Ê W œ '0

" t#  1

œ

" t#  1

œ '0

"

dt œ ctan" td ! œ

1

Ê

2t t#  1 F" † ddtr"

1 4 "

dt œ cln at#  1bd ! œ ln 2 œ

" t#  1

; F# œ

" #

j and

œk

d r# dt

1 4

9. Substitute the parametric representation for r(t) œ x(t)i  y(t)j  z(t)k representing each path into the vector field F, and calculate the work W œ 'C F † (a) F œ Èti  2tj  Ètk and (b) F œ t# i  2tj  tk and

dr dt

dr dt

dr dt

.

œijk Ê F†

" œ 2Èt  2t Ê W œ '0 ˆ2Èt  2t‰ dt œ  43 t$Î#  t# ‘ ! œ 1

dr dt

œ i  2tj  4t$ k Ê F †

dr dt

œ 4t%  3t# Ê W œ '0 a4t%  3t# b dt œ  45 t&  t$ ‘ ! œ  "5 1

(c) r" œ ti  tj and r# œ i  j  tk ; F" œ 2tj  Èt k and œ 1; F# œ Èti  2j  k and

d r# dt

œ k Ê F# †

" 3

œ i  j Ê F" †

d r" dt

d r" dt

"

œ 2t Ê W" œ '0 2t dt 1

œ 1 Ê W# œ '0 dt œ 1 Ê W œ W"  W# œ 0 1

d r# dt

10. Substitute the parametric representation for r(t) œ x(t)i  y(t)j  z(t)k representing each path into the vector field F, and calculate the work W œ 'C F †

dr dt

. œ 3t# Ê W œ '0 3t# dt œ 1 1

(a) F œ t# i  t# j  t# k and

dr dt

œijk Ê F†

(b) F œ t$ i  t' j  t& k and

dr dt

œ i  2tj  4t$ k Ê F †

%

œ ’ t4 

t) 4

"

 94 t* “ œ !

dr dt

œ t$  2t(  4t) Ê W œ '0 at$  2t(  4t) b dt 1

17 18

(c) r" œ ti  tj and r# œ i  j  tk ; F" œ t# i and F# œ i  tj  tk and

dr dt

d r# dt

œ k Ê F# †

d r# dt

œ i  j Ê F" †

d r" dt

œ t Ê W# œ '0 t dt œ 1

d r" dt " #

œ t# Ê W" œ '0 t# dt œ 1

Ê W œ W"  W# œ

" 3

;

5 6

11. Substitute the parametric representation for r(t) œ x(t)i  y(t)j  z(t)k representing each path into the vector field F, and calculate the work W œ 'C F †

dr dt

. œ 3t#  1 Ê W œ '0 a3t#  1b dt œ ct$  td ! œ 2

(a) F œ a3t#  3tb i  3tj  k and



(b) F œ a3t#  3tb i  3t% j  k

Ê F†

dr dt

1

"

dr & $ # dt œ 6t  4t  3t  3t 1 " Ê W œ 0 a6t&  4t$  3t#  3tb dt œ t'  t%  t$  3# t# ‘ ! œ 3# r" œ ti  tj and r# œ i  j  tk ; F" œ a3t#  3tb i  k and ddtr" œ i  j Ê F" † ddtr" œ 3t# 1 " Ê W" œ 0 a3t#  3tb dt œ t$  32 t# ‘ ! œ  "# ; F# œ 3tj  k and ddtr# œ k Ê F# † ddtr# Ê W œ W"  W# œ 12

'

(c)

dr dt œ i  j  k Ê F and ddtr œ i  2tj  4t$ k

'

 3t œ 1 Ê W# œ '0 dt œ 1

12. Substitute the parametric representation for r(t) œ x(t)i  y(t)j  z(t)k representing each path into the vector field F, and calculate the work W œ 'C F † (a) F œ 2ti  2tj  2tk and

dr dt

dr dt

.

œijk Ê F†

(b) F œ at#  t% b i  at%  tb j  at  t# b k and

dr dt

dr dt

œ 6t Ê W œ '0 6t dt œ c3t# d ! œ 3

œ i  2tj  4t$ k Ê F †

Ê W œ '0 a6t&  5t%  3t# b dt œ ct'  t&  t$ d ! œ 3 1

1

"

dr dt

œ 6t&  5t%  3t#

"

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

1

Section 16.2 Vector Fields, Work, Circulation, and Flux 1003 (c) r" œ ti  tj and r# œ i  j  tk ; F" œ ti  tj  2tk and F# œ (1  t)i  (t  1)j  2k and

d r# dt

œ k Ê F# †

dr" dt

œ i  j Ê F" †

d r" dt

Ê F†

dr dt

œ 2t$ Ê work œ '0 2t$ dt œ

1

œ 2 Ê W# œ '0 2 dt œ 2 Ê W œ W"  W# œ 3 1

d r# dt

13. r œ ti  t# j  tk , 0 Ÿ t Ÿ 1, and F œ xyi  yj  yzk Ê F œ t$ i  t# j  t$ k and 1

œ 2t Ê W" œ '0 2t dt œ ";

œ i  2tj  k

dr dt

" #

14. r œ (cos t)i  (sin t)j  6t k , 0 Ÿ t Ÿ 21, and F œ 2yi  3xj  (x  y)k Ê F œ (2 sin t)i  (3 cos t)j  (cos t  sin t)k and œ 3 cos# t  2sin2 t  œ  32 t 

3 4

" 6

sin 2t  t 

cos t  " 6



sin 2t 2

" 6

dr dt

œ ( sin t)i  (cos t)j  6" k Ê F †

sin t Ê work œ '0 ˆ3 cos# t  2 sin2 t 

sin t 

" 6

#1 t‘ !

cos

21

" 6

cos t 

" 6

dr dt

sin t‰ dt

œ1

15. r œ (sin t)i  (cos t)j  tk , 0 Ÿ t Ÿ 21, and F œ zi  xj  yk Ê F œ ti  (sin t)j  (cos t)k and dr dt

œ (cos t)i  (sin t)j  k Ê F †

œ cos t  t sin t 



t 2

sin 2t 4

dr dt

œ t cos t  sin# t  cos t Ê work œ '0 at cos t  sin# t  cos tb dt 21

#1

 sin t‘ ! œ 1

16. r œ (sin t)i  (cos t)j  6t k , 0 Ÿ t Ÿ 21, and F œ 6zi  y# j  12xk Ê F œ ti  acos# tbj  (12 sin t)k and dr dt

œ (cos t)i  (sin t)j  "6 k Ê F †

dr dt

œ t cos t  sin t cos# t  2 sin t

Ê work œ '0 at cos t  sin t cos# t  2 sin tb dt œ cos t  t sin t  21

1 3

#1

cos$ t  2 cos t‘ ! œ 0

17. x œ t and y œ x# œ t# Ê r œ ti  t# j , 1 Ÿ t Ÿ 2, and F œ xyi  (x  y)j Ê F œ t$ i  at  t# b j and dr dt

œ i  2tj Ê F †

dr dt

œ t$  a2t#  2t$ b œ 3t$  2t# Ê 'C xy dx  (x  y) dy œ 'C F †

#

œ  34 t%  23 t$ ‘ " œ ˆ12 

16 ‰ 3

 ˆ 34  23 ‰ œ

45 4



18 3

œ

dr dt

dt œ 'c" a3t$  2t# b dt #

69 4

18. Along (0ß 0) to (1ß 0): r œ ti , 0 Ÿ t Ÿ 1, and F œ (x  y)i  (x  y)j Ê F œ ti  tj and

dr dt

œi Ê F†

dr dt

œ t;

Along (1ß 0) to (0ß 1): r œ (1  t)i  tj , 0 Ÿ t Ÿ 1, and F œ (x  y)i  (x  y)j Ê F œ (1  2t)i  j and dr dr dt œ i  j Ê F † dt œ 2t; Along (0ß 1) to (0ß 0): r œ (1  t)j , 0 Ÿ t Ÿ 1, and F œ (x  y)i  (x  y)j Ê F œ (t  1)i  (1  t)j and dr dt

œ j Ê F †

dr dt

œ t  1 Ê 'C (x  y) dx  (x  y) dy œ '0 t dt  '0 2t dt  '0 (t  1) dt œ '0 (4t  1) dt 1

1

1

1

"

œ c2t#  td ! œ 2  1 œ 1 19. r œ xi  yj œ y# i  yj , 2   y   1, and F œ x# i  yj œ y% i  yj Ê Ê

c1

'C F † T ds œ '2

F†

dr dy

dr dt

œ 2yi  j and F †

dr dy

œ 2y&  y

" 4‰ dy œ '2 a2y&  yb dy œ  3" y'  #" y# ‘ # œ ˆ 3"  #" ‰  ˆ 64 3  # œ

20. r œ (cos t)i  (sin t)j , 0 Ÿ t Ÿ Ê F†

c1

dr dy

1 #

, and F œ yi  xj Ê F œ (sin t)i  (cos t)j and

œ  sin# t  cos# t œ 1 Ê

'C F † dr œ '0

1Î2

dr dt

3 #



63 3

œ  39 #

œ ( sin t)i  (cos t)j

(1) dt œ  1#

21. r œ (i  j)  t(i  2j) œ (1  t)i  (1  2t)j , 0 Ÿ t Ÿ 1, and F œ xyi  (y  x)j Ê F œ a1  3t  2t# b i  tj and dr dt

œ i  2j Ê F †

dr dt

œ 1  5t  2t# Ê work œ 'C F †

dr dt

dt œ '0 a1  5t  2t# b dt œ t  52 t#  23 t$ ‘ ! œ 1

22. r œ (2 cos t)i  (2 sin t)j , 0 Ÿ t Ÿ 21, and F œ ™ f œ 2(x  y)i  2(x  y)j Ê F œ 4(cos t  sin t)i  4(cos t  sin t)j and ddtr œ (2 sin t)i  (2 cos t)j Ê F †

"

dr dt

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

25 6

1004 Chapter 16 Integration in Vector Fields œ 8 asin t cos t  sin# tb  8 acos# t  cos t sin tb œ 8 acos# t  sin# tb œ 8 cos 2t Ê work œ 'C ™ f † dr œ 'C F †

dt œ '0 8 cos 2t dt œ c4 sin 2td #!1 œ 0 21

dr dt

23. (a) r œ (cos t)i  (sin t)j , 0 Ÿ t Ÿ 21, F" œ xi  yj , and F# œ yi  xj Ê F" œ (cos t)i  (sin t)j , and F# œ ( sin t)i  (cos t)j Ê F" †

dr dt

dr dt

œ ( sin t)i  (cos t)j ,

œ 0 and F# †

dr dt

œ sin# t  cos# t œ 1

Ê Circ" œ '0 0 dt œ 0 and Circ# œ '0 dt œ 21; n œ (cos t)i  (sin t)j Ê F" † n œ cos# t  sin# t œ 1 and 21

21

F# † n œ 0 Ê Flux" œ '0 dt œ 21 and Flux# œ '0 0 dt œ 0 21

21

(b) r œ (cos t)i  (4 sin t)j , 0 Ÿ t Ÿ 21 Ê F# œ (4 sin t)i  (cos t)j Ê F" †

dr dt

dr dt

œ ( sin t)i  (4 cos t)j , F" œ (cos t)i  (4 sin t)j , and

œ 15 sin t cos t and F# †

dr dt

œ 4 Ê Circ" œ '0 15 sin t cos t dt 21

#1 œ  "25 sin# t‘ ! œ 0 and Circ# œ '0 4 dt œ 81; n œ Š È417 cos t‹ i  Š È"17 sin t‹ j Ê F" † n 21

œ

4 È17

cos# t 

4 È17

sin# t and F# † n œ  È1517 sin t cos t Ê Flux" œ '0 (F" † n) kvk dt œ '0 Š È417 ‹ È17 dt 21

21

# ‘ #1 œ 81 and Flux# œ '0 (F# † n) kvk dt œ '0 Š È1517 sin t cos t‹ È17 dt œ  15 2 sin t ! œ 0 21

21

24. r œ (a cos t)i  (a sin t)j , 0 Ÿ t Ÿ 21, F" œ 2xi  3yj , and F# œ 2xi  (x  y)j Ê

œ (a sin t)i  (a cos t)j ,

dr dt

F" œ (2a cos t)i  (3a sin t)j , and F# œ (2a cos t)i  (a cos t  a sin t)j Ê n kvk œ (a cos t)i  (a sin t)j , F" † n kvk œ 2a# cos# t  3a# sin# t, and F# † n kvk œ 2a# cos# t  a# sin t cos t  a# sin# t Ê Flux" œ '0 a2a# cos# t  3a# sin# tb dt œ 2a#  2t  21

sin 2t ‘ #1 4 !

 3a#  2t 

Flux# œ '0 a2a# cos# t  a# sin t cos t  a# sin# tb dt œ 2a#  2t  21

25. F" œ (a cos t)i  (a sin t)j ,

d r" dt

œ (a sin t)i  (a cos t)j Ê F" †

sin 2t ‘ #1 4 ! d r" dt



sin 2t ‘ #1 4 !

œ 1a# , and

a# #

#1

csin# td !  a#  2t 

sin 2t ‘ #1 4 !

œ 1a#

œ 0 Ê Circ" œ 0; M" œ a cos t,

N" œ a sin t, dx œ a sin t dt, dy œ a cos t dt Ê Flux" œ 'C M" dy  N" dx œ '0 aa# cos# t  a# sin# tb dt œ '0 a# dt œ a# 1;

1

1

F # œ ti ,

d r# dt

œ i Ê F# †

d r# dt

œ t Ê Circ# œ 'ca t dt œ 0; M# œ t, N# œ 0, dx œ dt, dy œ 0 Ê Flux# a

œ 'C M# dy  N# dx œ 'ca 0 dt œ 0; therefore, Circ œ Circ"  Circ# œ 0 and Flux œ Flux"  Flux# œ a# 1 a

26. F" œ aa# cos# tb i  aa# sin# tb j ,

d r" dt

œ (a sin t)i  (a cos t)j Ê F" †

d r" dt

œ a$ sin t cos# t  a$ cos t sin# t

Ê Circ" œ '0 aa$ sin t cos# t  a$ cos t sin# tb dt œ  2a3 ; M" œ a# cos# t, N" œ a# sin# t, dy œ a cos t dt, 1

$

dx œ a sin t dt Ê Flux" œ 'C M" dy  N" dx œ '0 aa$ cos$ t  a$ sin$ tb dt œ 1

F # œ t# i ,

d r# dt

œ i Ê F# †

d r# dt

œ t# Ê Circ# œ 'ca t# dt œ a

2a$ 3

4 3

a$ ;

; M# œ t# , N# œ 0, dy œ 0, dx œ dt

Ê Flux# œ 'C M# dy  N# dx œ 0; therefore, Circ œ Circ"  Circ# œ 0 and Flux œ Flux"  Flux# œ 27. F" œ (a sin t)i  (a cos t)j ,

d r" dt

œ (a sin t)i  (a cos t)j Ê F" †

d r" dt

4 3

a$

œ a# sin# t  a# cos# t œ a#

Ê Circ" œ '0 a# dt œ a# 1 ; M" œ a sin t, N" œ a cos t, dx œ a sin t dt, dy œ a cos t dt 1

Ê Flux" œ 'C M" dy  N" dx œ '0 aa# sin t cos t  a# sin t cos tb dt œ 0; F# œ tj , 1

dr# dt

œ i Ê F# †

d r# dt

œ0

Ê Circ# œ 0; M# œ 0, N# œ t, dx œ dt, dy œ 0 Ê Flux# œ 'C M# dy  N# dx œ 'ca t dt œ 0; therefore, a

Circ œ Circ"  Circ# œ a# 1 and Flux œ Flux"  Flux# œ 0

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 16.2 Vector Fields, Work, Circulation, and Flux 1005 28. F" œ aa# sin# tb i  aa# cos# tb j ,

d r" dt

œ (a sin t)i  (a cos t)j Ê F" †

Ê Circ" œ '0 aa$ sin$ t  a$ cos$ tb dt œ 1

4 3

d r" dt

œ a$ sin$ t  a$ cos$ t

a$ ; M" œ a# sin# t, N" œ a# cos# t, dy œ a cos t dt, dx œ a sin t dt

Ê Flux" œ 'C M" dy  N" dx œ '0 aa$ cos t sin# t  a$ sin t cos# tb dt œ 1

2 3

a$ ; F# œ t# j ,

d r# dt

œ i Ê F# †

d r# dt

œ0

Ê Circ# œ 0; M# œ 0, N# œ t# , dy œ 0, dx œ dt Ê Flux# œ 'C M# dy  N# dx œ 'ca t# dt œ  23 a$ ; therefore, a

Circ œ Circ"  Circ# œ

4 3

a$ and Flux œ Flux"  Flux# œ 0

29. (a) r œ (cos t)i  (sin t)j , 0 Ÿ t Ÿ 1, and F œ (x  y)i  ax#  y# b j Ê F œ (cos t  sin t)i  acos# t  sin# tb j Ê F †

dr dt

(b)

sin 2t 1 ‘1 4  sin t ! œ  # r œ (1  2t)i , 0 Ÿ t Ÿ 1, and F œ (x  y)i  ax#  y# b j Ê ddtr œ 2i and F œ (1  2t)i  (1  2t)# j Ê 1 " F † ddtr œ 4t  2 Ê C F † T ds œ 0 (4t  2) dt œ c2t#  2td ! œ 0 r" œ (1  t)i  tj , 0 Ÿ t Ÿ 1, and F œ (x  y)i  ax#  y# b j Ê ddtr" œ i  j and F œ (1  2t)i  a1  2t

'

(c)

œ (sin t)i  (cos t)j and

œ  sin t cos t  sin# t  cos t Ê 'C F † T ds

œ '0 a sin t cos t  sin# t  cos tb dt œ  "2 sin# t  1

dr dt

Ê F†



t #

'

œ (2t  1)  a1  2t  2t# b œ 2t# Ê Flow" œ 'C F †

d r" dt

"

0 Ÿ t Ÿ 1, and F œ (x  y)i  ax#  y# b j Ê œ i  a2t#  2t  1b j Ê F † "

œ t#  23 t$ ‘ ! œ

" 3

dr# dt

dr# dt

dr" dt

œ '0 2t# dt œ 1

2 3

 2t# b j

; r# œ ti  (t  1)j ,

œ i  j and F œ i  at#  t#  2t  1b j

œ 1  a2t#  2t  1b œ 2t  2t# Ê Flow# œ 'C F †

dr# dt

#

Ê Flow œ Flow"  Flow# œ

2 3



" 3

œ '0 a2t  2t# b dt 1

œ1

30. From (1ß 0) to (0ß 1): r" œ (1  t)i  tj , 0 Ÿ t Ÿ 1, and F œ (x  y)i  ax#  y# b j Ê

d r" dt

œ i  j ,

F œ i  a1  2t  2t# b j , and n" kv" k œ i  j Ê F † n" kv" k œ 2t  2t# Ê Flux" œ '0 a2t  2t# b dt 1

"

œ t#  23 t$ ‘ ! œ

" 3

;

From (0ß 1) to (1ß 0): r# œ ti  (1  t)j , 0 Ÿ t Ÿ 1, and F œ (x  y)i  ax#  y# b j Ê

d r# dt

œ i  j ,

#

F œ (1  2t)i  a1  2t  2t b j , and n# kv# k œ i  j Ê F † n# kv# k œ (2t  1)  a1  2t  2t# b œ 2  4t  2t# Ê Flux# œ '0 a2  4t  2t# b dt œ 2t  2t#  23 t$ ‘ ! œ  23 ; 1

"

From (1ß 0) to (1ß 0): r$ œ (1  2t)i , 0 Ÿ t Ÿ 1, and F œ (x  y)i  ax#  y# b j Ê #

d r$ dt

œ 2i ,

#

F œ (1  2t)i  a1  4t  4t b j , and n$ kv$ k œ 2j Ê F † n$ kv$ k œ 2 a1  4t  4t b Ê Flux$ œ 2 '0 a1  4t  4t# b dt œ 2 t  2t#  43 t$ ‘ ! œ 1

31. F œ  Èx#y y# i 

"

x È x#  y#

2 3

Ê Flux œ Flux"  Flux#  Flux$ œ

j on x#  y# œ 4;

at (2ß 0), F œ j ; at (0ß 2), F œ i ; at (2ß 0), È F œ j ; at (!ß 2), F œ i ; at ŠÈ2ß È2‹ , F œ  #3 i  "# j ; at ŠÈ2ß È2‹ , F œ Fœ

È3 #

È3 #

i  "# j ; at ŠÈ2ß È2‹ ,

i  "# j ; at ŠÈ2ß È2‹ , F œ

È3 #

i  "# j

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

" 3



2 3



2 3

œ

" 3

1006 Chapter 16 Integration in Vector Fields 32. F œ xi  yj on x#  y# œ 1; at (1ß 0), F œ i ; at (1ß 0), F œ i ; at (0ß 1), F œ j ; at (0ß 1), F œ j ; at Š "# ß

È3 # ‹,



" #

at Š "# ß

È3 # ‹,

F œ  "# i 

at Š "# ß 

È3 # ‹,



at Š "# ß 

È3 # ‹,

" #

i

i È3 #

È3 #

È3 #

j;

j;

j;

F œ  "# i 

È3 #

j.

33. (a) G œ P(xß y)i  Q(xß y)j is to have a magnitude Èa#  b# and to be tangent to x#  y# œ a#  b# in a counterclockwise direction. Thus x#  y# œ a#  b# Ê 2x  2yyw œ 0 Ê yw œ  xy is the slope of the tangent line at any point on the circle Ê yw œ  ba at (aß b). Let v œ bi  aj Ê kvk œ Èa#  b# , with v in a counterclockwise direction and tangent to the circle. Then let P(xß y) œ y and Q(xß y) œ x Ê G œ yi  xj Ê for (aß b) on x#  y# œ a#  b# we have G œ bi  aj and kGk œ Èa#  b# . (b) G œ ˆÈx#  y# ‰ F œ ŠÈa#  b# ‹ F . 34. (a) From Exercise 33, part a, yi  xj is a vector tangent to the circle and pointing in a counterclockwise direction Ê yi  xj is a vector tangent to the circle pointing in a clockwise direction Ê G œ Èyxi #xjy# is a unit vector tangent to the circle and pointing in a clockwise direction. (b) G œ F 35. The slope of the line through (xß y) and the origin is pointing away from the origin Ê F œ 

xi  yj È x#  y#

y x

Ê v œ xi  yj is a vector parallel to that line and

is the unit vector pointing toward the origin.

36. (a) From Exercise 35,  Èxxi #yjy# is a unit vector through (xß y) pointing toward the origin and we want kFk to have magnitude Èx#  y# Ê F œ Èx#  y# Š Èxxi #yjy# ‹ œ xi  yj . (b) We want kFk œ

C È x#  y#

37. F œ 4t$ i  8t# j  2k and 38. F œ 12t# j  9t# k and

dr dt

where C Á 0 is a constant Ê F œ dr dt

œ i  2tj Ê F †

œ 3j  4k Ê F †

39. F œ (cos t  sin t)i  (cos t)k and

dr dt

dr dt

dr dt

40. F œ (2 sin t)i  (2 cos t)j  2k and

œ 12t$ Ê Flow œ '0 12t$ dt œ c3t% d ! œ 48 2

#

1

œ ( sin t)i  (cos t)k Ê F †

dr dt

yj Š Èxxi #yjy# ‹ œ C Š xx#i   y# ‹.

œ 72t# Ê Flow œ '0 72t# dt œ c24t$ d ! œ 24

Ê Flow œ '0 ( sin t cos t  1) dt œ  "2 cos# t  1

C È x#  y#

1 t‘ !

dr dt

"

œ  sin t cos t  1

œ ˆ "#  1‰  ˆ "#  0‰ œ 1

œ (2 sin t)i  (2 cos t)j  2k Ê F †

dr dt

œ 4 sin# t  4 cos# t  4 œ 0

Ê Flow œ 0 41. C" : r œ (cos t)i  (sin t)j  tk , 0 Ÿ t Ÿ Ê F†

dr dt

1 #

Ê F œ (2 cos t)i  2tj  (2 sin t)k and

dr dt

œ ( sin t)i  (cos t)j  k

œ 2 cos t sin t  2t cos t  2 sin t œ  sin 2t  2t cos t  2 sin t Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 16.2 Vector Fields, Work, Circulation, and Flux 1007 Ê Flow" œ '0

1Î2

C# : r œ j 

1 #

1Î#

( sin 2t  2t cos t  2 sin t) dt œ  "2 cos 2t  2t sin t  2 cos t  2 cos t‘ !

(1  t)k , 0 Ÿ t Ÿ 1 Ê F œ 1(1  t)j  2k and

dr dt

Ê Flow# œ '0 1 dt œ c1td "! œ 1;

1 #

œ k Ê F†

dr dt

œ 1  1 ;

œ 1

1

C$ : r œ ti  (1  t)j , 0 Ÿ t Ÿ 1 Ê F œ 2ti  2(1  t)k and

dr dt

œij Ê F†

Ê Flow$ œ '0 2t dt œ ct# d ! œ 1 Ê Circulation œ (1  1)  1  1 œ 0 1

42. F †

œx

dr dt

dx dt

y

dr dt

œ 2t

"

dy dt

z

` f dx ` x dt

œ

dz dt



` f dy ` y dt

by the chain rule Ê Circulation œ 'C F †

dr dt



` f dz ` z dt

dt œ 'a

, where f(xß yß z) œ b

d dt afaratbbb

" #

ax#  y#  x# b Ê F †

dr dt

œ

d dt afaratbbb

dt œ farabbb  faraabb. Since C is an entire ellipse,

rabb œ raab, thus the Circulation œ 0. 43. Let x œ t be the parameter Ê y œ x# œ t# and z œ x œ t Ê r œ ti  t# j  tk , 0 Ÿ t Ÿ 1 from (0ß 0ß 0) to (1ß 1ß 1) Ê œ

dr dt

œ i  2tj  k and F œ xyi  yj  yzk œ t$ i  t# j  t$ k Ê F †

œ t$  2t$  t$ œ 2t$ Ê Flow œ '0 2t$ dt 1

" #

44. (a) F œ ™ axy# z$ b Ê F † œ 'a

(b)

dr dt

b

d dt afaratbbb

dr dt

œ

` f dx ` x dt



` f dy ` y dt

` z dz ` z dt



œ

df dt

, where f(xß yß z) œ xy# z$ Ê )C F †

dr dt

dt

dt œ farabbb  faraabb œ 0 since C is an entire ellipse.

Ð2ß1ß1Ñ

'C F † ddtr œ 'Ð1ß1ß1Ñ

Ð#ß"ß"Ñ

axy# z$ b dt œ cxy# z$ d Ð"ß"ß"Ñ œ (2)(1)# (1)$  (1)(1)# (1)$ œ 2  1 œ 3

d dt

45. Yes. The work and area have the same numerical value because work œ 'C F † dr œ 'C yi † dr œ 'b [f(t)i] † i  a

df dt

j‘ dt

[On the path, y equals f(t)]

œ 'a f(t) dt œ Area under the curve b

46. r œ xi  yj œ xi  f(x)j Ê from the origin Ê F † Ê

'C

dr dx

œ

F † T ds œ 'C F †

dr dx

dr dx

[because f(t)  0]

œ i  f w (x)j ; F œ

kx È x#  y#



k†y†f (x) È x#  y#

dx œ 'a k b

w

d dx

k È x#  y#

œ

(xi  yj) has constant magnitude k and points away

kx  k†f(x)†f (x) Èx#  [f(x)]# w

œk

d dx

Èx#  [f(x)]# , by the chain rule

Èx#  [f(x)]# dx œ k Èx#  [f(x)]# ‘ b a

œ k ˆÈb#  [f(b)]#  Èa#  [f(a)]# ‰ , as claimed. 47-52. Example CAS commands: Maple: with( LinearAlgebra );#47 F := r -> < r[1]*r[2]^6 | 3*r[1]*(r[1]*r[2]^5+2) >; r := t -> < 2*cos(t) | sin(t) >; a,b := 0,2*Pi; dr := map(diff,r(t),t); F(r(t)); q1 := simplify( F(r(t)) . dr ) assuming t::real; q2 := Int( q1, t=a..b ); value( q2 ); Mathematica: (functions and bounds will vary): Exercises 47 and 48 use vectors in 2 dimensions Clear[x, y, t, f, r, v] f[x_, y_]:= {x y6 , 3x (x y5  2)}

# (a) # (b) # (c)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

1008 Chapter 16 Integration in Vector Fields {a, b}={0, 21}; x[t_]:= 2 Cos[t] y[t_]:= Sin[t] r[t_]:={x[t], y[t]} v[t_]:= r'[t] integrand= f[x[t], y[t]] . v[t] //Simplify Integrate[integrand,{t, a, b}] N[%] If the integration takes too long or cannot be done, use NIntegrate to integrate numerically. This is suggested for exercises 49 - 52 that use vectors in 3 dimensions. Be certain to leave spaces between variables to be multiplied. Clear[x, y, z, t, f, r, v] f[x_, y_, z_]:= {y  y z Cos[x y z], x2  x z Cos[x y z], z  x y Cos[x y z]} {a, b}={0, 21}; x[t_]:= 2 Cos[t] y[t_]:= 3 Sin[t] z[t_]:= 1 r[t_]:={x[t], y[t], z[t]} v[t_]:= r'[t] integrand= f[x[t], y[t],z[t]] . v[t] //Simplify NIntegrate[integrand,{t, a, b}] 16.3 PATH INDEPENDENCE, POTENTIAL FUNCTIONS, AND CONSERVATIVE FIELDS 1.

`P `y

œxœ

2.

`P `y

œ x cos z œ

3.

`P `y

œ 1 Á 1 œ

5.

`N `x

œ0Á1œ

6.

`P `y

œ0œ

7.

`f `x

œ 2x Ê f(xß yß z) œ x#  g(yß z) Ê

Ê 8.

`f `x

`f `z

`N `z

`N `z

,

,

`M `z `N `z

œyœ ,

`N `z

`M `y `M `z

`M `z

`P `x

,

`N `x

`M `y

œzœ

œ y cos z œ

`P `x

,

`f `x

`N `x

œ0œ

`P `x

,

`N `x

`M `y

œ ex sin y œ `f `y

œ

`f `z

`M `y

Ê Not Conservative

`g `y

œ 3y Ê g(yß z) œ

 h(z) Ê

`f `z

œ 2xe

y2z

w

œx

`f `y œ y2z

3y# #

 h(z)

 2z#  C `g `y

œxz Ê

œ z Ê g(yß z) œ zy  h(z)

w

xey2z 

`f `y

`g `y

œ xey2z Ê

`g `y

œ 0 Ê f(xß yß z)

w

Ê h (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ xey2z  C

 h (z) œ 2xe

`f `z

`g `y

 h(z) Ê f(xß yß z) œ x# 

w

œ y sin z Ê f(xß yß z) œ xy sin z  g(yß z) Ê

Ê f(xß yß z) œ xy sin z  h(z) Ê

`f `y

3y #

#

3y# #

œ x  y  h (z) œ x  y Ê h (z) œ 0 Ê h(z) œ C Ê f(xß yß z)

œ ey2z Ê f(xß yß z) œ xey2z  g(yß z) Ê

œ xy sin z  C

œ 1 Á 1 œ

Ê Conservative

œ hw (z) œ 4z Ê h(z) œ 2z#  C Ê f(xß yß z) œ x# 

y2z

10.

Ê Conservative

4.

œ y  z Ê f(xß yß z) œ (y  z)x  g(yß z) Ê

œ xe

`M `y

Ê Not Conservative

œ (y  z)x  zy  C `f `x

œ sin z œ

Ê Not Conservative

Ê f(xß yß z) œ (y  z)x  zy  h(z) Ê

9.

`N `x

Ê Conservative

œ x sin z  w

`g `y

œ x sin z Ê

`g `y

œ 0 Ê g(yß z) œ h(z)

w

œ xy cos z  h (z) œ xy cos z Ê h (z) œ 0 Ê h(z) œ C Ê f(xß yß z)

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 16.3 Path Independence, Potential Functions, and Conservative Fields 1009 11.

`f `z

œ

Ê f(xß yß z) œ

z y #  z#

" #

œ (x ln x  x)  tan (x  y)  h(y) Ê f(xß yß z) œ `f `y

Ê

12.

œ

" #

`f `x

œ

œ

y y #  z# # #

" #

`g `x œ #

œ

ln x  sec# (x  y) Ê g(xß y)

ln ay#  z b  (x ln x  x)  tan (x  y)  h(y)

 sec# (x  y)  hw (y) œ sec# (x  y) 

y y #  z#

Ê hw (y) œ 0 Ê h(y) œ C Ê f(xß yß z)

ln ay  z b  (x ln x  x)  tan (x  y)  C y 1  x# y# `g `y

œ

z È 1  y # z#

Ê

`f `z

œ

y È 1  y # z#

 hw (z) œ

Ê f(xß yß z) œ tan

"

(xy)  sin

`f `z

" z



y È 1  y # z#

`g `y



x 1  x# y#

œ

" z

Ê hw (z) œ

`P `y

`N `z

`M `P `N `M `z œ 0 œ `x , `x œ 0 œ `y `g `f # ` y œ ` y œ 2y Ê g(yß z) œ y 

œ0œ

œ 2x Ê f(xß yß z) œ x#  g(yß z) Ê

`P `y

14. Let F(xß yß z) œ yzi  xzj  xyk Ê

œ yz Ê f(xß yß z) œ xyz  g(yß z) Ê `f `z

œ xyz  h(z) Ê Ð3ß5ß0Ñ

'Ð1ß1ß2Ñ

Ê

`N `z

œxœ

Ê M dx  N dy  P dz is

,

,

`f `y

`M `z

œyœ `g `y

œ xz 

`P `x

,

`N `x

`M `y

œzœ `g `y

œ xz Ê

h(z) Ê f(xß yß z) œ x#  y# œ h(z)

'Ð0Ð2ß0ß3ß0ßÑ 6Ñ 2x dx  2y dy  2z dz

œ f(2ß 3ß 6)  f(!ß !ß !) œ 2#  3#  (6)# œ 49

exact;

z È 1  y # z#

Ê h(z) œ ln kzk  C

œ hw (z) œ 2z Ê h(z) œ z#  C Ê f(xß yß z) œ x#  y#  z#  C Ê

`f `x



x 1  x# y#

(yz)  ln kzk  C

13. Let F(xß yß z) œ 2xi  2yj  2zk Ê `f `x

œ

Ê g(yß z) œ sin" (yz)  h(z) Ê f(xß yß z) œ tan" (xy)  sin" (yz)  h(z) "

exact;

`f `y

Ê f(xß yß z) œ tan" (xy)  g(yß z) Ê

Ê

Ê

`f `x

ln ay#  z# b  g(xß y) Ê

Ê M dx  N dy  P dz is

œ 0 Ê g(yß z) œ h(z) Ê f(xß yß z)

œ xy  hw (z) œ xy Ê hw (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ xyz  C

yz dx  xz dy  xy dz œ f(3ß 5ß 0)  f(1ß 1ß 2) œ 0  2 œ 2

15. Let F(xß yß z) œ 2xyi  ax#  z# b j  2yzk Ê Ê M dx  N dy  P dz is exact;

`f `x

`P `y

`N `z

œ 2z œ

,

`M `z

œ0œ

`P `x

œ 2xy Ê f(xß yß z) œ x# y  g(yß z) Ê

Ê g(yß z) œ yz#  h(z) Ê f(xß yß z) œ x# y  yz#  h(z) Ê

`f `z

,

`N `x

`f `y w

œ 2x œ

œ x# 

`g `y

`M `y `g `y

œ x#  z# Ê

œ z#

œ 2yz  h (z) œ 2yz Ê hw (z) œ 0 Ê h(z) œ C

Ê f(xß yß z) œ x# y  yz#  C Ê 'Ð0ß0ß0Ñ 2xy dx  ax#  z# b dy  2yz dz œ f("ß #ß $)  f(!ß !ß !) œ 2  2(3)# œ 16 Ð1ß2ß3Ñ

16. Let F(xß yß z) œ 2xi  y# j  ˆ 1 4 z# ‰ k Ê Ê M dx  N dy  P dz is exact; Ê f(xß yß z) œ x#  œ x# 

y$ 3

œ ˆ9 

27 3

y$ 3

 h(z) Ê

`f `x

`P `y

œ0œ

`N `z

`f `z

,

`N `x

œ0œ `f `y

œ

`M `y

`g `y

$

œ y# Ê g(yß z) œ  y3  h(z)

4 1  z#

dz œ f(3ß 3ß 1)  f(!ß !ß !)

 (!  !  0) œ 1

17. Let F(xß yß z) œ (sin y cos x)i  (cos y sin x)j  k Ê Ê M dx  N dy  P dz is exact; œ cos y sin x Ê

`P `x

œ0œ

œ hw (z) œ  1 4 z# Ê h(z) œ 4 tan" z  C Ê f(xß yß z)

Ð3ß3ß1Ñ

4†

`M `z

œ 2x Ê f(xß yß z) œ x#  g(yß z) Ê

 4 tan" z  C Ê 'Ð0ß0ß0Ñ 2x dx  y# dy  1‰ 4

,

`g `y

`f `x

`P `y

œ0œ

`N `z

,

`M `z

œ0œ

`P `x

,

`N `x

œ cos y cos x œ

œ sin y cos x Ê f(xß yß z) œ sin y sin x  g(yß z) Ê

œ 0 Ê g(yß z) œ h(z) Ê f(xß yß z) œ sin y sin x  h(z) Ê

Ê f(xß yß z) œ sin y sin x  z  C Ê

' 100101

Ð ß ß Ñ

Ð ß ß Ñ

`f `z

`f `y

`M `y

œ cos y sin x 

`g `y

œ hw (z) œ 1 Ê h(z) œ z  C

sin y cos x dx  cos y sin x dy  dz œ f(0ß 1ß 1)  f(1ß !ß !)

œ (0  1)  (0  0) œ 1 18. Let F(xß yß z) œ (2 cos y)i  Š "y  2x sin y‹ j  ˆ "z ‰ k Ê Ê M dx  N dy  P dz is exact; œ

" y

 2x sin y Ê

`g `y

œ

" y

`f `x

`P `y

œ0œ

`N `z

,

`M `z

œ0œ

`P `x

œ 2 cos y Ê f(xß yß z) œ 2x cos y  g(yß z) Ê

, `f `y

`N `x

œ 2 sin y œ

œ 2x sin y 

Ê g(yß z) œ ln kyk  h(z) Ê f(xß yß z) œ 2x cos y  ln kyk  h(z) Ê

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

`f `z

`M `y

`g `y

œ hw (z) œ

" z

1010 Chapter 16 Integration in Vector Fields Ê h(z) œ ln kzk  C Ê f(xß yß z) œ 2x cos y  ln kyk  ln kzk  C

Ê 'Ð0ß2ß1Ñ

Ð1ß1Î2ß2Ñ

2 cos y dx  Š "y  2x sin y‹ dy  1 #

œ ˆ2 † 0  ln

" z

dz œ f ˆ1ß 1# ß 2‰  f(!ß #ß ")

 ln 2‰  (0 † cos 2  ln 2  ln 1) œ ln #

19. Let F(xß yß z) œ 3x# i  Š zy ‹ j  (2z ln y)k Ê Ê M dx  N dy  P dz is exact;

`f `x

`P `y

œ

2z y

1 # `N `z

œ

`M `z

,

œ0œ

`P `x

`f `y

œ 3x# Ê f(xß yß z) œ x$  g(yß z) Ê

Ê f(xß yß z) œ x$  z# ln y  h(z) Ê œ x$  z# ln y  C Ê 'Ð1ß1ß1Ñ 3x# dx  Ð1ß2ß3Ñ

`N `x

,

œ0œ

œ

`g `y

œ

`M `y z# y

Ê g(yß z) œ z# ln y  h(z)

`f `z

œ 2z ln y  hw (z) œ 2z ln y Ê hw (z) œ 0 Ê h(z) œ C Ê f(xß yß z)

z# y

dy  2z ln y dz œ f(1ß 2ß 3)  f("ß "ß ")

œ (1  9 ln 2  C)  (1  0  C) œ 9 ln 2 #

`P `y

20. Let F(xß yß z) œ (2x ln y  yz)i  Š xy  xz‹ j  (xy)k Ê Ê M dx  N dy  P dz is exact; x# y

œ

`g `y

 xz Ê

`f `x

`N `z

œ x œ

,

`M `z

œ y œ

`P `x

,

`N `x

œ 2x ln y  yz Ê f(xß yß z) œ x# ln y  xyz  g(yß z) Ê `f `z

œ 0 Ê g(yß z) œ h(z) Ê f(xß yß z) œ x# ln y  xyz  h(z) Ê

œ

2x y

`f `y

œ

zœ x# y

`M `y

 xz 

`g `y

œ xy  hw (z) œ xy Ê hw (z) œ 0

Ê h(z) œ C Ê f(xß yß z) œ x# ln y  xyz  C Ê 'Ð1ß2ß1Ñ (2x ln y  yz) dx  Š xy  xz‹ dy  xy dz Ð2ß1ß1Ñ

#

œ f(2ß 1ß 1)  f("ß 2ß 1) œ (4 ln 1  2  C)  (ln 2  2  C) œ  ln 2 21. Let F(xß yß z) œ Š "y ‹ i  Š 1z 

x y# ‹ j

Ê M dx  N dy  P dz is exact; Ê

`g `y

œ

" z

Ê g(yß z) œ

Ê f(xß yß z) œ

x y



y z

 ˆ zy# ‰ k Ê

`f `x

" y

œ

 C Ê 'Ð1ß1ß1Ñ

Ð2ß2ß2Ñ

" y

œ  z"# œ

Ê f(xß yß z) œ

 h(z) Ê f(xß yß z) œ

y z

`P `y

x y

dx  Š 1z 



y z

x y# ‹

x y

`N `z

`M `z

,

`f `y  zy#

 g(yß z) Ê `f `z

 h(z) Ê dy 

y z#

`P `x

œ0œ

œ

,

`N `x

œ  y1# œ

œ  yx# 

`g `y

œ

" z

`M `y



x y#

 hw (z) œ  zy# Ê hw (z) œ 0 Ê h(z) œ C

dz œ f(2ß 2ß 2)  f("ß 1ß 1) œ ˆ 2# 

2 #

 C‰  ˆ 1" 

œ0 22. Let F(xß yß z) œ Ê `f `x

`P `y

2xi  2yj  2zk x #  y #  z#

œ  4yz œ 3%

`N `z

,

`M `z

Šand let 3# œ x#  y#  z# Ê

œ

2x x#  y#  z# Ê f(xß yß z) œ Ê `` gy œ 0 Ê g(yß z) œ h(z) w œ x#  2z y#  z# Ê h (z) œ 0 Ê

Ð2ß2ß2Ñ

Ê 'Ð1ß1ß1Ñ

`P `x

œ  4xz œ 3%

2x dx  2y dy  2z dz x #  y #  z#

,

`N `x

œ  4xy œ 3%

`3 `x

`M `y

œ

x 3

`3 `y

,

œ

y 3

`3 `z

,

œ 3z ‹

Ê M dx  N dy  P dz is exact; `f `y

ln ax#  y#  z# b  g(yß z) Ê

œ

2y x #  y #  z#

Ê f(xß yß z) œ ln ax#  y#  z# b  h(z) Ê

`g `y



`f `z

œ

œ

2y x #  y #  z#

 hw (z)

2z x #  y #  z#

h(z) œ C Ê f(xß yß z) œ ln ax#  y#  z# b  C

œ f(2ß 2ß 2)  f("ß 1ß 1) œ ln 12  ln 3 œ ln 4

23. r œ (i  j  k)  t(i  2j  2k) œ (1  t)i  (1  2t)j  (1  2t)k, 0 Ÿ t Ÿ 1 Ê dx œ dt, dy œ 2 dt, dz œ 2 dt Ð2ß3ß1Ñ

Ê 'Ð1ß1ß1Ñ y dx  x dy  4 dz œ '0 (2t  1) dt  (t  1)(2 dt)  4(2) dt œ '0 (4t  5) dt œ c2t#  5td ! œ 3 1

1

24. r œ t(3j  4k), 0 Ÿ t Ÿ 1 Ê dx œ 0, dy œ 3 dt, dz œ 4 dt Ê

' 000304

Ð ß ß Ñ

Ð ß ß Ñ

"

#

x# dx  yz dy  Š y# ‹ dz

œ '0 a12t# b (3 dt)  Š 9t# ‹ (4 dt) œ '0 54t# dt œ c18t# d ! œ 18 1

25.

`P `y

œ0œ

1

#

`N `z

,

`M `z

œ 2z œ

`P `x

,

`N `x

,

`M `z

"

œ0œ

`M `y

Ê M dx  N dy  P dz is exact Ê F is conservative

Ê path independence 26.

`P `y

œ  ˆÈ

yz x #  y #  z# ‰

$

œ

`N `z

œ  ˆÈ

xz $ x #  y #  z# ‰

œ

`P `x

,

`N `x

œ  ˆÈ

xy x #  y #  z# ‰

$

œ

`M `y

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

" 1

 C‰

Section 16.3 Path Independence, Potential Functions, and Conservative Fields 1011 Ê M dx  N dy  P dz is exact Ê F is conservative Ê path independence 27.

`P `y `f `x

œ0œ œ

2x y

`N `z

,

œ0œ

Ê f(xß y) œ

Ê f(xß y) œ 28.

`M `z

x# y



" y

`N `z

,

`M `z

#

x y

`P `x

`N `x

,

œ  2x y# œ

`P `x

`f `x

œ e ln y Ê f(xß yß z) œ e ln y  g(yß z) Ê

œ

ex y

" y#

Ê gw (y) œ

Ê g(y) œ  "y  C

1 y ‹

œ cos z œ x

`N `x

#

`P `y

,

1  x# y#

œ  yx#  gw (y) œ

 C Ê F œ ™ Šx œ0œ

Ê F is conservative Ê there exists an f so that F œ ™ f;

#

`f `y

 g(y) Ê

`M `y

œ

`M `y

x

Ê F is conservative Ê there exists an f so that F œ ™ f; `f `y

ex y

œ



œ y sin z  h(z) Ê f(xß yß z) œ e ln y  y sin z  h(z) Ê x

`g ex `y œ y `f `z œ y x

`g `y

 sin z Ê

œ sin z Ê g(yß z)

w

cos z  h (z) œ y cos z Ê hw (z) œ 0

Ê h(z) œ C Ê f(xß yß z) œ ex ln y  y sin z  C Ê F œ ™ ae ln y  y sin zb 29.

`P `y

œ0œ

`N `z

`f `x

œ x#  y Ê f(xß yß z) œ

,

`M `z

Ê f(xß yß z) œ œ

" 3

x$  xy 

œ0œ

" $ 3 x  xy " $ z 3 y  ze

(a) work œ 'A F † B

dr dt

`P `x

, " 3 " 3

`N `x

`M `y

œ1œ

Ê F is conservative Ê there exists an f so that F œ ™ f; `f `y

x$  xy  g(yß z) Ê

 y$  h(z) Ê

œx

`g `y

œ y#  x Ê

`f `z

`g `y z

œ y# Ê g(yß z) œ

" 3

y$  h(z)

œ hw (z) œ zez Ê h(z) œ zez  e  C Ê f(xß yß z)  ez  C Ê F œ ™ ˆ 3" x$  xy  3" y$  zez  ez ‰

dt œ 'A F † dr œ  "3 x$  xy  3" y$  zez  ez ‘ Ð"ß!ß!Ñ œ ˆ 3"  0  0  e  e‰  ˆ 3"  0  0  1‰ B

Ð"ß!ß"Ñ

œ1

(b) work œ 'A F † dr œ  "3 x$  xy  3" y$  zez  ez ‘ Ð"ß!ß!Ñ œ 1 B

Ð"ß!ß"Ñ

(c) work œ 'A F † dr œ  "3 x$  xy  3" y$  zez  ez ‘ Ð"ß!ß!Ñ œ 1 B

Ð"ß!ß"Ñ

Note: Since F is conservative, 'A F † dr is independent of the path from (1ß 0ß 0) to (1ß 0ß 1). B

30.

`P `y

œ xeyz  xyzeyz  cos y œ

that F œ ™ f;

`f `x

`N `z

,

`M `z

œ yeyz œ

`P `x

`N `x

,

œ zeyz œ

œ eyz Ê f(xß yß z) œ xeyz  g(yß z) Ê

`f `y

`M `y

Ê F is conservative Ê there exists an f so

œ xzeyz 

Ê g(yß z) œ z sin y  h(z) Ê f(xß yß z) œ xe  z sin y  h(z) Ê yz

`g `y

`f `z

œ xzeyz  z cos y Ê

`g `y

œ z cos y

w

œ xye  sin y  h (z) œ xyeyz  sin y yz

Ê hw (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ xeyz  z sin y  C Ê F œ ™ axeyz  z sin yb

(a) work œ 'A F † dr œ cxeyz  z sin yd Ð"ß!ß"Ñ B

Ð"ß1Î#ß!Ñ

(b) work œ 'A F † dr œ cxeyz  z sin yd Ð"ß!ß"Ñ B

Ð"ß1Î#ß!Ñ

(c) work œ 'A F † dr œ cxeyz  z sin yd Ð"ß!ß"Ñ B

Ð"ß1Î#ß!Ñ

œ (1  0)  (1  0) œ 0 œ0 œ0

Note: Since F is conservative, 'A F † dr is independent of the path from (1ß 0ß 1) to ˆ1ß 1# ß 0‰ . B

31. (a) F œ ™ ax$ y# b Ê F œ 3x# y# i  2x$ yj ; let C" be the path from (1ß 1) to (0ß 0) Ê x œ t  1 and y œ t  1, 0 Ÿ t Ÿ 1 Ê F œ 3(t  1)# (t  1)# i  2(t  1)$ (t  1)j œ 3(t  1)% i  2(t  1)% j and r" œ (t  1)i  (t  1)j Ê dr" œ dt i  dt j Ê

'C

"

F † dr" œ '0 c3(t  1)%  2(t  1)% d dt 1

œ '0 5(t  1)% dt œ c(t  1)& d ! œ 1; let C# be the path from (0ß 0) to (1ß 1) Ê x œ t and y œ t, 1

"

0 Ÿ t Ÿ 1 Ê F œ 3t% i  2t% j and r# œ ti  tj Ê dr# œ dt i  dt j Ê 'C F † dr# œ '0 a3t%  2t% b dt 1

1 œ '0 5t% dt œ 1

Ê 'C F † dr œ 'C F † dr"  'C "

#

#

F † dr# œ 2 Ð1ß1Ñ

(b) Since f(xß y) œ x$ y# is a potential function for F, 'Ð1ß1Ñ F † dr œ f(1ß 1)  f(1ß 1) œ 2

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

1012 Chapter 16 Integration in Vector Fields 32.

`P `y `f `x

œ0œ

`N `z

`M `z

,

œ0œ

`P `x

,

`N `x

œ 2x sin y œ

œ 2x cos y Ê f(xß yß z) œ x# cos y  g(yß z) Ê

Ê f(xß yß z) œ x# cos y  h(z) Ê (a) (b) (c) (d)

`M `y

`f `z

Ê F is conservative Ê there exists an f so that F œ ™ f; `f `y

œ x# sin y 

`g `y

œ x# sin y Ê

`g `y

œ 0 Ê g(yß z) œ h(z)

œ hw (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ x# cos y  C Ê F œ ™ ax# cos yb

'C 2x cos y dx  x# sin y dy œ cx# cos yd Ð!ß"Ñ Ð"ß!Ñ œ 0  1 œ 1 'C 2x cos y dx  x# sin y dy œ cx# cos yd Ð"ß!Ñ Ð"ß1Ñ œ 1  (1) œ 2 'C 2x cos y dx  x# sin y dy œ cx# cos yd Ð"ß!Ñ Ð"ß!Ñ œ 1  1 œ 0 'C 2x cos y dx  x# sin y dy œ cx# cos yd Ð"ß!Ñ Ð"ß!Ñ œ 1  1 œ 0

33. (a) If the differential form is exact, then all x, and

`N `x

œ

`M `y

`P `y

`N `z

œ

Ê 2ay œ cy for all y Ê 2a œ c,

`M `z

œ

`P `x

Ê 2cx œ 2cx for

Ê by œ 2ay for all y Ê b œ 2a and c œ 2a

(b) F œ ™ f Ê the differential form with a œ 1 in part (a) is exact Ê b œ 2 and c œ 2 34. F œ ™ f Ê g(xß yß z) œ 'Ð0ß0ß0Ñ F † dr œ 'Ð0ß0ß0Ñ ™ f † dr œ f(xß yß z)  f(0ß 0ß 0) Ê ÐxßyßzÑ

`g `z

œ

`f `z

ÐxßyßzÑ

`g `x

œ

`f `x

 0,

`g `y

œ

`f `y

 0, and

 0 Ê ™ g œ ™ f œ F, as claimed

35. The path will not matter; the work along any path will be the same because the field is conservative. 36. The field is not conservative, for otherwise the work would be the same along C" and C# . 37. Let the coordinates of points A and B be axA , yA , zA b and axB , yB , zB b, respectively. The force F œ ai  bj  ck is conservative because all the partial derivatives of M, N, and P are zero. Therefore, the potential function is fax, y, zb œ ax  by  cz  C, and the work done by the force in moving a particle along any path from A to B is faBb  faAb œ f axB , yB , zB b  faxA , yA , zA b œ aaxB  byB  czB  Cb  aaxA  byA  czA  Cb Ä œ aaxB  xA b  bayB  yA b  cazB  zA b œ F † BA 38. (a) Let GmM œ C Ê F œ C ’ `P `y

Ê

3yzC ax#  y#  z# b&Î#

`f `x

œ

œ

xC ax#  y#  z# b$Î# yC Ê `` gy œ ax#  y#  z# b$Î#

some f; œ

œ

`N `z

,

x ax#  y#  z# b$Î# `M `z

œ

i

y ax#  y#  z# b$Î#

3xzC ax#  y#  z# b&Î#

Ê f(xß yß z) œ 

œ

,

C ax#  y#  z# b"Î#

0 Ê g(yß z) œ h(z) Ê

Ê h(z) œ C" Ê f(xß yß z) œ 

`P `x

C ax#  y#  z# b"Î#

`f `z

œ

j

`N `x

œ

z ax#  y#  z# b$Î# 3xyC ax#  y#  z# b&Î#

 g(yß z) Ê zC ax#  y#  z# b$Î#

`f `y

k“ `M `y

œ

œ

Ê F œ ™ f for

yC ax#  y#  z# b$Î#

 hw (z) œ

 C" . Let C" œ 0 Ê f(xß yß z) œ



zC ax#  y#  z# b$Î# GmM ax#  y#  z# b"Î#

`g `y

is a potential

function for F. (b) If s is the distance of (xß yß z) from the origin, then s œ Èx#  y#  z# . The work done by the gravitational field F is work œ 'P F † dr œ ’ Èx#GmM “  y #  z# P#

T#

"

T"

œ

GmM

s#



GmM

s"

œ GmM Š s"# 

"

s" ‹ ,

as claimed.

16.4 GREEN'S THEOREM IN THE PLANE 1. M œ y œ a sin t, N œ x œ a cos t, dx œ a sin t dt, dy œ a cos t dt Ê `N `y

`M `x

œ 0,

`M `y

œ 1,

œ 0;

Equation (11):

)C M dy  N dx œ '021 [(a sin t)(a cos t)  (a cos t)(a sin t)] dt œ '021 0 dt œ 0;

' ' Š ``Mx  ``Ny ‹ dx dy œ ' ' 0 dx dy œ 0, Flux R

`N `x

R

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

œ 1, and

Section 16.4 Green's Theorem in the Plane 1013 Equation (12):

)C M dx  N dy œ '021 [(a sin t)(a sin t)  (a cos t)(a cos t)] dt œ '021 a# dt œ 21a# ; Èa c x

' ' Š ``Nx  ``My ‹ dx dy œ ' ' ca cc a

R

#

œ 2a

ˆ 1#



1‰ #

#

#

2 dy dx œ 'ca 4Èa#  x# dx œ 4 ’ x2 Èa#  x#  a

sin" xa “

a

ca

#

œ 2a 1, Circulation

2. M œ y œ a sin t, N œ 0, dx œ a sin t dt, dy œ a cos t dt Ê Equation (11):

a# #

)C M dy  N dx œ '0

21

`M `x

`M `y

œ 0,

`N `x

œ 1,

œ 0, and

`N `y

œ 0;

a# sin t cos t dt œ a#  "2 sin# t‘ ! œ 0; ' ' 0 dx dy œ 0, Flux #1

R

21 #1 Equation (12): )C M dx  N dy œ '0 aa# sin# tb dt œ a#  2t  sin4 2t ‘ ! œ 1a# ; ' ' Š ``Nx  ``My ‹ dx dy

œ ' ' 1 dx dy œ '0

21

R

'0

a

r dr d) œ '0  21

R

a# #

#

d) œ 1a , Circulation

3. M œ 2x œ 2a cos t, N œ 3y œ 3a sin t, dx œ a sin t dt, dy œ a cos t dt Ê `N `y

`M `x

œ 2,

`M `y

œ 0,

`N `x

œ 0, and

œ 3;

Equation (11):

)C M dy  N dx œ '021 [(2a cos t)(a cos t)  (3a sin t)(a sin t)] dt

œ '0 a2a# cos# t  3a# sin# tb dt œ 2a#  2t  21

sin 2t ‘ #1 4 !

 3a#  2t 

sin 2t ‘ #1 4 !

œ 21a#  31a# œ 1a# ;

' ' Š ``Mx  ``Ny ‹ œ ' ' 1 dx dy œ ' ' r dr d) œ '  a## d) œ 1a# , Flux 0 0 0 21

R

a

21

R

Equation (12):

)C M dx  N dy œ '021 [(2a cos t)(a sin t)  (3a sin t)(a cos t)] dt

#1 œ '0 a2a# sin t cos t  3a# sin t cos tb dt œ 5a#  12 sin# t‘ ! œ 0; ' ' 0 dx dy œ 0, Circulation 21

R

4. M œ x# y œ a$ cos# t, N œ xy# œ a$ cos t sin# t, dx œ a sin t dt, dy œ a cos t dt Ê ``Mx œ 2xy, ``My œ x2 , ``Nx œ y# , and ``Ny œ 2xy; Equation (11):

)C M dy  N dx œ '021 aa% cos$ t sin t  a% cos t sin$ tb œ ’ a4

%

cos% t 

a% 4

sin% t“

' ' Š ``Mx  ``Ny ‹ dx dy œ ' ' (2xy  2xy) dx dy œ 0, Flux R

#1 !

œ 0;

R

)C M dx  N dy œ '021 aa% cos# t sin# t  a% cos# t sin# tb dt œ '021 a2a% cos# t sin# tb dt 21 41 %1 œ '0 "# a% sin# 2t dt œ a4 '0 sin# u du œ a4  u2  sin42u ‘ ! œ 1#a ; ' ' Š ``Nx  ``My ‹ dx dy œ ' ' ay#  x# b dx dy

Equation (12):

%

%

21 a 21 œ '0 '0 r# † r dr d) œ '0 a4

%

5. M œ x  y, N œ y  x Ê

`M `x

%

R

d) œ

1 a% #

, Circulation

œ 1,

`M `y

œ 1,

`N `x

œ 1,

`N `y

Circ œ ' ' [1  (1)] dx dy œ 0

R

œ 1 Ê Flux œ ' ' 2 dx dy œ '0

1

R

'01 2 dx dy œ 2;

R

6. M œ x#  4y, N œ x  y# Ê

`M `x

œ 2x,

`M `y

œ 4,

`N `x

œ 1,

`N `y

œ 2y Ê Flux œ ' ' (2x  2y) dx dy R

1 1 1 1 " " œ '0 '0 (2x  2y) dx dy œ '0 cx#  2xyd ! dy œ '0 (1  2y) dy œ cy  y# d ! œ 2; Circ œ ' ' (1  4) dx dy

œ '0

1

'0 3 dx dy œ 3

R

1

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

1014 Chapter 16 Integration in Vector Fields `M `x

7. M œ y#  x# , N œ x#  y# Ê

`M `y

œ 2x,

`N `x

œ 2y,

œ 2x,

œ 2y Ê Flux œ ' ' (2x  2y) dx dy

`N `y

R

3 x 3 $ œ '0 '0 (2x  2y) dy dx œ '0 a2x#  x# b dx œ  "3 x$ ‘ ! œ 9; Circ œ ' ' (2x  2y) dx dy

R

3 x 3 œ '0 '0 (2x  2y) dy dx œ '0 x# dx œ 9

`M `x

8. M œ x  y, N œ  ax#  y# b Ê œ '0

1

`M `y

œ 1,

'0 (1  2y) dy dx œ '0 ax  x b dx œ x

1

œ 2x,

œ 2y Ê Flux œ ' ' (1  2y) dx dy

`N `y

; Circ œ ' ' (2x  1) dx dy œ '0

1

" 6

#

`N `x

œ 1,

R

œ '0 a2x#  xb dx œ  76

R

'0 (2x  1) dy dx x

1

`M `x

9. M œ x  ex sin y, N œ x  ex cos y Ê

Ècos 2)

1Î4

Ê Flux œ ' ' dx dy œ 'c1Î4 '0 R

œ 1  ex sin y, Î

`M `y

œ ex cos y,

1 4

1Î%

Ècos 2)

1Î4

R

R

y x

, N œ ln ax#  y# b Ê

Ê Flux œ ' ' Š x#yy#  R

Circ œ ' ' Š x# 2x  y# 

x x#  y# ‹

R

`M `x

11. M œ xy, N œ y# Ê œ '0 Š 3x#  1

#

3x% # ‹

2y x#  y# ‹

dx œ

`M `x

dx dy œ '0

1

dx dy œ '0

1

`M `y

œ y,

y x#  y#

œ

'1

`M `y

œ

œ 0,

`M `y

œ 0,

Ê Flux œ ' ' (x sin y) dx dy œ '0

1Î2

R

œ

2x x#  y#

,

`N `y

œ

" #

2y x#  y#

1

`N `y

œ 2y Ê Flux œ ' ' (y  2y) dy dx œ '0

1

R

`M `x

`N `x

Î

1 4

#

1

12. M œ  sin y, N œ x cos y Ê

,

;

r dr d) œ '1Î4 ˆ "# cos 2)‰ d) œ

'12 ˆ r sinr ) ‰ r dr d) œ '01 sin ) d) œ 2;

; Circ œ ' ' x dy dx œ '0

" 5

x x#  y#

" #

œ ex sin y

)‰ ˆ r cos r dr d) œ '0 cos ) d) œ 0 r#

2

`N `x

œ x,

,

`N `y

œ 1  ex cos y,

r dr d) œ '1Î4 ˆ "# cos 2)‰ d) œ  4" sin 2)‘ 1Î% œ

Circ œ ' ' a1  ex cos y  ex cos yb dx dy œ ' ' dx dy œ 'c1Î4 '0 10. M œ tan"

`N `x

œ  cos y,

'0

1Î2

R

'xx 3y dy dx #

'xx x dy dx œ '01 ax#  x$ b dx œ  1"# #

`N `x

`N `y

œ cos y,

œ x sin y

(x sin y) dx dy œ '0 Š 18 sin y‹ dy œ  18 ; 1Î2

#

#

1Î# Circ œ ' ' [cos y  ( cos y)] dx dy œ '0 '0 2 cos y dx dy œ '0 1 cos y dy œ c1 sin yd ! œ 1 1Î2

1Î2

1Î2

R

13. M œ 3xy 

x 1  y#

`M `x

, N œ ex  tan " y Ê

Ê Flux œ ' ' Š3y  R

" 1  y#



œ 3y  R

$

ex y

Ê

3 c x#

`M `y

`N `y

œ

" 1  y# 21

œ '0 a$ (1  cos ))$ (sin )) d) œ ’ a4 (1  cos ))% “ 14. M œ y  ex ln y, N œ

,

dx dy œ ' ' 3y dx dy œ '0

" 1  y# ‹

21

" 1  y#

œ1

ex y

,

`N `x

œ

ex y

#1 !

'0aÐ1  cos Ñ )

(3r sin )) r dr d)

œ 4a$  a4a$ b œ 0

Ê Circ œ ' ' ’ ey  Š1  x

R

ex y ‹“

œ 'c1 'x% b 1  dy dx œ  'c1 ca3  x b  ax  1bd dx œ 'c1 ax  x  2b dx œ  1

15. M œ 2xy$ , N œ 4x# y# Ê œ '0

1

'0

x$

2xy dy dx œ ' #

1

#

`M `y

œ 6xy# ,

`N `x

"!

2 33

1

2 0 3

x

dx œ

%

1

%

#

dx dy œ ' ' (1) dx dy R

44 15

œ 8xy# Ê work œ )C 2xy$ dx  4x# y# dy œ ' ' a8xy#  6xy# b dx dy R

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 16.4 Green's Theorem in the Plane 1015 `M `y

16. M œ 4x  2y, N œ 2x  4y Ê

œ 2,

`N `x

œ 2 Ê work œ )C (4x  2y) dx  (2x  4y) dy

œ ' ' [2  (2)] dx dy œ 4 ' ' dx dy œ 4(Area of the circle) œ 4(1 † 4) œ 161 R

R `M `y

17. M œ y# , N œ x# Ê œ '0

1

1cx

'0

œ 2y,

œ 2x Ê )C y# dx  x# dy œ ' ' (2x  2y) dy dx

`N `x

R

(2x  2y) dy dx œ '0 a3x  4x  1b dx œ cx  2x#  xd ! œ 1  2  1 œ 0 1

`M `y

18. M œ 3y, N œ 2x Ê

œ 3,

#

`N `x

œ 2 Ê )C 3y dx  2x dy œ ' ' (2  3) dx dy œ '0

`M `y

œ 6,

1

R

œ '0 sin x dx œ 2 1

19. M œ 6y  x, N œ y  2x Ê

"

$

`N `x

'0sin x 1 dy dx

œ 2 Ê )C (6y  x) dx  (y  2x) dy œ ' ' (2  6) dy dx R

œ 4(Area of the circle) œ 161 20. M œ 2x  y# , N œ 2xy  3y Ê

`M `y

œ 2y,

`N `x

œ 2y Ê

)C a2x  y# b dx  (2xy  3y) dy œ ' ' (2y  2y) dx dy œ 0 R

21. M œ x œ a cos t, N œ y œ a sin t Ê dx œ a sin t dt, dy œ a cos t dt Ê Area œ œ

'0

21

" #

aa# cos# t  a# sin# tb dt œ

" #

'0

21

'021 aab cos# t  ab sin# tb dt œ "# '021 ab dt œ 1ab

" #

)C

" #

)C x dy  y dx

x dy  y dx

a# dt œ 1a#

22. M œ x œ a cos t, N œ y œ b sin t Ê dx œ a sin t dt, dy œ b cos t dt Ê Area œ œ

" #

" #

23. M œ x œ a cos$ t, N œ y œ sin$ t Ê dx œ 3 cos# t sin t dt, dy œ 3 sin# t cos t dt Ê Area œ

'0

21

œ

" #

œ

3 16

a3 sin# t cos# tb acos# t  sin# tb dt œ

 u2 

sin 2u ‘ %1 4 !

" #

'0

21

a3 sin# t cos# tb dt œ

3 8

œ

3 8

1

24. M œ x œ t# , N œ y œ

t$ 3

 t Ê dx œ 2t dt, dy œ at#  1b dt Ê Area œ

È

È

'0

21

" #

" #

'cÈ33 ’t# at#  1b  Š t3  t‹ (2t)“ dt œ "# 'cÈ33 ˆ 3" t%  t# ‰ dt œ 12  151 t& 

œ

8 5

È3

25. (a) M œ f(x), N œ g(y) Ê

`M `y

œ 0,

`N `x

R

(b) M œ ky, N œ hx Ê

`M `y

œ k,

`N `x

È$

 31 t$ ‘ È$ œ

œ 0 Ê )C f(x) dx  g(y) dy œ ' ' Š ``Nx  R

œ ' ' 0 dx dy œ 0

œ h Ê )C ky dx  hx dy œ ' ' Š ``Nx 

œ ' ' (h  k) dx dy œ (h  k)(Area of the region)

3 16

'0

sin# u du

)C x dy  y dx

œ

$

sin# 2t dt œ

)C x dy  y dx

41

R

`M `y ‹

`M `y ‹

" 15

Š9È3  15È3‹

dx dy

dx dy

R

26. M œ xy# , N œ x# y  2x Ê

`M `y

œ 2xy,

`N `x

œ 2xy  2 Ê )C xy# dx  ax# y  2xb dy œ ' ' Š ``Nx 

œ ' ' (2xy  2  2xy) dx dy œ 2 ' ' dx dy œ 2 times the area of the square R

R

R

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

`M `y ‹

dx dy

1016 Chapter 16 Integration in Vector Fields 27. The integral is 0 for any simple closed plane curve C. The reasoning: By the tangential form of Green's Theorem, with M œ 4x$ y and N œ x% , )C 4x$ y dx  x% dy œ ' ' ’ ``x ax% b 

` `y

R

œ ' ' ðóóñóóò a4x$  4x$ b dx dy œ 0.

a4x$ yb“ dx dy

R

0 28. The integral is 0 for any simple closed curve C. The reasoning: By the normal form of Green's theorem, with ` ` $ $ M œ x$ and N œ y$ , )C y$ dy  x$ dx œ ' ' ”ðñò ` x ay b  ï ` y ax b • dx dy œ 0.

R

0 `M `x

29. Let M œ x and N œ 0 Ê

œ 1 and

`N `y

œ0 Ê

0

)C M dy  N dx œ ' ' Š ``Mx  ``Ny ‹ dx dy

œ ' ' (1  0) dx dy Ê Area of R œ ' ' dx dy œ )C x dy; similarly, M œ y and N œ 0 Ê R

`N `x

R

œ 0 Ê )C M dx  N dy œ ' ' Š ``Nx  R

œ ' ' dx dy œ Area of R

Ê )C x dy

R

`M `y ‹

`M `y

œ 1 and

dy dx Ê )C y dx œ ' ' (0  1) dy dx Ê  )C y dx R

R

30.

'ab f(x) dx œ Area of R œ )C y dx, from Exercise 29

31. Let $ (xß y) œ 1 Ê x œ

My M

' ' x $ (xßy) dA

œ 'R '

$ (xßy) dA

' ' x dA

œ 'R '

R

dA

' ' x dA

œ

Ê Ax œ ' ' x dA œ ' ' (x  0) dx dy

R

A

R

R

R

œ )C x#

dy, Ax œ ' ' x dA œ ' ' (0  x) dx dy œ  ) xy dx, and Ax œ ' ' x dA œ ' ' ˆ 23 x  3" x‰ dx dy

œ)

#

#

" C 3

R

R

" 3

" #

x dy  xy dx Ê

C

)C x

dy œ )C xy dx œ

#

" 3

)C x

dy  xy dx œ Ax

32. If $ (xß y) œ 1, then Iy œ ' ' x# $ (xß y) dA œ ' ' x# dA œ ' ' ax#  0b dy dx œ R

R

R

R

#

R

" 3

)C

x$ dy,

' ' x# dA œ ' ' a0  x# b dy dx œ  ) x# y dx, and ' ' x# dA œ ' ' ˆ 34 x#  "4 x# ‰ dy dx C R

R

œ)

" C 4

33. M œ

`f `y

" 4

$

#

x dy  x y dx œ , N œ  `` xf Ê

`M `y

" 4

œ

)C x ` #f ` y#

,

R

$

#

dy  x y dx Ê

`N `x

" 3

œ  `` xf# Ê )C #

)C x

`f `y

R

$

dy œ  )C x# y dx œ

dx 

`f `x

" 4

)C

dy œ ' ' Š `` xf#  #

R

x$ dy  x# y dx œ Iy

` #f ` y# ‹

dx dy œ 0 for such

curves C 34. M œ

" 4

x# y  3" y$ , N œ x Ê

the ellipse

" 4

`M `y

œ

1 4

x#  y# ,

`N `x

œ 1 Ê Curl œ

`N `x



`M `y

œ 1  ˆ "4 x#  y# ‰  0 in the interior of

x#  y# œ 1 Ê work œ 'C F † dr œ ' ' ˆ1  4" x#  y# ‰ dx dy will be maximized on the region R

R œ {(xß y) | curl F}   0 or over the region enclosed by 1 œ 2y 35. (a) ™ f œ Š x# 2x  y# ‹ i  Š x#  y# ‹ j Ê M œ

2x x#  y#

,Nœ

" 4

x#  y#

2y x#  y#

; since M, N are discontinuous at (0ß 0), we

compute 'C ™ f † n ds directly since Green's Theorem does not apply. Let x œ a cos t, y œ a sin t Ê dx œ a sin t dt, dy œ a cos t dt, M œ

2 a

cos t, N œ

2 a

sin t, 0 Ÿ t Ÿ 21, so 'C ™ f † n ds œ 'C M dy  N dx

œ '0  ˆ 2a cos t‰aa cos tb  ˆ 2a sin t‰aa sin tb ‘dt œ '0 2acos2 t  sin2 tbdt œ 41. Note that this holds for any 21

21

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Section 16.4 Green's Theorem in the Plane 1017 a  0, so 'C ™ f † n ds œ 41 for any circle C centered at a0, 0b traversed counterclockwise and 'C ™ f † n ds œ 41 if C is traversed clockwise.

(b) If K does not enclose the point (0ß 0) we may apply Green's Theorem: 'C ™ f † n ds œ 'C M dy  N dx œ ' ' Š ``Mx  R

`N `y ‹

dx dy œ ' ' Š ax2  y2 b2  2 ˆy 2  x 2 ‰

R

2 ˆx 2  y 2 ‰ ‹ ax 2  y 2 b 2

dx dy œ ' ' 0 dx dy œ 0. If K does enclose the point R

(0ß 0) we proceed as in Example 6: Choose a small enough so that the circle C centered at (0ß 0) of radius a lies entirely within K. Green's Theorem applies to the region R that lies between K and C. Thus, as before, 0 œ ' ' Š ``Mx  R

`N `y ‹

dx dy

œ 'K M dy  N dx  'C M dy  N dx where K is traversed counterclockwise and C is traversed clockwise.

Hence by part (a) 0 œ ’ ' M dy  N dx “  41 Ê 41 œ K

'K ™ f † n ds œ œ 0

'K M dy  N dx

œ 'K ™ f † n ds. We have shown:

if (0ß 0) lies inside K if (0ß 0) lies outside K

41

36. Assume a particle has a closed trajectory in R and let C" be the path Ê C" encloses a simply connected region R" Ê C" is a simple closed curve. Then the flux over R" is )C F † n ds œ 0, since the velocity vectors F are "

tangent to C" . But 0 œ )C F † n ds œ )C M dy  N dx œ ' ' Š ``Mx  "

"

R"

`N `y ‹

dx dy Ê Mx  Ny œ 0, which is a

contradiction. Therefore, C" cannot be a closed trajectory. 37.

'gg yy

#Ð Ñ

"Ð Ñ

`N `x

'cd 'gg yy ˆ ``Nx dx‰ dy œ 'cd [N(g# (y)ß y)  N(g" (y)ß y)] dy #Ð Ñ

dx dy œ N(g# (y)ß y)  N(g" (y)ß y) Ê

"Ð Ñ

œ 'c N(g# (y)ß y) dy  'c N(g" (y)ß y) dy œ 'c N(g# (y)ß y) dy  'd N(g" (y)ß y) dy œ 'C N dy  'C N dy d

38.

d

c

#

"

œ )C dy

Ê

'ab 'cd

dy dx œ 'a [M(xß d)  M(xß c)] dx œ 'a M(xß d) dx  'a M(xß c) dx œ 'C M dx  'C M dx.

`M `y

)C N dy œ ' '

d

R

`N `x

dx dy

b

b

b

3

Because x is constant along C# and C% , 'C M dx œ 'C M dx œ 0 Ê

 Š'C

"

M dx  'C

#

M dx  'C

$

#

M dx  'C

%

%

M dx‹ œ  )C M dx Ê 'a

b

'cd

`M `y

"

dy dx œ )C M dx.

39. The curl of a conservative two-dimensional field is zero. The reasoning: A two-dimensional field F œ Mi  Nj can be considered to be the restriction to the xy-plane of a three-dimensional field whose k component is zero, and whose i and j components are independent of z. For such a field to be conservative, we must have `N `M `N `M ` x œ ` y by the component test in Section 16.3 Ê curl F œ ` x  ` y œ 0. 40. Green's theorem tells us that the circulation of a conservative two-dimensional field around any simple closed curve in the xy-plane is zero. The reasoning: For a conservative field F œ Mi  Nj , we have ``Nx œ ``My (component test for conservative fields, Section 16.3, Eq. (2)), so curl F œ

`N `x



`M `y

œ 0. By Green's theorem,

the counterclockwise circulation around a simple closed plane curve C must equal the integral of curl F over the region R enclosed by C. Since curl F œ 0, the latter integral is zero and, therefore, so is the circulation.

The circulation )C F † T ds is the same as the work )C F † dr done by F around C, so our observation that circulation of a conservative two-dimensional field is zero agrees with the fact that the work done by a conservative field around a closed curve is always 0.

Copyright (c) 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley

1018 Chapter 16 Integration in Vector Fields 41-44. Example CAS commands: Maple: with( plots );#41 M := (x,y) -> 2*x-y; N := (x,y) -> x+3*y; C := x^2 + 4*y^2 = 4; implicitplot( C, x=-2..2, y=-2..2, scaling=constrained, title="#41(a) (Section 16.4)" ); curlF_k := D[1](N) - D[2](M): # (b) 'curlF_k' = curlF_k(x,y); top,bot := solve( C, y ); # (c) left,right := -2, 2; q1 := Int( Int( curlF_k(x,y), y=bot..top ), x=left..right ); value( q1 ); Mathematica: (functions and bounds will vary) The ImplicitPlot command will be useful for 41 and 42, but is not needed for 43 and 44. In 44, the equation of the line from (0, 4) to (2, 0) must be determined first. Clear[x, y, f]
Lihat lebih banyak...

Comentários

Copyright © 2017 DADOSPDF Inc.