Formula Sheet for Actuarial Mathematics - Exam MLC - (ASM 2014)

Share Embed


Descriรงรฃo do Produto

1 Lesson 1 - Probability Review

Lesson 2 โ€“ Survival Distributions: Probability Functions

1.1 1.2 1.3 1.4 1.5

๐œ‡2 = ๐œ‡2โ€ฒ โˆ’ ๐œ‡ 2 ๐œ‡3 = ๐œ‡3โ€ฒ โˆ’ 3๐œ‡2โ€ฒ ๐œ‡ โˆ’ 2๐œ‡ 3 ๐‘‰๐‘Ž๐‘Ÿ(๐‘‹) = ๐ธ[๐‘‹ 2 ] โˆ’ ๐ธ[๐‘‹]2 ๐‘‰๐‘Ž๐‘Ÿ(๐‘Ž๐‘‹ + ๐‘๐‘Œ) = ๐‘Ž2 ๐‘‰๐‘Ž๐‘Ÿ(๐‘‹) + 2๐‘Ž๐‘๐ถ๐‘œ๐‘ฃ(๐‘‹, ๐‘Œ) + ๐‘ 2 ๐‘‰๐‘Ž๐‘Ÿ(๐‘Œ) ๐‘‰๐‘Ž๐‘Ÿ(โˆ‘๐‘›๐‘–=1 ๐‘‹๐‘– ) = ๐‘›๐‘‰๐‘Ž๐‘Ÿ(๐‘‹)

1.6

๐‘‰๐‘Ž๐‘Ÿ(๐‘‹ฬ…) = ๐‘‰๐‘Ž๐‘Ÿ (

1.7

Bayes Theorem Pr(๐ต |๐ด)Prโก(๐ด) Pr(๐ด|๐ต) =

โˆ‘๐‘› ๐‘–=1 ๐‘‹๐‘– ๐‘›

)=

๐‘›๐‘‰๐‘Ž๐‘Ÿ(๐‘‹) ๐‘›2

=

2.4

๐‘ก|๐‘ข๐‘ž๐‘ฅ

2.5

๐‘ก|๐‘ข๐‘ž๐‘ฅ =

Prโก(๐ต) ๐‘“๐‘ฆ (๐‘ฆ|๐‘ฅ )๐‘“๐‘ฅ (๐‘ฅ)

1.9

Law of Total Probability (Discrete) Pr(๐ด) = โˆ‘๐‘– Pr(๐ด โˆฉ ๐ต๐‘– ) = โˆ‘๐‘– Pr(๐ต๐‘– )Prโก(๐ด|๐ต๐‘– ) Law of Total Probability (Continuous) Pr(๐ด) = โˆซ Pr(๐ด|๐‘ฅ) ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ Conditional Mean Formula ๐ธ๐‘‹ [๐‘‹] = ๐ธ๐‘Œ [๐ธ๐‘‹ [๐‘‹|๐‘Œ]] Double Expectation Formula ๐ธ๐‘‹ [๐‘”(๐‘‹)] = ๐ธ๐‘Œ [๐ธ๐‘‹ [๐‘”(๐‘‹)|๐‘Œ]] Conditional Variance Formula

1.12 1.13

2.3 ๐น๐‘ฅ (๐‘ก) =

๐‘›

๐‘“๐‘ฅ (๐‘ฅ|๐‘ฆ) =

1.11

2.2 ๐‘†๐‘ฅ (๐‘ก) =

๐‘‰๐‘Ž๐‘Ÿ(๐‘ฅ)

1.8

1.10

2.1 ๐‘†๐‘ฅ+๐‘ก (๐‘ข) =

๐‘“๐‘ฆ (๐‘ฆ)

๐‘†๐‘ฅ (๐‘ก+๐‘ข)

๐‘†๐‘ฅ (๐‘ก) ๐‘†0 (๐‘ฅ+๐‘ก)

๐‘†0 (๐‘ฅ) ๐น0 (๐‘ฅ+๐‘ก)โˆ’๐น0 (๐‘ฅ) 1โˆ’๐น0 (๐‘ฅ)

= ๐‘ก๐‘๐‘ฅ โˆ’ ๐‘ก+๐‘ข๐‘๐‘ฅ ๐‘ก+๐‘ข๐‘ž๐‘ฅ

โˆ’ ๐‘ก๐‘ž๐‘ฅ

Life Table Functions ๐‘ก๐‘๐‘ฅ

=

๐‘ก๐‘ž๐‘ฅ

=

๐‘ก|๐‘ข๐‘ž๐‘ฅ

๐‘ก+๐‘ข๐‘๐‘ฅ

๐‘™๐‘ฅ+๐‘ก

=

๐‘™๐‘ฅ ๐‘ก๐‘‘๐‘ฅ

๐‘™๐‘ฅ

=

๐‘ข๐‘‘๐‘ฅ+๐‘ก

๐‘™๐‘ฅ

๐‘™๐‘ฅ โˆ’๐‘™๐‘ฅ+๐‘ก ๐‘™๐‘ฅ

=

๐‘™๐‘ฅ+๐‘ก โˆ’๐‘™๐‘ฅ+๐‘ก+๐‘ข ๐‘™๐‘ฅ

= ๐‘ก๐‘๐‘ฅ ๐‘ข๐‘๐‘ฅ+๐‘ก

๐‘‰๐‘Ž๐‘Ÿ๐‘‹ (๐‘‹) = ๐ธ๐‘Œ [๐‘‰๐‘Ž๐‘Ÿ๐‘‹ (๐‘‹|๐‘Œ)] + ๐‘‰๐‘Ž๐‘Ÿ๐‘Œ (๐ธ๐‘‹ [๐‘‹|๐‘Œ]) Distribution Bernoulli Binomial Uniform Exponential

Mean ๐‘ž ๐‘š๐‘ž ๐‘Ž+๐‘ 2

๐œƒ

Variance ๐‘ž(1 โˆ’ ๐‘ž) ๐‘š๐‘ž(1 โˆ’ ๐‘ž) (๐‘โˆ’๐‘Ž)2 12

๐œƒ2

Bernoulli Shortcut: If a random variable can only assume two values ๐‘Ž and ๐‘ with prob ๐‘ž and 1 โˆ’ ๐‘ž, then ๐‘‰๐‘Ž๐‘Ÿ(๐‘‹) = ๐‘ž(1 โˆ’ ๐‘ž)(๐‘ โˆ’ ๐‘Ž)2

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

2 Lesson 3 โ€“ Survival Distributions: Force of Mortality 3.1 ๐œ‡๐‘ฅ+๐‘ก =

๐‘“๐‘ฅ (๐‘ก)

๐‘†๐‘ฅ (๐‘ก) ๐‘‘

3.2 ๐œ‡๐‘ฅ+๐‘ก = ๐‘‘๐‘ก

๐‘ก๐‘ž๐‘ฅ โก ๐‘ก๐‘๐‘ฅ

3.3 ๐œ‡๐‘ฅ+๐‘ก = โˆ’ 3.4 ๐œ‡๐‘ฅ+๐‘ก = โˆ’

Lesson 4 โ€“ Survival Distribution: Mortality 4.1 Gompertzโ€™ Law ๐œ‡๐‘ฅ = ๐ต๐‘ ๐‘ฅ ๐‘>1 ๐‘ก๐‘๐‘ฅ

= expโก(โˆ’

๐ต๐‘ ๐‘ฅ (๐‘ ๐‘ก โˆ’1)

๐‘‘ ln(๐‘†๐‘ฅ (๐‘ก))

4.2

๐‘‘๐‘ก ๐‘‘ ln( ๐‘ก๐‘๐‘ฅ )

4.3 Makehamโ€™s Law

๐‘‘๐‘ก

) ๐œ‡๐‘ฅ = ๐ด + ๐ต๐‘ ๐‘ฅ

๐‘>1 A is constant part of force of mortality *Adding A to ๐œ‡ multiplies ๐‘ก๐‘๐‘ฅ by eโˆ’ฮผt

๐‘ก

3.5 ๐‘†๐‘ฅ (๐‘ก) = expโก(โˆ’ โˆซ0 ๐œ‡๐‘ฅ+๐‘  ๐‘‘๐‘ ) ๐‘ก

3.6 ๐‘ก๐‘๐‘ฅ = expโก(โˆ’ โˆซ0 ๐œ‡๐‘ฅ+๐‘  ๐‘‘๐‘ ) ๐‘ฅ+๐‘ก

3.7 ๐‘ก๐‘๐‘ฅ = expโก(โˆ’ โˆซ๐‘ฅ ๐œ‡๐‘  ๐‘‘๐‘ ) 3.8 ๐‘“๐‘ฅ (๐‘ก) = ๐‘†๐‘ฅ (๐‘ก)๐œ‡๐‘ฅ+๐‘ก = ๐‘ก๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘ก ๐‘ก+๐‘ข 3.9 ๐‘ƒ(๐‘ก < ๐‘‡๐‘ฅ < ๐‘ก + ๐‘ข) = ๐‘ก|๐‘ข๐‘ž๐‘ฅ = โˆซ๐‘ก ๐‘  ๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘  ๐‘‘๐‘  ๐‘ก โˆซ0 ๐‘ ๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘  ๐‘‘๐‘ 

3.10 ๐‘ก๐‘ž๐‘ฅ = โ€ฒ If ๐œ‡๐‘ฅ+๐‘  = ๐œ‡๐‘ฅ+๐‘  + ๐‘˜ for 0 โ‰ค ๐‘  โ‰ค ๐‘ก then ๐‘ก๐‘๐‘ฅโ€ฒ = ๐‘ก๐‘๐‘ฅ ๐‘’ โˆ’๐‘˜๐‘ก . If ๐œ‡๐‘ฅ+๐‘  = ๐œ‡ฬ‚ ๐‘ฅ+๐‘  + ๐œ‡ฬ…๐‘ฅ+๐‘  for 0 โ‰ค ๐‘  โ‰ค ๐‘ก then ๐‘ก๐‘๐‘ฅ = ๐‘ก๐‘ฬ‚๐‘ฅ ๐‘ก๐‘ฬ…๐‘ฅ โ€ฒ If ๐œ‡๐‘ฅ+๐‘  = ๐‘˜๐œ‡๐‘ฅ+๐‘  for 0 โ‰ค ๐‘  โ‰ค ๐‘ก then ๐‘ก๐‘๐‘ฅโ€ฒ = ( ๐‘ก๐‘๐‘ฅ )

lnโก(๐‘)

๐‘˜

4.4

๐‘ก๐‘๐‘ฅ

= expโก(โˆ’๐ด๐‘ก โˆ’

๐ต๐‘ ๐‘ฅ (๐‘ ๐‘ก โˆ’1) lnโก(๐‘)

)

Weibull Distribution

๐œ‡๐‘ฅ = ๐‘˜๐‘ฅ ๐‘› ๐‘˜๐‘ฅ (๐‘›+1) ๐‘ = expโก ( โˆ’ ) 0 ๐‘ฅ ๐‘›+1 Constant Force of Mortality 4.5 ๐œ‡๐‘ฅ = ๐œ‡ 4.6 ๐‘ก๐‘๐‘ฅ = eโˆ’ฮผt 4.7 (BLANK) Uniform Distribution 1 4.8 ๐œ‡๐‘ฅ = โกโกโกโก0 โ‰ค ๐‘ฅ โ‰ค ๐œ” 4.9 4.10

๐‘ก๐‘๐‘ฅ

๐œ”โˆ’๐‘ฅ ๐œ”โˆ’๐‘ฅโˆ’๐‘ก

=

๐‘ก๐‘ž๐‘ฅ

=

๐œ”โˆ’๐‘ฅ ๐‘ก ๐œ”โˆ’๐‘ฅ ๐‘ข

0โ‰ค๐‘ก โ‰ค๐œ”โˆ’๐‘ฅ 0โ‰ค๐‘ก โ‰ค๐œ”โˆ’๐‘ฅ

4.11 ๐‘ก|๐‘ข๐‘ž๐‘ฅ = 0โ‰ค ๐‘ก+๐‘ข โ‰ค ๐œ”โˆ’๐‘ฅ ๐œ”โˆ’๐‘ฅ 4.12 (BLANK) Beta Distribution ๐›ผ 4.13 ๐œ‡๐‘ฅ = 0โ‰ค๐‘ฅโ‰ค๐œ” 4.14

๐‘ก๐‘๐‘ฅ

๐œ”โˆ’๐‘ฅ ๐œ”โˆ’๐‘ฅโˆ’๐‘ก ๐›ผ

=(

๐œ”โˆ’๐‘ฅ

) 0โ‰ค๐‘ก โ‰ค๐œ”โˆ’๐‘ฅ

*The force of mortality is the sum of two uniform forces. ๐‘ก๐‘๐‘ฅ is the product of uniform probabilities

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

3 Lesson 5 โ€“ Survival Distributions: Moments Complete Future Lifetime โˆž 5.1 ๐‘’ฬ‡๐‘ฅ = โˆซ0 ๐‘ก ๐‘ก๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘ก ๐‘‘๐‘ก โˆž

5.2 ๐‘’ฬ‡๐‘ฅ = โˆซ0 ๐‘ก๐‘๐‘ฅ ๐‘‘๐‘ก โˆž 5.3 ๐ธ[๐‘‡๐‘ฅ2 ] = 2 โˆซ0 ๐‘ก ๐‘ก๐‘๐‘ฅ ๐‘‘๐‘ก โˆž 2 โˆซ0 ๐‘ก ๐‘ก๐‘๐‘ฅ

๐‘’ฬ‡๐‘ฅ2

5.4 ๐‘‰๐‘Ž๐‘Ÿ(๐‘‡๐‘ฅ ) = ๐‘‘๐‘ก โˆ’ 5.5 ๐‘’ฬ‡ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐ธ[min(๐‘‡๐‘ฅ , ๐‘›)] ๐‘› ๐‘’ฬ‡ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = โˆซ0 ๐‘ก ๐‘ก๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘ก ๐‘‘๐‘ก + ๐‘› ๐‘› ๐‘๐‘ฅ ๐‘›

5.6 ๐‘’ฬ‡ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = โˆซ0

๐‘ก๐‘๐‘ฅ

๐‘‘๐‘ก ๐‘›

5.7 ๐ธ[min(๐‘‡๐‘ฅ , ๐‘›)2 ] = 2 โˆซ0 ๐‘ก ๐‘ก๐‘๐‘ฅ ๐‘‘๐‘ก

eโˆ’ฮผ

โˆ’ฮผk 5.20 ๐‘’๐‘ฅ = โˆ‘โˆž = โกโก (CFM) ๐‘˜=1 e 1โˆ’eโˆ’ฮผ 5.21 ๐‘’ฬ‡๐‘ฅ = ๐‘’๐‘ฅ + 0.5 (UDD) 5.22 ๐‘’ฬ‡ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐‘’๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… + 0.5 ๐‘›๐‘ž๐‘ฅ (UDD)

*For those surviving n years, min(๐‘‡๐‘ฅ , ๐‘›) = ๐‘› ๐‘› *For those not surviving n years, average future lifetime is , since future 2 lifetime is uniform. * ๐‘’๐‘ฅ = ๐ธ[min(๐พ๐‘ฅ , ๐‘›)] * ๐‘’ฬ‡๐‘ฅ = ๐ธ[๐‘‡๐‘ฅ ] *If curtate,โก๐‘’๐‘ฅ+๐‘ :๐‘Ž+๐‘| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… , ๐‘ < 1, ๐‘  < 1, ๐‘Ž๐œ–ฦต is the same as ๐‘’๐‘ฅ+๐‘ :๐‘Ž| ฬ…ฬ…ฬ…

Special Mortality Laws ๐œ”โˆ’๐‘ฅ 5.8 ๐‘’ฬ‡๐‘ฅ = ๐ธ[๐‘‡๐‘ฅ ] = (Beta) ๐‘’ฬ‡๐‘ฅ = ๐ธ[๐‘‡๐‘ฅ ] = ๐‘’ฬ‡๐‘ฅ = ๐ธ[๐‘‡๐‘ฅ ] =

๐›ผ+1 ๐œ”โˆ’๐‘ฅ 1

2

(UDD)

๐œ‡ ๐›ผ(๐œ”โˆ’๐‘ฅ)2

5.9 ๐‘‰๐‘Ž๐‘Ÿ(๐‘‡๐‘ฅ ) = (๐›ผ+1)2 ๐‘‰๐‘Ž๐‘Ÿ(๐‘‡๐‘ฅ ) = ๐‘‰๐‘Ž๐‘Ÿ(๐‘‡๐‘ฅ ) =

(๐›ผ+2)

(๐œ”โˆ’๐‘ฅ)2 1

12

๐œ‡2

(CFM) (Beta) (UDD) (CFM) ๐‘›

5.10 ๐‘’ฬ‡ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐‘›๐‘๐‘ฅ (๐‘›) + ๐‘›๐‘ž๐‘ฅ ( ) (UDD) ๐œ”โˆ’๐‘ฅโˆ’๐‘›

๐‘›

2

๐‘›

(๐‘›) + ๐‘’ฬ‡ ๐‘ฅ:๐‘›| ( ) (UDD) ฬ…ฬ…ฬ… = ๐œ”โˆ’๐‘ฅ ๐œ”โˆ’๐‘ฅ 2 5.11 ๐‘’ฬ‡ ๐‘ฅ:1| ฬ… = ๐‘๐‘ฅ + 0.5๐‘ž๐‘ฅ (UDD) Curtate Future Lifetime 5.12 ๐‘’๐‘ฅ = โˆ‘โˆž ๐‘˜=0 ๐‘˜ ๐‘˜|๐‘ž๐‘ฅ ๐‘›โˆ’1 5.13 ๐‘’๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = โˆ‘๐‘˜=0 ๐‘˜ ๐‘˜|๐‘ž๐‘ฅ + ๐‘› ๐‘›๐‘๐‘ฅ 2 5.14 ๐ธ[๐พ๐‘ฅ2 ] = โˆ‘โˆž ๐‘˜=0 ๐‘˜ ๐‘˜|๐‘ž๐‘ฅ 2] 2 2 5.15 ๐ธ[min(๐พ๐‘ฅ , ๐‘›) = โˆ‘๐‘›โˆ’1 ๐‘˜=0 ๐‘˜ ๐‘˜|๐‘ž๐‘ฅ + ๐‘› ๐‘›๐‘๐‘ฅ 5.16 ๐‘’๐‘ฅ = โˆ‘โˆž ๐‘˜=1 ๐‘˜ ๐‘๐‘ฅ โˆ‘๐‘›๐‘˜=1 ๐‘˜ ๐‘๐‘ฅ 5.17 ๐‘’๐‘ฅ:๐‘›| = ฬ…ฬ…ฬ… 5.18 ๐ธ[๐พ๐‘ฅ2 ] = โˆ‘โˆž ๐‘˜=1(2๐‘˜ โˆ’ 1) ๐‘˜ ๐‘๐‘ฅ 5.19 ๐ธ[min(๐พ๐‘ฅ , ๐‘›)2 ] = โˆ‘๐‘›๐‘˜=1(2๐‘˜ โˆ’ 1) ๐‘˜ ๐‘๐‘ฅ

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

4 Lesson 6 โ€“ Survival Distributions: Percentiles and Recursions 6.1 ๐‘’ฬ‡๐‘ฅ = ๐‘’ฬ‡ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… + ๐‘›๐‘๐‘ฅ ๐‘’ฬ‡๐‘ฅ+๐‘› 6.2 ๐‘’๐‘ฅ = ๐‘’๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… + ๐‘›๐‘๐‘ฅ ๐‘’๐‘ฅ+๐‘› 6.3 ๐‘’๐‘ฅ = ๐‘’๐‘ฅ:๐‘›โˆ’1| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… + ๐‘›๐‘๐‘ฅ (1 + ๐‘’๐‘ฅ+๐‘› ) 6.4 ๐‘’๐‘ฅ = ๐‘๐‘ฅ + ๐‘๐‘ฅ ๐‘’๐‘ฅ+1 = ๐‘๐‘ฅ (1 + ๐‘’๐‘ฅ+1 )โกโกโก๐‘› = 1 6.5 ๐‘’๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐‘’๐‘ฅ:๐‘š| ฬ…ฬ…ฬ…ฬ… + ๐‘š ๐‘๐‘ฅ ๐‘’๐‘ฅ+๐‘š:๐‘›โˆ’๐‘š| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… โกโกโกโก๐‘š < ๐‘› 6.6 ๐‘’๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐‘’๐‘ฅ:๐‘šโˆ’1| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… + ๐‘š ๐‘๐‘ฅ (1 + ๐‘’๐‘ฅ+๐‘š:๐‘›โˆ’๐‘š| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… )โกโกโกโก๐‘š < ๐‘› 6.7 ๐‘’๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐‘๐‘ฅ + ๐‘๐‘ฅ ๐‘’๐‘ฅ+1:๐‘›โˆ’1| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… = ๐‘๐‘ฅ (1 + ๐‘’๐‘ฅ+1:๐‘›โˆ’1| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… )

Lesson 7 โ€“ Survival Distributions: Fractional Ages Uniform Distribution of Deaths 7.1 ๐‘™๐‘ฅ+๐‘  = (1 โˆ’ ๐‘ )๐‘™๐‘ฅ + ๐‘ ๐‘™๐‘ฅ+1 = ๐‘™๐‘ฅ โˆ’ ๐‘ ๐‘‘๐‘ฅ 7.2 ๐‘ ๐‘ž๐‘ฅ = ๐‘ ๐‘ž๐‘ฅ ๐‘ ๐‘ž๐‘ฅ+๐‘ก

7.3

=

๐‘ ๐‘ž๐‘ฅ

1โˆ’๐‘ก๐‘ž๐‘ฅ

7.4 ๐‘ ๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘  = ๐‘ž๐‘ฅ ๐‘ž 7.5 ๐œ‡๐‘ฅ+๐‘  = ๐‘ฅ = ๐‘ ๐‘๐‘ฅ 1

=

๐‘ ๐‘‘๐‘ฅ

๐‘™๐‘ฅ โˆ’๐‘ก๐‘‘๐‘ฅ

๐‘™

= 1 โˆ’ ( ๐‘ฅ+๐‘ +๐‘ก) , 0 โ‰ค ๐‘  + ๐‘ก โ‰ค 1 ๐‘™๐‘ฅ+๐‘ก

๐‘ž๐‘ฅ 1โˆ’๐‘ ๐‘ž๐‘ฅ

7.6 ๐‘’ฬ‡๐‘ฅ = ๐‘’๐‘ฅ + (UDD) 2 Recall: 5.11 (๐‘’ฬ‡ ๐‘ฅ:1| ฬ… = ๐‘๐‘ฅ + 0.5๐‘ž๐‘ฅ ) 7.7 ๐‘’ฬ‡ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐‘’๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… + 0.5 ๐‘›๐‘ž๐‘ฅ Constant Force of Mortality 7.8 ๐‘๐‘ฅ = ๐‘’ โˆ’๐œ‡ 7.9 ๐œ‡ = โˆ’lnโก(๐‘๐‘ฅ ) 7.10 ๐‘ ๐‘๐‘ฅ = ๐‘’ โˆ’๐œ‡๐‘  = (๐‘๐‘ฅ ) ๐‘  7.11 ๐‘ ๐‘๐‘ฅ+๐‘ก = (๐‘๐‘ฅ ) ๐‘  โกโกโก0 โ‰ค ๐‘ก โ‰ค 1 โˆ’ ๐‘  Table 7.1: Summary of Formulas for Fractional Ages UDD CFM ๐‘™๐‘ฅ+๐‘  ๐‘™๐‘ฅ โˆ’ ๐‘ ๐‘‘๐‘ฅ ๐‘™๐‘ฅ ๐‘๐‘ฅ๐‘  ๐‘ ๐‘ž๐‘ฅ 1 โˆ’ ๐‘๐‘ฅ๐‘  ๐‘ ๐‘ž๐‘ฅ 1 โˆ’ ๐‘ ๐‘ž๐‘ฅ ๐‘๐‘ฅ๐‘  ๐‘ ๐‘๐‘ฅ ๐‘ ๐‘ž ๐‘ฅ 1 โˆ’ ๐‘๐‘ฅ๐‘  ๐‘ ๐‘ž๐‘ฅ+๐‘ก 1 โˆ’ ๐‘ก๐‘ž๐‘ฅ ๐‘ž๐‘ฅ ๐œ‡๐‘ฅ+๐‘  โˆ’ ln(๐‘๐‘ฅ ) 1 โˆ’ ๐‘ ๐‘ž๐‘ฅ ๐‘ž๐‘ฅ โˆ’๐‘๐‘ฅ๐‘  ln(๐‘๐‘ฅ ) ๐‘ ๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘  ๐‘’ฬ‡๐‘ฅ ๐‘’๐‘ฅ + 0.5 ๐‘’ฬ‡ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ๐‘’๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… + 0.5 ๐‘›๐‘ž๐‘ฅ ๐‘’ฬ‡ ๐‘ฅ:1| ๐‘๐‘ฅ + 0.5๐‘ž๐‘ฅ ฬ…

Function

๏‚ท

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

๐‘’ฬ‡ ๐‘ฅ:๐‘ก|ฬ… = ๐‘’ฬ‡ ๐‘ฅ:๐‘˜| ฬ…ฬ…ฬ… + ๐‘˜ ๐‘๐‘ฅ ๐‘’ฬ‡ ๐‘ฅ+๐‘˜:๐‘กโˆ’๐‘˜| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…

Formula Summary of ASM 2014

5 Lesson 8 โ€“ Survival Distributions: Select Mortality ๏‚ท A man whose health was established 5 years ago will have better mortality than a randomly selected man. ๏‚ท A life selected at age ๐‘ฅ can never become a life selected at any higher age. [๐‘ฅ] will never become [๐‘ฅ + 1].

Lesson 10 โ€“ Insurance: Annual and 1/mthly โ€“ Moments โˆž ๐‘˜+1 ๐‘˜+1 10.1 ๐ธ[๐‘] = โˆ‘โˆž ๐‘˜=0 ๐‘๐‘˜ ๐‘ฃ ๐‘˜ ๐‘๐‘ฅ ๐‘ž๐‘ฅ+๐‘˜ ๐‘˜|๐‘ž๐‘ฅ = โˆ‘๐‘˜=0 ๐‘๐‘˜ ๐‘ฃ โˆž 2 โˆž 2 2] 2(๐‘˜+1) 2(๐‘˜+1) 10.2 ๐ธ[๐‘ = โˆ‘๐‘˜=0 ๐‘๐‘˜ ๐‘ฃ ๐‘˜ ๐‘๐‘ฅ ๐‘ž๐‘ฅ+๐‘˜ ๐‘˜|๐‘ž๐‘ฅ = โˆ‘๐‘˜=0 ๐‘๐‘˜ ๐‘ฃ Table 10.1: Actuarial notation for standard types of insurance Name Present Value of RV Symbol ๐ด๐‘ฅ Whole life ๐‘ฃ ๐พ๐‘ฅ+1 ๐ด๐‘ฅฬ :๐‘›| Term life ๐‘ฃ ๐พ๐‘ฅ+1 โกโกโกโก๐พ๐‘ฅ < ๐‘› ฬ…ฬ…ฬ… { โกโกโกโกโกโก0โกโกโกโกโกโก๐พ๐‘ฅ โ‰ฅ ๐‘› โกโกโกโกโกโก0โกโกโกโกโกโก๐พ๐‘ฅ < ๐‘› Deferred life ๐‘›|๐ด๐‘ฅ { ๐พ๐‘ฅ +1 ๐‘ฃ โกโกโก๐พ๐‘ฅ โ‰ฅ ๐‘› Deferred term 0โกโกโกโกโกโกโกโก๐พ๐‘ฅ โ‰ค ๐‘›โกโกโกโกโกโกโกโกโกโกโกโกโก ฬ…ฬ…ฬ…ฬ… ๐‘›|๐ด๐‘ฅฬ :๐‘š| {๐‘ฃ ๐พ๐‘ฅ+1 โกโกโก๐‘› < ๐พ๐‘ฅ < ๐‘› + ๐‘š ๐‘›|๐‘š ๐ด๐‘ฅ 0โกโกโกโกโกโกโก๐พ๐‘ฅ โ‰ฅ ๐‘› + ๐‘šโกโกโก โก0โกโกโกโกโกโก๐พ๐‘ฅ < ๐‘› ๐ด๐‘ฅ:๐‘›| Pure Endowment ฬ ฬ…ฬ…ฬ… { ๐‘› ๐‘ฃ โกโกโก๐พ๐‘ฅ โ‰ฅ ๐‘› ๐‘ก ๐‘ฃ ๐‘ โก๐‘ฃ ๐พ๐‘ฅ+1 โกโกโกโกโกโก๐พ๐‘ฅ < ๐‘› { ๐‘ฃ ๐‘› โกโกโก๐พ๐‘ฅ โ‰ฅ ๐‘›

Endowment

๐‘ก ๐‘ฅ

๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ…

2

10.3 ๐‘‰๐‘Ž๐‘Ÿ(๐‘) = 2๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… โก โˆ’ (๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ) 10.4 2๐‘– = 2๐‘– + ๐‘– 2 2 ๐‘‘ = 2๐‘‘ โˆ’ ๐‘‘ 2 2 ๐‘ฃ = ๐‘ฃ2 10.5 โก ๐‘›|๐ด๐‘ฅ = ๐‘›๐ธ๐‘ฅ ๐ด๐‘ฅ+๐‘› 10.6 ๐ด๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… = ๐ด๐‘ฅ โˆ’ โก ๐‘›|๐ด๐‘ฅ = ๐ด๐‘ฅ โˆ’ ๐‘›๐ธ๐‘ฅ ๐ด๐‘ฅ+๐‘› 10.7 ๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐ด๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… + ๐‘›๐ธ๐‘ฅ = ๐ด๐‘ฅ โˆ’ ๐‘›๐ธ๐‘ฅ ๐ด๐‘ฅ+๐‘› + ๐‘›๐ธ๐‘ฅ ๐‘ž 10.8 ๐ด๐‘‹ = โกโกโกโก(๐ถ๐น๐‘€) ๐‘ž+๐‘–

๐‘‰๐‘Ž๐‘Ÿ(๐‘) =

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

๐‘ž ๐‘ž+2๐‘–+๐‘– 2

โˆ’(

๐‘ž ๐‘ž+๐‘–

)

2

(CFM)

Formula Summary of ASM 2014

6 Table 10.2: EPV for insurance payable at EOY of death Type of Insurance CFM UDD ๐‘ž ๐‘Ž๐œ”โˆ’๐‘ฅ| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… Whole Life ๐‘ž+๐‘– 2 ๐‘ž ๐‘Ž๐‘›| ฬ…ฬ…ฬ… n-year term ๐‘› (1 โˆ’ (๐‘ฃ๐‘) ) ๐‘ž+๐‘– ๐œ”โˆ’๐‘ฅ ๐‘› ๐‘ž ๐‘ฃ ๐‘Ž ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… n-year deferred life ๐‘› ๐œ”โˆ’(๐‘ฅ+๐‘›)| (๐‘ฃ๐‘) ๐‘ž+๐‘– ๐œ”โˆ’๐‘ฅ (๐‘ฃ๐‘)๐‘› n-year pure endowment ๐‘ฃ ๐‘› (๐œ” โˆ’ (๐‘ฅ + ๐‘›)) ๐œ”โˆ’๐‘ฅ

Lesson 11 โ€“ Insurance: Continuous โ€“ Moments โ€“ Part I โˆž 11.1 ๐ธ(๐‘) = ๐ดฬ…๐‘ฅ = โˆซ0 ๐‘ฃ ๐‘ก ๐‘“๐‘ฅ (๐‘ก)๐‘‘๐‘ก โˆž 11.2 ๐ดฬ…๐‘ฅ = โˆซ ๐‘’ โˆ’๐›ฟ๐‘ก ๐‘ก๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘ก ๐‘‘๐‘ก 0

2 11.3 ๐‘‰๐‘Ž๐‘Ÿ(๐‘) = ๐ธ(๐‘ 2 ) โˆ’ (๐ธ(๐‘)) = 2๐ดฬ…๐‘ฅ โˆ’ (๐ดฬ…๐‘ฅ )2 ๐œ‡ 11.4 ๐‘›|๐ดฬ…๐‘ฅ = ๐‘’ โˆ’๐‘›(๐œ‡+๐›ฟ) โกโก ๐œ‡+๐›ฟ

๐œ‡ ๐ดฬ…๐‘ฅ = โกโกโกโก(๐ถ๐น๐‘€) ๐œ‡+๐›ฟ ๐ดฬ…๐‘ฅ+๐‘› = ๐ดฬ…๐‘ฅ โกโกโก(๐ถ๐น๐‘€) 11.5 ๐ดฬ…๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… = ๐ดฬ…๐‘ฅ (1 โˆ’ ๐‘›๐ธ๐‘ฅ ) =

11.6

ฬ…

ฬ…ฬ…ฬ…ฬ… ๐‘›|๐ด๐‘ฅฬ :๐‘š|

11.7 ๐ดฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = 11.8

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

๐œ‡ ๐œ‡+๐›ฟ

(1 โˆ’ ๐‘’ โˆ’๐‘›(๐œ‡+๐›ฟ) )

๐œ‡๐‘’ = ๐ดฬ…๐‘ฅ ( ๐‘›๐ธ๐‘ฅ โˆ’ ๐‘š+๐‘›๐ธ๐‘ฅ ) = ๐œ‡ ๐œ‡+๐›ฟ

โˆ’๐‘›(๐œ‡+๐›ฟ)

๐œ‡+๐›ฟ

(1 โˆ’ ๐‘’ โˆ’๐‘š(๐œ‡+๐›ฟ) )

(1 โˆ’ ๐‘’ โˆ’๐‘›(๐œ‡+๐›ฟ) ) + ๐‘’ โˆ’๐‘›(๐œ‡+๐›ฟ)

ฬ… = ๐‘›๐ธ๐‘ฅ ๐ดฬ…๐‘ฅ+๐‘› โˆ’๐‘›(๐œ‡+๐›ฟ) ๐ด๐‘ฅ:๐‘›| ฬ = ๐‘’ ฬ…ฬ…ฬ… ๐‘›|๐ด๐‘ฅ

Formula Summary of ASM 2014

7 Lesson 12 โ€“ Continuous โ€“ Moments โ€“ Part II

Lesson 13 โ€“ Insurance: Probabilities and Percentiles

Table 12.1 EPV for insurance payable at moment of death Type of Insurance CFM UDD ๐œ‡ ๐‘Žฬ…๐œ”โˆ’๐‘ฅ| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… Whole Life ๐œ‡+๐›ฟ ๐œ”โˆ’๐‘ฅ ๐œ‡ ๐‘Žฬ…๐‘›| ฬ…ฬ…ฬ… n-year term (1 โˆ’ ๐‘’ โˆ’๐‘›(๐œ‡+๐›ฟ) ) ๐œ‡+๐›ฟ ๐œ”โˆ’๐‘ฅ ๐œ‡ n-year deferred life ๐‘’ โˆ’๐›ฟ๐‘› ๐‘Žฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐œ”โˆ’(๐‘ฅ+๐‘›)| ๐‘’ โˆ’๐‘›(๐œ‡+๐›ฟ) ๐œ‡+๐›ฟ ๐œ”โˆ’๐‘ฅ n-year pure endowment ๐‘’ โˆ’๐‘›(๐œ‡+๐›ฟ) ๐‘’ โˆ’๐›ฟ๐‘› (๐œ” โˆ’ (๐‘ฅ + ๐‘›))

To calculate Prโก(๐‘ โ‰ค ๐‘ง) for continuous ๐‘, draw a graph of ๐‘ as a function of ๐‘‡๐‘ฅ . Identify the parts of the graph that are below the horizontal line ๐‘ = ๐‘ง, and the corresponding ๐‘กโ€™s. Then calculate the probability of ๐‘‡๐‘ฅ being in the range of those ๐‘กโ€™s.

๐œ”โˆ’๐‘ฅ โˆž

๐‘›!

12.1 Gamma ๐ธ๐‘ƒ๐‘‰ = โˆซ0 ๐‘ก ๐‘› ๐‘’ โˆ’๐‘๐‘ก ๐‘‘๐‘ก = ๐‘› ๐‘ +1 โˆž

12.2 If n=1, ๐ธ๐‘ƒ๐‘‰ = โˆซ0 ๐‘ก๐‘’ โˆ’๐‘๐‘ก ๐‘‘๐‘ก = โˆž

12.3 If n=2, ๐ธ๐‘ƒ๐‘‰ = โˆซ0 ๐‘ก 2 ๐‘’ โˆ’๐‘๐‘ก ๐‘‘๐‘ก = ๐‘ข

1

1

๐‘2 2 ๐‘3

12.4 โˆซ0 ๐‘ก๐‘’ โˆ’๐‘๐‘ก ๐‘‘๐‘ก = 2 (1 โˆ’ (1 + ๐‘๐‘ข)๐‘’ โˆ’๐‘๐‘ข ) ๐‘ ฬ… ฬ…)ฬ…ฬ…ฬ… 12.5 (๐ผ ๐‘Ž ๐‘ข| =

๐‘ข (๐‘Žฬ…ฬ…ฬ…ฬ… ๐‘ข| โˆ’๐‘ข๐‘ฃ )

๐›ฟ

โกโก

๐œ‡

For CFM, Pr(๐‘ โ‰ค ๐‘ง) = ๐‘ง ๐›ฟ

For discrete ๐‘, identify ๐‘‡๐‘ฅ and then identify ๐พ๐‘ฅ + 1 corresponding to that ๐‘‡๐‘ฅ . To calculate percentiles of continuous ๐‘, draw a graph of ๐‘ as a function of ๐‘‡๐‘ฅ . Identify where the lower parts of the graph are, and how they vary as a function of ๐‘‡. For example, for whole life, higher ๐‘‡ leads to lower ๐‘. For ๐‘›year deferred whole life, both ๐‘‡๐‘ฅ < ๐‘› and higher ๐‘‡๐‘ฅ lead to lower ๐‘. Write an equation for the probability ๐‘ is less than ๐‘ง in terms of mortality probabilities expressed in terms of ๐‘ก. Set it equal to the desired percentile, and solve for ๐‘ก or for ๐‘’ ๐‘˜๐‘ก for any ๐‘˜. Then solve for ๐‘ง (which is often ๐‘ฃ ๐‘ก )

Variance If ๐‘3 = ๐‘1 + ๐‘2 , ๐‘1 &โก๐‘2 are mutually exclusive, ๐‘‰๐‘Ž๐‘Ÿ(๐‘3 ) = ๐‘‰๐‘Ž๐‘Ÿ(๐‘1 ) + ๐‘‰๐‘Ž๐‘Ÿ(๐‘2 ) โˆ’ 2๐ธ(๐‘1 )๐ธ(๐‘2 )

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

8 Lesson 14 โ€“ Insurance: Recursive Formulas, Varying Insurance Recursive Formulas 14.1 ๐ด๐‘ฅ = ๐‘ฃ๐‘ž๐‘ฅ + ๐‘ฃ๐‘๐‘ฅ ๐ด๐‘ฅ+1 14.2 ๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐‘ฃ๐‘ž๐‘ฅ + ๐‘ฃ๐‘๐‘ฅ ๐ด๐‘ฅ+1:๐‘›โˆ’1| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… 14.3 ๐ด๐‘ฅฬ :๐‘›| = ๐‘ฃ๐‘ž + ๐‘ฃ๐‘ ๐ด ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ฬ :๐‘›โˆ’1| ๐‘ฅ ๐‘ฅ ๐‘ฅ+1 14.4 ๐‘›|๐ด๐‘ฅ = ๐‘ฃ๐‘๐‘ฅ ๐‘›โˆ’1|๐ด๐‘ฅ+1 Applying whole life recursive equation twice: ๐ด๐‘ฅ = ๐‘ฃ๐‘ž๐‘ฅ + ๐‘ฃ 2 ๐‘๐‘ฅ ๐‘ž๐‘ฅ+1 + ๐‘ฃ 2 2๐‘๐‘ฅ ๐ด๐‘ฅ+2 ๐œ‡ ฬ… ฬ…)๐‘ฅ = 14.5 (๐ผ ๐ด (๐œ‡+๐›ฟ)2 14.6 Continuously whole life insurance (CFM) 2๐œ‡ ๐ธ(๐‘ 2 ) = (๐œ‡ + 2๐›ฟ)3 ฬ… ฬ…)๐‘ฅฬ :๐‘›| ฬ… ๐ดฬ…)๐‘ฅฬ :๐‘›| 14.7 (๐ผ ๐ด ฬ…ฬ…ฬ… + (๐ท ฬ…ฬ…ฬ… = ๐‘›๐ดฬ…๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… ฬ… ฬ… 14.8 (๐ผ๐ด)๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… + (๐ท๐ด)๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… = (๐‘› + 1)๐ดฬ…๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… 14.9 (๐ผ๐ด)๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… + (๐ท๐ด)๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… = (๐‘› + 1)๐ด๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… ๐‘› (๐ผ๐ด)๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… = โˆ‘๐‘˜=1 ๐‘˜ ๐‘˜โˆ’1|๐ดฬ…๐‘ฅฬ :1| ฬ… Recursive Formulas for Increasing and Decreasing Insurance 14.10 (๐ผ๐ด)๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… = ๐ด๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… + ๐‘ฃ๐‘๐‘ฅ (๐ผ๐ด)๐‘ฅ+1 ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ฬ :๐‘›โˆ’1| 14.11 (๐ผ๐ด)๐‘ฅฬ :๐‘›| = ๐ด + ๐‘ฃ๐‘ (๐ผ๐ด๐ด) ฬ…ฬ…ฬ… ฬ… ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ฬ :๐‘›โˆ’1| ๐‘ฅ ๐‘ฅฬ :1| ๐‘ฅ+1 14.12 (๐ท๐ด)๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… = ๐‘›๐ด๐‘ฅฬ :1| ฬ… + ๐‘ฃ๐‘๐‘ฅ (๐ท๐ด)๐‘ฅ+1 ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ฬ :๐‘›โˆ’1| 14.13 (๐ท๐ด)๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… = ๐ด๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… + (๐ท๐ด)๐‘ฅฬ :๐‘›โˆ’1| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

ฬ… Lesson 15 โ€“ Insurance: Relationships (๐ด๐‘ฅ , ๐ด๐‘š ๐‘ฅ , ๐ด๐‘ฅ ) Uniform Distribution of Deaths ๐‘– 15.1 ๐ดฬ…๐‘ฅ = ( ) ๐ด๐‘ฅ ๐›ฟ

๐‘– 15.2 ๐ดฬ…๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… = ( ) ๐ด๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… ๐›ฟ

15.3

ฬ… = ( ๐‘– ) ๐‘›|๐ด๐‘ฅ

๐‘›|๐ด๐‘ฅ

๐›ฟ

๐‘– 15.4 ๐ดฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ( ) ๐ด๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… + ๐ด๐‘ฅ:๐‘›| ฬ ฬ…ฬ…ฬ… ๐›ฟ

(๐‘š)

15.5 ๐ด๐‘ฅ 15.6

2

=

๐‘– ๐‘– (๐‘š)

๐ด๐‘ฅ

2๐‘–+๐‘– ๐ดฬ…๐‘ฅ = 2๐›ฟ

2

2

๐ด๐‘ฅ โก

Claims Acceleration Approach ๐ดฬ…๐‘ฅ = (1 + ๐‘–)0.5 ๐ด๐‘ฅ 0.5 ฬ… ๐ด๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… = (1 + ๐‘–) ๐ด๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… 0.5 ฬ… ๐‘›|๐ด๐‘ฅ = (1 + ๐‘–) ๐‘›|๐ด๐‘ฅ 0.5 ๐ดฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = (1 + ๐‘–) ๐ด๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… + ๐ด๐‘ฅ:๐‘›| ฬ ฬ…ฬ…ฬ… (๐‘š)

๐‘šโˆ’1

= (1 + ๐‘–) 2๐‘š ๐ด๐‘ฅ 2 ฬ… ๐ด๐‘ฅ = (1 + ๐‘–) 2๐ด๐‘ฅ โก

๐ด๐‘ฅ

Formula Summary of ASM 2014

9 17.12 ๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐‘Žฬˆ ๐‘ฅ โˆ’ ๐‘›๐ธ๐‘ฅ ๐‘Žฬˆ ๐‘ฅ+๐‘› ๐‘›โˆ’1 17.13 ๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = โˆ‘๐‘˜=1 ๐‘Žฬˆ ๐‘˜| ฬ…ฬ…ฬ… ๐‘˜โˆ’1๐‘๐‘ฅ ๐‘ž๐‘ฅ+๐‘˜โˆ’1 + ๐‘Žฬˆ ๐‘›| ฬ…ฬ…ฬ… ๐‘›โˆ’1๐‘๐‘ฅ ๐‘›โˆ’1 ๐‘˜ โˆ‘ 17.14 ๐‘Žฬˆ ๐‘ฅ:๐‘›| = ๐‘ฃ ๐‘ ฬ…ฬ…ฬ… ๐‘˜=0 ๐‘˜ ๐‘ฅ โˆž ๐‘˜ โˆ‘ ๐‘Žฬˆ = ๐‘ฃ ๐‘˜=๐‘› ๐‘˜ ๐‘๐‘ฅ ๐‘›| ๐‘ฅ 17.15 Constant Force of Mortality 1+๐‘– ๐‘Žฬˆ ๐‘ฅ =

Lesson 17 โ€“ Annuities: Discrete, Expectation Annuities-Due Whole Life Annuities 1โˆ’๐ด๐‘ฅ 17.1 ๐‘Žฬˆ ๐‘ฅ = ๐‘‘ 17.2 ๐ด๐‘ฅ = 1 โˆ’ ๐‘‘๐‘Žฬˆ ๐‘ฅ

๐‘ž+๐‘–

๐‘›|๐‘Žฬˆ ๐‘ฅ = ๐‘›๐ธ๐‘ฅ ๐‘Žฬˆ ๐‘ฅ

Temporary Life Annuities 1โˆ’๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ…

17.3 ๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐‘‘ 17.4 ๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = 1 โˆ’ ๐‘‘ ๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ…

Annuities-immediate

n-year Deferred Whole Life Annuity 17.5 0โกโกโก๐พ๐‘ฅ โ‰ค ๐‘› โˆ’ 1

Whole life annuities 1 โˆ’ ๐‘–๐‘Ž๐‘ฅ ๐ด๐‘ฅ = 1+๐‘–

17.6 ๐‘Žฬˆ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ… = ๐พ๐‘ฅ +1| โˆ’ ๐‘Žฬˆ ๐‘›|

๐‘ฃ ๐‘› โˆ’๐‘ฃ ๐พ๐‘ฅ +1 ๐‘‘

โกโกโก๐พ๐‘ฅ โ‰ฅ ๐‘›

Temporary life annuities 1 = ๐‘–๐‘Ž๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… + ๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… + ๐‘–๐ด๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… 17.16 ๐ด๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… = ๐‘ฃ๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… โˆ’ ๐‘Ž๐‘ฅ:๐‘›| ฬ…ฬ…ฬ…

n-year certain-and-life annuity-due 17.7 ๐‘Žฬˆ ฬ…ฬ…ฬ… ๐‘›| =

1โˆ’๐‘ฃ ๐‘› ๐‘‘

17.8 ๐‘Žฬˆ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐พ๐‘ฅ +1| =

โกโกโกโกโกโกโกโกโกโกโกโกโกโกโก๐พ๐‘ฅ โ‰ค ๐‘› โˆ’ 1

1โˆ’๐‘ฃ ๐พ๐‘ฅ +1 ๐‘‘

โกโกโกโก๐พ๐‘ฅ โ‰ฅ ๐‘›

Table 17.2: Actuarial notation for standard types of annuity-due Name Whole Life Temporary Life

Annual pmt at k 1โกโกโกโกโก0 โ‰ค ๐‘˜ โ‰ค ๐พ๐‘ฅ 1โกโกโก0 โ‰ค ๐‘˜ โ‰ค min(๐พ๐‘ฅ , ๐‘› โˆ’ 1) 0โกโกโกโกโกโกโกโกโกโกโกโก๐‘˜ > min(๐พ๐‘ฅ , ๐‘› โˆ’ 1)โกโกโกโกโกโกโกโก

Deferred Life Deferred Temporary Life Certainand-life

0โกโกโก0 โ‰ค ๐‘˜ < nโกorโกk > K x 1โกโกโก๐‘› โ‰ค ๐‘˜ โ‰ค K x โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก 0โกโกโก0 โ‰ค ๐‘˜ < n 1โกโกโก๐‘› โ‰ค ๐‘˜ < minโก(๐‘› + ๐‘š, K x + 1) 0โกโกโกโกโกโกโกโกโกโกโก๐พ๐‘ฅ โ‰ฅ minโก(๐‘› + ๐‘š, K x + 1)

17.9

1โกโกโก0 โ‰ค ๐‘˜ < maxโก(K x + 1, ๐‘›) 0โกโกโกโกโกโกโกโกโกโกโก๐‘˜ โ‰ฅ maxโก(K x + 1, ๐‘›)

PV ๐‘Žฬˆ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐พ๐‘ฅ +1| ๐‘Žฬˆ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐พ๐‘ฅ +1| โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก๐พ๐‘ฅ < ๐‘› โก๐‘Žฬˆ ฬ…ฬ…ฬ… ๐‘›| โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก๐พ๐‘ฅ โ‰ฅ ๐‘› 0โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก๐พ๐‘ฅ < ๐‘› ๐‘Žฬˆ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐พ๐‘ฅ +1| โˆ’ ๐‘Žฬˆ ฬ…ฬ…ฬ… ๐‘›| โกโกโกโก๐พ๐‘ฅ โ‰ฅ ๐‘› 0โกโกโก๐พ๐‘ฅ < ๐‘› ๐‘Žฬˆ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐พ๐‘ฅ +1| โˆ’ ๐‘Žฬˆ ฬ…ฬ…ฬ… ๐‘›| โกโกโกโก๐‘› โ‰ค ๐พ๐‘ฅ โ‰ค ๐‘› + ๐‘š ๐‘Žฬˆ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐‘›+๐‘š| โˆ’ ๐‘Žฬˆ ฬ…ฬ…ฬ… ๐‘›| โกโกโกโก๐พ๐‘ฅ โ‰ฅ ๐‘› + ๐‘š ๐‘Žฬˆ ฬ…ฬ…ฬ… ๐‘›| โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก๐พ๐‘ฅ < ๐‘› ๐‘Žฬˆ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐พ๐‘ฅ +1| โกโกโกโกโกโกโกโกโกโกโกโกโกโก๐พ๐‘ฅ โ‰ฅ ๐‘›

๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ… + ๐‘›|๐‘Žฬˆ ๐‘ฅ ฬ…ฬ…ฬ…| = ๐‘Žฬˆ ๐‘›|

17.10 ๐‘›|๐‘Žฬˆ ๐‘ฅ = ๐‘›๐ธ๐‘ฅ ๐‘Žฬˆ ๐‘ฅ+๐‘› 17.11 ๐‘Žฬˆ ๐‘ฅ = ๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… + ๐‘›|๐‘Žฬˆ ๐‘ฅ

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Symbol ๐‘Žฬˆ ๐‘ฅ ๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ๐‘›|๐‘Žฬˆ ๐‘ฅ

ฬ…ฬ…ฬ… ๐‘›|๐‘Žฬˆ ๐‘ฅ:๐‘›|

๐‘Žฬˆ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…| ๐‘ฅ:๐‘›|

Certain-and-life annuities 17.17 ๐‘Žฬˆ ๐‘ฅ = ๐‘Ž๐‘ฅ + 1 17.18 ๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐‘Ž๐‘ฅ:๐‘›โˆ’1| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… + 1 17.19 ๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐‘Ž๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… + 1 โˆ’ ๐‘›๐ธ๐‘ฅ 17.20 ๐‘›|๐‘Žฬˆ ๐‘ฅ = ๐‘›|๐‘Ž๐‘ฅ + ๐‘›๐ธ๐‘ฅ 1/mthly annuities (๐‘š)

1โˆ’๐ด๐‘ฅ

(๐‘š)

=

(๐‘š)

= 1 โˆ’ ๐‘‘ (๐‘š) ๐‘Žฬˆ ๐‘ฅ

(17.1) ๏ƒ  ๐‘Žฬˆ ๐‘ฅ

(17.2) ๏ƒ  ๐ด๐‘ฅ

17.21 ๐‘ ฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… =

๐‘‘ (๐‘š)

(๐‘š)

๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ๐‘›๐ธ๐‘ฅ

Official Definition: ๐‘Žฬˆ ๐‘ฅ = โˆ‘โˆž ๐‘›=1 ๐‘Žฬˆ ๐‘› ( ๐‘›โˆ’1๐‘ž๐‘ฅ ) Alternative ๐‘› ๐‘Žฬˆ ๐‘ฅ = โˆ‘โˆž ๐‘›=0 ๐‘ฃ ๐‘›๐‘๐‘ฅ

Formula Summary of ASM 2014

10 Lesson 18 โ€“ Annuities: Continuous, Expectation 18.1 ๐‘Žฬ… ฬ…ฬ…ฬ…ฬ… ๐‘‡๐‘ฅ | = Name Whole Life Temporary Life Deferred Life Deferred Temporary Life Certainand-life

๐›ฟ

Annual pmt at k 1โกโกโกโก๐‘ก โ‰ค ๐‘‡ 1โกโกโกโก๐‘ก โ‰ค minโก(๐‘‡, ๐‘›) 0โกโกโกโก๐‘ก > minโก(๐‘‡, ๐‘›)โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก

PV ๐‘Žฬ… ฬ…ฬ…ฬ… ๐‘‡| ๐‘Žฬ… ฬ…ฬ…ฬ… ๐‘‡| โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก๐‘‡ โ‰ค ๐‘› โก๐‘Žฬ…ฬ…ฬ…ฬ… ๐‘›| โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก๐‘‡ > ๐‘› 0โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก๐‘‡ โ‰ค ๐‘› ๐‘Žฬ… ๐‘‡| ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ… โˆ’ ๐‘Ž ๐‘›| โกโกโกโกโกโกโกโกโกโก๐‘‡ > ๐‘› 0โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก๐‘‡ โ‰ค ๐‘› ๐‘Žฬ… ๐‘‡| ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ… โˆ’ ๐‘Ž ๐‘›| โกโกโกโกโกโกโกโกโก๐‘› < ๐‘‡ โ‰ค ๐‘› + ๐‘š ๐‘Žฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…ฬ… ๐‘›+๐‘š| โˆ’ ๐‘Ž ๐‘›| โกโกโกโก๐‘‡ > ๐‘› + ๐‘š ๐‘Žฬ…ฬ…ฬ…ฬ… ๐‘›| โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก๐‘‡ < ๐‘› ๐‘Žฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐พ๐‘ฅ +1| โกโกโกโกโกโกโกโกโกโกโกโกโกโก๐‘‡ โ‰ฅ ๐‘›

0โกโกโกโก๐‘ก โ‰ค nโกorโกt > T 1โกโกโกโก๐‘› < ๐‘ก โ‰ค ๐‘‡โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก 0โกโกโกโก๐‘ก โ‰ค nโกorโกt > T 1โกโกโกโก๐‘› < ๐‘ก โ‰ค ๐‘› + ๐‘šโก๐‘œ๐‘Ÿโก๐‘ก โ‰ค ๐‘‡ 0โกโกโกโก๐‘‡ > ๐‘› + ๐‘š 1โกโกโกโก๐‘ก โ‰ค maxโก(๐‘‡, ๐‘›) 0โกโกโกโก๐‘ก > maxโก(T, ๐‘›) 1โˆ’๐ดฬ…

๐‘ฅ 18.2 ๐‘Žฬ…๐‘ฅ = ๐›ฟ 18.3 ๐ดฬ…๐‘ฅ = 1 โˆ’ ๐›ฟ๐‘Žฬ…๐‘ฅ

18.4 ๐‘Žฬ…๐‘ฅ = 18.5 ๐‘Žฬ…๐‘ฅ = 18.6 ๐‘Žฬ…๐‘ฅ =

18.10

ฬ…๐‘ฅ ๐‘›|๐‘Ž

=

=

๐›ฟ ๐›ฟ 1โˆ’๐ดฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ…

ฬ…๐‘ฅ ๐‘›|๐‘Ž

1โˆ’๐ดฬ…๐‘ฅ ๐›ฟ

โˆ’

ฬ…๐‘ฅ ๐‘›|๐‘Ž ฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ๐‘›|๐‘Ž ๐‘Žฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…| ๐‘ฅ:๐‘›|

Whole Life and Temporary Life โˆž

19.1 ๐ธ[๐‘Žฬ…2ฬ…ฬ…ฬ…ฬ… ฬ…2๐‘‡| ฬ…ฬ…ฬ… ๐‘ก๐‘๐‘ฅ ยต๐‘ฅ+๐‘ก ๐‘‘๐‘ก ๐‘‡๐‘ฅ | ] = โˆซ0 ๐‘Ž โˆž 1โˆ’๐‘ฃ ๐‘ก

19.2 ๐ธ[๐‘Žฬ… 2ฬ…ฬ…ฬ…ฬ… ๐‘‡๐‘ฅ | ] = โˆซ0 ( 19.3 ๐‘‰๐‘Ž๐‘Ÿ(๐‘Žฬ… ฬ…ฬ…ฬ… ๐‘‡๐‘ฅ | ) =

๐›ฟ2 2 2 ฬ… ๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… โˆ’(๐ดฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ) ๐›ฟ2

19.4 ๐‘‰๐‘Ž๐‘Ÿ(๐‘Œ) = 19.5 2๐ดฬ…๐‘ฅ = 1 โˆ’ (2๐›ฟ) 2๐‘Žฬ…๐‘ฅ

2(๐‘Žฬ… โˆ’ 2๐‘Žฬ… )

๐‘ฅ 19.6 ๐‘‰๐‘Ž๐‘Ÿ(๐‘Œ) = ๐‘ฅ โˆ’ (๐‘Žฬ…๐‘ฅ )2 ๐›ฟ 2 19.7 2๐ดฬ…๐‘ฅ:๐‘›| ฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = 1 โˆ’ (2๐›ฟ) ๐‘Ž ฬ…ฬ…ฬ…

๐›ฟ

= ๐‘›๐ธ๐‘ฅ ๐‘Žฬ…๐‘ฅ =

2ฬ… 2(๐‘Žฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… โˆ’ ๐‘Ž ฬ…ฬ…ฬ… ) ๐‘ฅ:๐‘›| ๐›ฟ

19.9 ๐‘‰๐‘Ž๐‘Ÿ(๐‘Žฬˆ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐พ๐‘ฅ +1| ) = 2

๐œ‡+๐›ฟ

=

โˆ’ (๐‘Žฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… )

2

โกโกโก(๐ถ๐น๐‘€)

๐ดฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… โˆ’๐ดฬ…๐‘ฅ

๐‘’ โˆ’๐‘›(๐œ‡+๐›ฟ) ๐œ‡+๐›ฟโก

18.11 ๐‘Žฬ…๐‘ฅ:๐‘›| ฬ…๐‘ฅ (1 โˆ’ ๐‘›๐ธ๐‘ฅ ) = ฬ…ฬ…ฬ… = ๐‘Ž

โกโกโก(๐ถ๐น๐‘€) ๐œ‡+๐›ฟ

๐ด๐‘ฅ โˆ’(๐ด๐‘ฅ )2 ๐‘‘2

๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… โˆ’(๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… )

2

2(๐‘Žฬˆ ๐‘ฅ โˆ’ 2๐‘Žฬˆ ๐‘ฅ ) ๐‘‘

+ 2๐‘Žฬˆ ๐‘ฅ โˆ’ (๐‘Žฬˆ ๐‘ฅ )2

Other Annuities 2 19.13 ๐ธ[๐‘Œ๐‘ฅฬˆ 2 ] = โˆ‘โˆž ฬ…ฬ…ฬ… ๐‘˜โˆ’1|๐‘ž๐‘ฅ ๐‘˜=1 ๐‘Žฬˆ ๐‘˜|

๐›ฟ

1โˆ’๐‘’ โˆ’๐‘›(๐œ‡+๐›ฟ)

2

19.10 ๐‘‰๐‘Ž๐‘Ÿ(๐‘Œ) = ๐‘‘2 19.11 2๐ดฬ…๐‘ฅ = 1 โˆ’ 2๐‘‘ 2๐‘Žฬˆ ๐‘ฅ = 1 โˆ’ (2๐‘‘ โˆ’ ๐‘‘ 2 ) 2๐‘Žฬˆ ๐‘ฅ 19.12 ๐‘‰๐‘Ž๐‘Ÿ(๐‘Œ) =

1โˆ’๐ดฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ…

2

) ๐‘ก๐‘๐‘ฅ ยต๐‘ฅ+๐‘ก ๐‘‘๐‘ก ๐›ฟ 2 ฬ… ๐ด๐‘ฅ โˆ’(๐ดฬ…๐‘ฅ )2

Note: 2๐‘Žฬ…๐‘ฅ is 1st moment at twice FOI

โˆž โˆซ0 ๐‘Žฬ…๐‘ก|ฬ… ๐‘ก๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘ก ๐‘‘๐‘ก โˆž โˆซ0 ๐‘ฃ๐‘ก ๐‘ก๐‘๐‘ฅ ๐‘‘๐‘ก ๐œ‡ ๐›ฟ 1โˆ’๐œ‡+๐›ฟ 1 ๐œ‡+๐›ฟ

=

Symbol ๐‘Žฬ…๐‘ฅ ๐‘Žฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ…

19.8 ๐‘‰๐‘Ž๐‘Ÿ(๐‘Œ) =

18.7 ๐‘Žฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐›ฟ 18.8 ๐ดฬ…๐‘ฅ:๐‘›| ฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = 1 โˆ’ ๐›ฟ๐‘Ž ฬ…ฬ…ฬ… 18.9

Lesson 19 โ€“ Variance

1โˆ’๐‘ฃ ๐‘‡๐‘ฅ

โกโกโก(๐ถ๐น๐‘€)

2 2 2 ๐‘›โˆ’1 2 ฬˆ 2ฬ…ฬ…ฬ… ] = โˆ‘๐‘›๐‘˜=1 ๐‘Žฬˆ ฬ…ฬ…ฬ… 19.14 ๐ธ[๐‘Œ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ๐‘˜โˆ’1|๐‘ž๐‘ฅ + ๐‘›โˆ’1๐‘๐‘ฅ ๐‘Žฬˆ ฬ…ฬ…ฬ… ๐‘˜| ๐‘˜โˆ’1|๐‘ž๐‘ฅ + ๐‘› ๐‘๐‘ฅ ๐‘Žฬˆ ฬ…ฬ…ฬ… ๐‘›| = โˆ‘๐‘˜=1 ๐‘Žฬˆ ๐‘˜| ๐‘›|

CFM: ๐‘Žฬ…๐‘ฅ = ๐‘Žฬ…๐‘ฅ+๐‘› Relationships: ๐‘Žฬ…๐‘ฅ = ๐‘Žฬ…๐‘ฅ:๐‘›| ฬ…๐‘ฅ+๐‘› ฬ…ฬ…ฬ… + ๐‘›๐ธ๐‘ฅ ๐‘Ž ฬ… ฬ…ฬ…ฬ… ฬ…๐‘ฅ ๐‘Žฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…| = ๐‘Ž ๐‘›| + ๐‘›|๐‘Ž ๐‘ฅ:๐‘›|

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

11 Lesson 20 โ€“ Annuities: Probabilities and Percentiles For the continuous whole life annuity PVRV Y, the relationship of ๐น๐‘Œ (๐‘ฆ)to ๐น๐‘ฅ (๐‘ก) as follows: ๐น๐‘Œ (๐‘ฆ) = Prโก(๐‘Œ โ‰ค ๐‘ฆ) 1 โˆ’ ๐‘ฃ ๐‘‡๐‘ฅ โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก= Prโก( โ‰ค ๐‘ฆ) ๐›ฟ ๐‘‡๐‘ฅ โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก= Prโก(๐‘ฃ โ‰ฅ 1 โˆ’ ๐›ฟ๐‘ฆ) โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก= Prโก(๐‘‡๐‘ฅ ln ๐‘ฃ โ‰ฅ ln(1 โˆ’ ๐›ฟ๐‘ฆ)) โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก= Prโก(โˆ’๐‘‡๐‘ฅ ๐›ฟ โ‰ฅ ln(1 โˆ’ ๐›ฟ๐‘ฆ)) ln(1 โˆ’ ๐›ฟ๐‘ฆ) โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก= Pr (๐‘‡๐‘ฅ โ‰ค ) ๐›ฟ ln(1 โˆ’ ๐›ฟ๐‘ฆ) โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก= ๐น๐‘ฅ (โˆ’ ( )) ๐›ฟ To calculate a probability for an annuity, calculate the ๐‘ก for which ๐‘Žฬ…๐‘ก has the desired property. Then calculate the probability ๐‘ก is in that range. To calculate a percentile of an annuity, calculate the percentile of ๐‘‡๐‘ฅ , then calculate ๐‘Žฬ… ฬ…ฬ…ฬ… ๐‘‡๐‘ฅ | Some adjustments may be needed for discrete annuities or non-whole-life annuities, as discussed in the lesson. If forces of mortality and interest are constant, then the probability that the present value of payments on a continuous whole life annuity will be greater than its expected present value is ๐œ‡

Pr(๐‘Žฬ… ฬ…ฬ…ฬ… ๐‘‡๐‘ฅ |

๐œ‡ ๐›ฟ > ๐‘Žฬ…๐‘ฅ ) = ( ) ๐œ‡+๐›ฟ

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Lesson 21 โ€“ Annuities: Varying, Recursive Formulas Whole Life 21.1 ๐‘Žฬˆ ๐‘ฅ = ๐‘ฃ๐‘๐‘ฅ ๐‘Žฬˆ ๐‘ฅ+1 + 1 (๐‘š)

21.2 ๐‘Žฬˆ ๐‘ฅ

1

= ๐‘ฃ ๐‘š 1 ๐‘๐‘ฅ ๐‘Žฬˆ ๐‘š

(๐‘š)

1 ๐‘š

๐‘ฅ+

+

1 ๐‘š

๐‘Ž๐‘ฅ = ๐‘ฃ๐‘๐‘ฅ ๐‘Ž๐‘ฅ+1 + ๐‘ฃ๐‘๐‘ฅ ๐‘Žฬ…๐‘ฅ = ๐‘ฃ๐‘๐‘ฅ ๐‘Žฬ…๐‘ฅ+1 + ๐‘Žฬ…๐‘ฅ:1| ฬ… Temporary ๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐‘ฃ๐‘๐‘ฅ ๐‘Žฬˆ ๐‘ฅ+1:๐‘›โˆ’1| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… + 1 ๐‘Ž๐‘ฅ:๐‘›| = ๐‘ฃ๐‘ ๐‘Ž ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… + ๐‘ฃ๐‘๐‘ฅ ๐‘ฅ ๐‘ฅ+1:๐‘›โˆ’1| ๐‘Žฬ…๐‘ฅ:๐‘›| ฬ…๐‘ฅ+1:๐‘›โˆ’1| ฬ…๐‘ฅ:1| ฬ…ฬ…ฬ… = ๐‘ฃ๐‘๐‘ฅ ๐‘Ž ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… + ๐‘Ž ฬ… Deferred life ๐‘›|๐‘Žฬˆ ๐‘ฅ = ๐‘ฃ๐‘๐‘ฅ ๐‘›โˆ’1|๐‘Žฬˆ ๐‘ฅ+1 ๐‘›|๐‘Ž๐‘ฅ = ๐‘ฃ๐‘๐‘ฅ ๐‘›โˆ’1|๐‘Ž๐‘ฅ+1 ฬ…๐‘ฅ = ๐‘ฃ๐‘๐‘ฅ ๐‘›โˆ’1|๐‘Žฬ…๐‘ฅ+1 ๐‘›|๐‘Ž n-year certain and life ๐‘Žฬˆ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ… = 1 + ๐‘ฃ๐‘ž๐‘ฅ ๐‘Žฬˆ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐‘›โˆ’1| + ๐‘ฃ๐‘๐‘ฅ ๐‘Žฬˆ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐‘ฅ:๐‘›| ๐‘ฅ+1:๐‘›โˆ’1| ๐‘Žฬ…ฬ…ฬ…ฬ…ฬ…ฬ… = ๐‘ฃ + ๐‘ฃ๐‘ž ๐‘Ž + ๐‘ฃ๐‘ ๐‘Ž ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐‘ฅ ๐‘ฅ ๐‘›โˆ’1| ๐‘ฅ:๐‘›| ๐‘ฅ+1:๐‘›โˆ’1| ๐‘Žฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… = ๐‘Ž ฬ… + ๐‘ฃ๐‘ž ๐‘Ž ฬ… + ๐‘ฃ๐‘ ๐‘Ž ฬ… ฬ… ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐‘ฅ ๐‘›โˆ’1| ๐‘ฅ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… 1| ๐‘ฅ:๐‘›| ๐‘ฅ+1:๐‘›โˆ’1| Increasing/decreasing annuities (๐ผ๐‘Žฬˆ )๐‘ฅ = ๐‘Ž๐‘ฅ + ๐‘ฃ๐‘๐‘ฅ (๐ผ๐‘Žฬˆ )๐‘ฅ+1 ฬ… ฬ…)๐‘ฅ = 1 2 โกโกโกโก(๐ถ๐น๐‘€) (๐ผ ๐‘Ž (๐›ฟ+ฮผ) ฬ… ฬ…)๐‘ฅ:๐‘›| ฬ… ๐‘Žฬ…)๐‘ฅ:๐‘›| (๐ผ ๐‘Ž ฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… + โก (๐ท ฬ…ฬ…ฬ… = ๐‘›๐‘Ž ฬ…ฬ…ฬ… (๐ผ๐‘Ž)๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… + โก (๐ท๐‘Ž)๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = (๐‘› + 1)๐‘Ž๐‘ฅ:๐‘›| ฬ…ฬ…ฬ…

Formula Summary of ASM 2014

12

Lesson 22 โ€“ Annuities: 1/m-thly Payments ๐‘šโˆ’2 (๐‘š) 22.1 ๐‘Žฬˆ ๐‘ฅ โ‰ˆ ๐‘Žฬˆ ๐‘ฅ โˆ’ (๐‘š)

๐‘Ž๐‘ฅ

โ‰ˆ ๐‘Ž๐‘ฅ โˆ’

Lesson 24 โ€“ Premiums: Net Premiums for Discrete Insurances โ€“ Part I Future Loss = PV(Benefits) โ€“ PV(Gross Premiums) Equivalence Principle: EPV(Premiums) = EPV(Payments) ๏ƒ  E[FutureLoss]=0 Net Premium ๏ƒ  E[PVFB] = E[PVFP]

2๐‘š ๐‘šโˆ’2 2๐‘š

Uniform Distribution of Deaths (UDD) ๐‘–๐‘‘ ๐›ผ(๐‘š) = (๐‘š) (๐‘š)โก ๐‘–

๐›ฝ(๐‘š) =

22.2 22.3 22.4

If P = net premium A = EPV of Benefits a = EPV of Annuity ๐ด Equivalence Principle: ๐‘ƒ๐‘Ž = ๐ด โ†’ ๐‘ƒ =

๐‘‘ ๐‘–โˆ’๐‘– (๐‘š)

๐‘– (๐‘š) ๐‘‘ (๐‘š) (๐‘š) ๐‘Žฬˆ ๐‘ฅ = ๐›ผ(๐‘š)๐‘Žฬˆ ๐‘ฅ โˆ’ ๐›ฝ(๐‘š) (๐‘š) ๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… โˆ’ ๐›ฝ(๐‘š)(1 โˆ’ ๐‘›๐ธ๐‘ฅ ) ฬ…ฬ…ฬ… = ๐›ผ(๐‘š)๐‘Žฬˆ ๐‘ฅ:๐‘›| (๐‘š) = ๐›ผ(๐‘š) ๐‘›|๐‘Žฬˆ ๐‘ฅ โˆ’ ๐›ฝ(๐‘š) ๐‘›๐ธ๐‘ฅ ๐‘›|๐‘Žฬˆ ๐‘ฅ

๐‘Ž

P Whole Life

Woolhouseโ€™ Formula (๐‘š)

22.5 ๐‘Žฬˆ ๐‘ฅ

โ‰ˆ ๐‘Žฬˆ ๐‘ฅ โˆ’ 1

๐‘šโˆ’1 2๐‘š

โˆ’

๐‘š2 โˆ’1 12๐‘š2

n-year term

(ยต๐‘ฅ + ๐›ฟ)

22.6 ยต๐‘ฅ โ‰ˆ โˆ’ (ln ๐‘๐‘ฅโˆ’1 + ln ๐‘๐‘ฅ ) (๐‘š)

2

22.7 ๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… โˆ’ ฬ…ฬ…ฬ… โ‰ˆ ๐‘Žฬˆ ๐‘ฅ:๐‘›| (๐‘š)

โ‰ˆ

(1 โˆ’ ๐‘›๐ธ๐‘ฅ ) โˆ’

2๐‘š ๐‘šโˆ’1

๐‘›|๐‘Žฬˆ ๐‘ฅ โˆ’ 2๐‘š ๐‘›๐ธ๐‘ฅ 1 1 22.9 ๐‘Žฬ…๐‘ฅ โ‰ˆ ๐‘Žฬˆ ๐‘ฅ โˆ’ โˆ’ (ยต๐‘ฅ + ๐›ฟ) 2 12 1 1 22.10 ๐‘’ฬ‡๐‘ฅ โ‰ˆ ๐‘’๐‘ฅ + โˆ’ ยต๐‘ฅ 2 12

22.8

๐‘›|๐‘Žฬˆ ๐‘ฅ

๐‘šโˆ’1

โˆ’

n-year deferred

๐‘š2 โˆ’1

(ยต๐‘ฅ+๐‘› + ๐›ฟ)) 2 (ยต๐‘ฅ + ๐›ฟ โˆ’ ๐‘›๐ธ๐‘ฅ

12๐‘š ๐‘š2 โˆ’1 ๐ธ (ยต 12๐‘š2 ๐‘› ๐‘ฅ ๐‘ฅ+๐‘›

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

+ ๐›ฟ)

๐‘›|๐ด๐‘ฅ

๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ๐‘›|๐ด๐‘ฅ

๐‘Žฬˆ ๐‘ฅ

๐ด๐‘ฅ ๐‘Žฬˆ ๐‘ฅ ๐ด๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… ๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… P payable during deferral P payable for life

Formula Summary of ASM 2014

13

Lesson 25: Premiums: Net Premiums for Discrete Insurances โ€“ Part II

Lesson 27 โ€“ Premiums: Net Premiums for Fully Continuous Insurances Whole life

Fully discrete whole life ๐ด 1โˆ’๐‘‘๐‘Žฬˆ ๐‘ฅ 25.1 ๐‘ƒ๐‘ฅ = ๐‘ฅ = =

27.1 ๐‘ƒ =

25.2 ๐‘ƒ๐‘ฅ =

๐‘Žฬˆ ๐‘ฅ ๐ด๐‘ฅ ๐‘Žฬˆ ๐‘ฅ

=

๐‘Žฬˆ ๐‘ฅ ๐ด๐‘ฅ

1โˆ’๐ด๐‘ฅ = ๐‘‘

1

๐‘Žฬˆ ๐‘ฅ ๐‘‘๐ด๐‘ฅ

โˆ’๐‘‘

0๐ฟ

=

๐‘ฅ )๐›ฟ

1 ๐‘Žฬ…๐‘ฅ

=

โˆ’๐›ฟ

๐›ฟ๐ดฬ…๐‘ฅ 1โˆ’๐ดฬ…๐‘ฅ

1โˆ’๐ด๐‘ฅ

n-year endowment 1 27.3 ๐‘ƒ = ฬ… โˆ’ ๐›ฟโก

๐‘Žฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ๐‘‘๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ…

27.4 โก๐‘ƒ =

๐‘Ž๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ๐›ฟ๐ดฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ…

1โˆ’๐ดฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ…

โก

1โˆ’๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ…

Continuous Whole Life ๐œ‹ ๐œ‹ 27.5 0๐ฟ = ๐‘ฃ ๐‘‡๐‘ฅ (๐‘ + ) โˆ’

Net Premiums Whole Life and n-year term: (constant ๐‘ž๐‘ฅ )โก 25.5 ๐‘ƒ๐‘ฅ = ๐‘ƒ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… = ๐‘ฃ๐‘ž๐‘ฅ Future Loss at issue Fully discrete whole life 25.6

๐‘Žฬ…๐‘ฅ ๐ดฬ…๐‘ฅ

27.2 ๐‘ƒ = (1โˆ’๐ดฬ…

Fully discrete endowment 1 25.3 ๐‘ƒ๐‘ฅ:๐‘›| โˆ’๐‘‘ ฬ…ฬ…ฬ… = 25.4 ๐‘ƒ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… =

1โˆ’๐›ฟ๐‘Žฬ…๐‘ฅ

๐‘‘

๐‘‘

๐พ๐‘ฅ +1 = ๐‘๐‘ฃ ๐พ๐‘ฅ+1 โˆ’ ๐œ‹(๐‘Žฬˆ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… โˆ’ ๐พ๐‘ฅ +1| ) = ๐‘๐‘ฃ ๐œ‹

๐œ‹

๐‘‘

๐‘‘

= ๐‘ฃ ๐พ๐‘ฅ+1 (๐‘ + ) โˆ’

๐œ‹

๐œ‹

๐‘‘

๐‘‘

25.7 ๐ธ[ 0๐ฟ] = ๐‘๐ด๐‘ฅ โˆ’ ๐œ‹๐‘Žฬˆ ๐‘ฅ = ๐ด๐‘ฅ (๐‘ + ) โˆ’

๐‘‘

๐œ‹ ๐œ‹ 27.6 ๐ธ[ 0๐ฟ] = ๐ดฬ…๐‘ฅ (๐‘ + ) โˆ’ ๐‘‘

๐œ‹(1โˆ’๐‘ฃ ๐พ๐‘ฅ +1 ) ๐‘‘

n-year term insurance: 0๐ฟ

๐œ‹(1โˆ’๐‘ฃ minโก(๐พ๐‘ฅ +1,๐‘›) )

=๐‘โˆ’ ๐‘‘ ๐‘๐‘ฃ ๐พ๐‘ฅ +1 โกโกโก๐พ๐‘ฅ < ๐‘› ๐‘={ 0โกโกโกโกโกโกโกโกโกโกโกโกโก๐พ๐‘ฅ โ‰ฅ ๐‘›โก

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

14

Lesson 28 โ€“ Premiums: Gross Reserves To calculate gross premium G by equivalence principle, equate G times an annuity-due for the premium payment period with the sum of 1. An insurance for the face amount plus settlement expenses 2. G times an annuity-due for the premium payment period of renewal percent of premium expense, plus the excess of the first year percentage over the renewal percentage 3. An annuity-due for the coverage period of the renewal per-policy and per-1000 expenses, plus the excess of first year over renewal expenses

Lesson 29 โ€“ Premiums: Variance of Future Loss, Discrete Net Future Loss Whole Life โ€“ ๐œ‹ is gross premium

๐œ‹ 2

29.1 ๐‘‰๐‘Ž๐‘Ÿ( 0๐ฟ) = ( 2๐ด๐‘ฅ โˆ’ (๐ด๐‘ฅ )2 ) (๐‘ + ) 29.2 ๐‘‰๐‘Ž๐‘Ÿ( 0๐ฟ) = ๐‘ 2 (

2

๐ด๐‘ฅ โˆ’(๐ด๐‘ฅ )2

(1โˆ’๐ด๐‘ฅ )2

๐‘‘

)

Endowment - ๐œ‹ is gross premium

2

๐œ‹ 2

29.3 ๐‘‰๐‘Ž๐‘Ÿ( 0๐ฟ) = ( 2๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… โˆ’ (๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ) ) (๐‘ + ) 29.4 ๐‘‰๐‘Ž๐‘Ÿ( 0๐ฟ) = ๐‘ 2 (

2

๐‘‘

2

๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… โˆ’(๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ) (1โˆ’๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… )

2

)โกโก(๐ธ๐‘ƒ)

Whole Life โ€“ constant ๐‘ž๐‘ฅ 29.5 ๐‘‰๐‘Ž๐‘Ÿ( 0๐ฟ) =

๐‘ž(1โˆ’๐‘ž) ๐‘ž+ 2๐‘–

Gross Future Loss โ€“ Whole Life ๐พ๐‘ฅ +1 + (๐‘’๐‘“ โˆ’ ๐‘’) โˆ’ (๐บ โˆ’ ๐‘’)โก๐‘Žฬˆ ๐พ๐‘ฅ+1 0๐ฟ = (๐‘ + ๐ธ)๐‘ฃ 29.6 ๐‘‰๐‘Ž๐‘Ÿ( 0๐ฟ) =( 2๐ด๐‘ฅ โˆ’ ๐ด2๐‘ฅ )(๐‘ + ๐ธ + Where โกโกโกโกโกโกโกโกโกโกb = FaceโกAmount โกโกโกโกโกโกโกโกโกโกE = SettlementโกExpensesโกโกโกโกโกโกโกโกโกโก โกโกโกโกโกโกโกโกโกโกe = levelโกrenewalโกexpenses

๐บโˆ’๐‘’ 2 ) โก ๐‘‘

For two fully discrete whole life or endowment insurance, one with ๐‘โ€™ units and premium ๐œ‹โ€ฒ, and the other with ๐‘ units and premium ๐œ‹, the relative variance of net future loss of the first to the second is ๐‘โ€ฒ๐‘‘ + โก ๐œ‹ โ€ฒ 2 ( ) ๐‘๐‘‘ + ๐œ‹

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

15 Lesson 30 โ€“ Premiums: Variance of Future Loss, Continuous Let 0๐ฟ be net future loss. The following are for fully continuous whole life and endowment insurance with premium ๐œ‹ and face amount ๐‘. For whole ฬ…. life, drop ๐‘›| 2 ๐œ‹ 30.1 ๐‘‰๐‘Ž๐‘Ÿ( 0๐ฟ) = ( 2๐ดฬ…๐‘ฅ โˆ’ (๐ดฬ…๐‘ฅ ) ) (๐‘ + ) 2

30.2 ๐‘‰๐‘Ž๐‘Ÿ( 0๐ฟ) = ๐‘ (

2 2 ฬ… ๐ด๐‘ฅ โˆ’(๐ดฬ…๐‘ฅ )

(1โˆ’๐ดฬ…๐‘ฅ )

2

2

๐‘‘

) โกโก๐œ‹ is net premium 2

30.4 ๐‘‰๐‘Ž๐‘Ÿ( 0๐ฟ) = ๐‘ 2 ( 30.5 ๐‘‰๐‘Ž๐‘Ÿ( 0๐ฟ) =

๐œ‡ 2๐›ฟ+๐œ‡

๐‘‘

)โก(๐ธ๐‘ƒ)

โกโกโก(๐ถ๐น๐‘€โก๐‘Šโ„Ž๐‘œ๐‘™๐‘’โก๐ฟ๐‘–๐‘“๐‘’)

Let 0๐ฟ be gross future loss. The following is for fully continuous whole life and endowment insurance with premium ๐œ‹ and face amount ๐‘, and excess ฬ…. first year expenses payable at issue. For whole life, drop ๐‘›| 2

๐บโˆ’๐‘’ 30.6 ๐‘‰๐‘Ž๐‘Ÿ( 0๐ฟ) = ( 2๐ดฬ…๐‘ฅ:๐‘›| ) ฬ…ฬ…ฬ… โˆ’ (๐ดฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ) ) (๐‘ + ๐ธ +

2

๐›ฟ

For two whole life or endowment insurance, one with ๐‘โ€™ units and gross premium ๐œ‹โ€ฒ, and the other with ๐‘ units and premium ๐œ‹, the relative variance of future loss of the first to the second is (

๐‘โ€ฒ๐›ฟ + โก ๐œ‹ โ€ฒ 2 ) ๐‘๐›ฟ + ๐œ‹

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

For level benefit or decreasing benefit insurance, the loss at issue decreases with time for whole life, endowment, and term insurances. To calculate the probability that the loss at issue is less than something, calculate the probability that survival time is greater than something. For level benefit or decreasing benefit deferred insurance, the loss at issue decreases during the deferral period, then jumps at the end of the deferral period and declines thereafter.

๐œ‹ 2

30.3 ๐‘‰๐‘Ž๐‘Ÿ( 0๐ฟ) = ( 2๐ดฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… โˆ’ (๐ดฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ) ) (๐‘ + ) 2 2 ฬ… ๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… โˆ’(๐ดฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ) 2 (1โˆ’๐ดฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… )

Lesson 31 โ€“ Premiums: Probabilities & Percentiles of Future Loss

To calculate the probability that the loss at issue is greater than a positive number, calculate the probability that survival time is less than something minus the probability that survival time is less than the deferral period. To calculate the probability that the loss at issue is greater than a negative number, calculate the probability that survival time is less than something that is less than the deferral period, and add that to the probability that survival time is less than something that is greater than the deferral period minus the probability that survival time is less than the deferral period. For a deferred annuity with a single premium, the loss at issue is a negative constant during the deferral period. If regular premiums are payable during the deferral period, the loss at issue decreases until the end of the deferral period increases thereafter.

Formula Summary of ASM 2014

16 Lesson 32 โ€“ Premium: Special Topics

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Lesson 34 โ€“ Reserves: Prospective Net Premium Reserve

Formula Summary of ASM 2014

17 Lesson 35 โ€“ Reserves: Gross Premium Reserve & Expense Reserve

Lesson 36 โ€“ Reserves: Retrospective Formula

The gross premium reserve at time t is calculated as expected present value of future benefits and expenses minus future gross premiums at time t, given that the policy is in force.

Retrospective Formula โ€“ net premium reserve equals the accumulated value of net premiums minus the accumulated cost of insurance. Whole Life

The gross premium used in the calculation does not have to be determined by the equivalence principle. Even if it is, it may use different assumptions than used in calculating the gross premium reserve. If the gross premium is calculated using the equivalence principle on the same basis as the reserve, then the expense loading is the excess of the gross premium over the net premium. The expense reserve at time t is the expected present value of future expenses minus the expected present value of future expense loadings.

๐‘ก๐‘‰

=

๐‘ƒ๐‘Žฬˆ ๐‘ฅ:๐‘กฬ…| โˆ’ ๐ด๐‘ฅฬ :๐‘กฬ…|

๐‘ก๐ธ๐‘ฅ ๐‘ƒ๐‘Žฬˆ ๐‘ฅ:๐‘กฬ…| - EPV at issue of premiums through t; ๐ด๐‘ฅฬ :๐‘กฬ…| - EPV at issue of term insurance through time t

๐‘ƒ๐‘ฅ = ๐‘ƒ๐‘ฅฬ :๐‘›| ฬ…ฬ…ฬ… + ๐‘ƒ๐‘ฅ:๐‘›| ฬ ๐‘›๐‘‰ ฬ…ฬ…ฬ… Premium Difference Formula ๐ด๐‘ก โ€“ EPV of insurance at duration t ๐‘Ž๐‘ก โ€“ EPV of annuity at duration t ๐‘ƒ๐‘ก โ€“ annual net premium at duration t ๐‘ก๐‘‰

= ๐ด๐‘ก โˆ’ ๐‘ƒ0 ๐‘Ž๐‘ก โ†’ ๐‘Ž๐‘ก (๐‘ƒ๐‘ก โˆ’ ๐‘ƒ0 )

Paid up Insurance Formula ๐‘ƒ0 ) ๐‘ก๐‘‰ = ๐ด๐‘ก (1 โˆ’ ๐‘ƒ๐‘ก

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

18 Lesson 37 โ€“ Reserves: Special Formulas for Whole Life and Endowment Insurance 37.1 Annuity-ratio formula Endowment ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… | โˆ’ ๐‘ƒ๐‘ฅ:๐‘›ฬ…| ๐‘Žฬˆ ๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… | ๐‘˜ ๐‘‰ = ๐ด๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜ = 1 โˆ’ ๐‘‘๐‘Žฬˆ ๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… | โˆ’ (

1

๐‘Žฬˆ ๐‘ฅ:๐‘› ฬ…|

= 1 โˆ’ ๐‘‘๐‘Žฬˆ ๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… | โˆ’ =1โˆ’ Whole Life

๐‘Žฬˆ ๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…|

๐‘Žฬˆ ๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… | ๐‘Žฬˆ ๐‘ฅ:๐‘›ฬ…|

๐‘Žฬˆ ๐‘ฅ:๐‘› ฬ…|

๐‘Žฬˆ ๐‘ฅ+๐‘˜ ๐‘˜๐‘‰ = 1 โˆ’ ๐‘Žฬˆ ๐‘ฅ

37.2 Insurance-ratio formula Endowment ๐‘˜๐‘‰

=1โˆ’

=1โˆ’ =

๐‘Žฬˆ ๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…| ๐‘Žฬˆ ๐‘ฅ:๐‘› ฬ…|

1โˆ’๐ด๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…|

1โˆ’๐ด๐‘ฅ:๐‘› ฬ…| ๐ด๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…| โˆ’๐ด๐‘ฅ:๐‘› ฬ…| 1โˆ’๐ด๐‘ฅ:๐‘› ฬ…|

โˆ’ ๐‘‘)๐‘Žฬˆ ๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… |

โกโก

+ ๐‘‘๐‘Žฬˆ ๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… |

Lesson 38 โ€“ Reserves: Variance of Loss 38.1 Continuous Whole Life or Endowment

๐‘ƒ 2 ๐‘‰๐‘Ž๐‘Ÿ( ๐‘ก๐ฟ|๐‘‡๐‘ฅ โ‰ฅ ๐‘ก) = ๐‘‰๐‘Ž๐‘Ÿ(๐‘) (๐‘ + ) ๐›ฟ 38.2 Continuous Premium Continuous Whole Life (EP) 2 2 ฬ… ๐ด๐‘ฅ+๐‘ก โˆ’ (๐ดฬ…๐‘ฅ+๐‘ก ) โก ๐‘‰๐‘Ž๐‘Ÿ( ๐‘ก๐ฟ|๐‘‡๐‘ฅ โ‰ฅ ๐‘ก) = (1 โˆ’ ๐ดฬ…๐‘ฅ )2 38.3 Annual Premium Annual Whole Life, integral k (EP)

2

2

๐ด๐‘ฅ+๐‘˜ โˆ’ (๐ด๐‘ฅ+๐‘˜ ) โก (1 โˆ’ ๐ด๐‘ฅ )2 38.4 Continuous Premium Continuous Endowment (EP) ๐‘‰๐‘Ž๐‘Ÿ( ๐‘˜๐ฟ|๐พ๐‘ฅ โ‰ฅ ๐‘˜) = 2

๐‘‰๐‘Ž๐‘Ÿ( ๐‘ก๐ฟ|๐‘‡๐‘ฅ โ‰ฅ ๐‘ก) =

(1 โˆ’ ๐ดฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ) 38.5 Annual Premium Annual Endowment 2

๐‘‰๐‘Ž๐‘Ÿ( ๐‘˜๐ฟ|๐พ๐‘ฅ โ‰ฅ ๐‘˜) =

2

๐ดฬ…๐‘ฅ+๐‘ก:๐‘›โˆ’๐‘ก| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… โˆ’ (๐ดฬ…๐‘ฅ+๐‘ก:๐‘›โˆ’๐‘ก| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ) โก 2

2

๐ด๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… โˆ’ (๐ด๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ) โก 2

(1 โˆ’ ๐ด๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… ) 38.6 Gross Future Loss of Whole Life and Endowment 2

๐‘‰๐‘Ž๐‘Ÿ( ๐พ๐ฟ๐‘” |๐‘‡๐‘ฅ > ๐‘˜) =( 2๐ด๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… โˆ’ (๐ด๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜| ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ) )(๐‘ + ๐ธ +

๐บโˆ’๐‘’ 2 ) ๐‘‘

Whole Life ๐ด๐‘ฅ+๐‘˜ โˆ’๐ด๐‘ฅ โกโก ๐‘˜๐‘‰ = 1โˆ’๐ด๐‘ฅ

37.3 Premium-Ratio Formula Endowment ๐‘˜๐‘‰

=

๐‘ƒ๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… | โˆ’ ๐‘ƒ๐‘ฅ:๐‘›ฬ…| โกโก ๐‘ƒ๐‘ฅ+๐‘˜:๐‘›โˆ’๐‘˜ ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… | + ๐‘‘

Whole Life ๐‘˜๐‘‰

=

๐‘ƒ๐‘ฅ+๐‘˜ โˆ’ ๐‘ƒ๐‘ฅ โกโก ๐‘ƒ๐‘ฅ+๐‘˜ + ๐‘‘

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

19 Lesson 39: Reserves: Recursive Formulas General Recursion formulas 39.1

๐‘˜๐‘‰

=

(๐‘˜โˆ’1๐‘‰ +๐œ‹๐‘˜โˆ’1 )(1+๐‘–)โˆ’๐‘๐‘˜ ๐‘ž๐‘˜+1 ๐‘๐‘ฅ+๐‘˜โˆ’1

39.2 ( ๐‘˜โˆ’1๐‘‰ + ๐œ‹๐‘˜โˆ’1 )(1 + ๐‘–) = ๐‘ž๐‘ฅ+๐‘˜โˆ’1 (๐‘๐‘˜ โˆ’ ๐‘˜๐‘‰ ) + ๐‘˜๐‘‰ 1) For paid up insurance, the net premium reserve is the net single premium 2) For term insurance, the net premium reserve at expiry is 0 3) For endowment insurance, the net premium reserve right before maturity is the endowment benefit. 4) Deferred annuities and insurances have no benefit during the deferral period, so omit the ๐‘๐‘˜ ๐‘ž๐‘ฅ+๐‘˜โˆ’1 term in equation (39.1) for recursions during the deferral period.

Lesson 40 โ€“ Reserves: Modified Reserves 1) For the full preliminary term method, the reserve at the end of the first year is 0. Thereafter, the reserve is the net premium reserve for an otherwise similar policy (with the same maturity date as the original policy) issued one year later. 2) For any modified reserve method, the expected present value of the valuation premiums must equal the expected present value of the benefits.

If FA + net premium reserve is paid at the end of the year of death: 39.3 ๐‘—๐‘‰ = ( ๐‘—โˆ’1๐‘‰ + ๐œ‹๐‘—โˆ’1 )(1 + ๐‘–) โˆ’ ๐‘ž๐‘ฅ+๐‘—โˆ’1 ๐น๐ด ๐‘˜ ๐‘˜โˆ’๐‘— 39.4 ๐‘˜๐‘‰ = ๐œ‹๐‘ ฬˆ ๐‘˜| ฬ…ฬ…ฬ… โˆ’ ๐น๐ด โˆ‘๐‘—=1 ๐‘ž๐‘ฅ+๐‘—โˆ’1 (1 + ๐‘–) Deferred annuities and insurances 39.5 ๐‘˜๐‘‰ = ๐œ‹๐‘ ฬˆ ๐‘˜| ฬ…ฬ…ฬ… Gross Premium Reserve 39.6

๐‘˜๐‘‰

=

(๐‘˜โˆ’1๐‘‰ +๐บ๐‘˜โˆ’1 โˆ’๐‘’๐‘˜โˆ’1 )(1+๐‘–)โˆ’๐‘ž๐‘ฅ+๐‘˜โˆ’1 (๐‘๐‘˜ +๐ธ๐‘˜ ) 1โˆ’๐‘ž๐‘ฅ+๐‘˜โˆ’1

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

20 Lesson 41: Reserves โ€“ Other Topics Valuation between premium dates

๐‘˜+๐‘ ๐‘‰

=

( ๐‘˜๐‘‰ +๐‘ƒ๐‘˜+1 )(1+๐‘–)๐‘  โˆ’๐‘๐‘˜+1 ๐‘ ๐‘ž๐‘ฅ+๐‘˜ ๐‘ฃ 1โˆ’๐‘  ๐‘ ๐‘๐‘ฅ+๐‘˜

Exact Formula with UDD: 41.2

๐‘˜+๐‘ ๐‘‰

=

+EPV of future net premiums, altered contract = EPV (Future Benefits, altered contract)

Reduced paid up face amount ๐‘ for whole life nonforfeiture option:

Exact Formula 41.1

๐‘ก๐ถ๐‘‰

( ๐‘˜๐‘‰ +๐‘ƒ๐‘˜+1 )(1+๐‘–)๐‘  โˆ’๐‘ ๐‘๐‘˜+1 ๐‘ž๐‘ฅ+๐‘˜ ๐‘ฃ 1โˆ’๐‘ 

41.9

๐‘ก๐‘Š๐‘ฅ

=

๐‘ก๐ถ๐‘‰๐‘ฅ

๐ด๐‘ฅ+๐‘ก

Extended term duration n for whole life nonforfeiture option: 41.10 ๐‘ก๐ถ๐‘‰๐‘ฅ = ๐ด๐‘ฅ+๐‘ก ฬ…ฬ…ฬ… ฬ :๐‘›|

1โˆ’๐‘ ๐‘ž๐‘ฅ+๐‘˜

Traditional approximation (linear interpolation): 41.3 ๐‘˜+๐‘ ๐‘‰ = (1 โˆ’ ๐‘ )( ๐‘˜๐‘‰ + ๐‘ƒ๐‘˜+1 ) + ๐‘  ๐‘˜+1๐‘‰

Pure endowment PE for extended term option on endowment insurance: 41.11 ๐‘ก๐ถ๐‘‰๐‘ฅ = ๐ด๐‘ฅ+๐‘ก ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… + ๐‘ƒ๐ธโก ๐‘›โˆ’๐‘ก๐ธ๐‘ฅ+๐‘ก ฬ :๐‘›โˆ’๐‘ก|

Thieleโ€™s differential equation ๐‘‘ 41.4 ๐‘ก๐‘‰ = ๐›ฟ๐‘ก ๐‘ก๐‘‰ + ๐บ๐‘ก โˆ’ ๐‘’๐‘ก โˆ’ (๐‘๐‘ก + ๐ธ๐‘ก โˆ’ ๐‘ก๐‘‰ )๐œ‡[๐‘ฅ]+๐‘ก ๐‘‘๐‘ก

Numerical solutions with Eulerโ€™s method: Using derivatives at the lower end of each interval to go from ๐‘ก + โ„Ž to ๐‘ก 41.5 ๐‘ก+โ„Ž๐‘‰ โˆ’ ๐‘ก๐‘‰ โ‰ˆ โ„Ž(๐›ฟ๐‘ก ๐‘ก๐‘‰ + ๐บ๐‘ก โˆ’ ๐‘’๐‘ก โˆ’ (๐‘๐‘ก + ๐ธ๐‘ก + ๐‘ก๐‘‰ )๐œ‡[๐‘ฅ]+๐‘ก ) 41.6

๐‘ก๐‘‰

=

๐‘ก+โ„Ž๐‘‰ โˆ’โ„Ž(๐บ๐‘ก โˆ’๐‘’๐‘ก โˆ’(๐‘๐‘ก +๐ธ๐‘ก )๐œ‡[๐‘ฅ]+๐‘ก )

1+โ„Ž(๐œ‡[๐‘ฅ]+๐‘ก +๐›ฟ)

Using derivatives at the upper end of each interval to go from ๐‘ก to ๐‘ก + โ„Ž 41.7 41.8

๐‘ก๐‘‰

โˆ’ ๐‘กโˆ’โ„Ž๐‘‰ โ‰ˆ โ„Ž(๐›ฟ๐‘ก ๐‘ก๐‘‰ + ๐บ๐‘ก โˆ’ ๐‘’๐‘ก โˆ’ (๐‘๐‘ก + ๐ธ๐‘ก + ๐‘ก๐‘‰ )๐œ‡[๐‘ฅ]+๐‘ก )

๐‘กโˆ’โ„Ž๐‘‰

= ๐‘ก๐‘‰ (1 โˆ’ โ„Ž(๐œ‡[๐‘ฅ]+๐‘ก + ๐›ฟ)) + โ„Ž(โˆ’๐บ๐‘ก + ๐‘’๐‘ก + (๐‘๐‘ก + ๐ธ๐‘ก )๐œ‡[๐‘ฅ]+๐‘ก )

Policy alterations Equivalence principle formula, with ๐‘ก๐ถ๐‘‰ the value transferred: ๐‘ก๐ถ๐‘‰ +EPV of future gross premiums, altered contract = EPV (Future Benefits and expenses, altered contract)

Equivalence principle formula on net basis:

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

21 Lesson 43 โ€“ Markov Chains: Discrete โ€“ Probabilities Single Life Mortality Insurance/Annuity model Alive (0) ๏ƒ  Dead (1) Multiple decrements and pensions Double Indemnity model Alive (0) ๏ƒ  Accidental Death (1) Alive (0) ๏ƒ  Death from other causes (2) Pension model Active (0) ๏ƒ  Terminated (1) Active (0) ๏ƒ  Disabled (2) Active (0) ๏ƒ  Retired (3) Active (0) ๏ƒ  Dead (4) Permanent Disability Permanent disability model Healthy (0) ๏ƒ  Disabled (1) Disabled (1) ๏ƒ  Dead (2) Healthy (0) ๏ƒ  Dead (2)

Continuing Care Retirement Community Common Shock model Both Alive (0) ๏ƒ  Husband Alive (1) Both Alive (0) ๏ƒ  Wife Alive (2) Both Alive (0) ๏ƒ  Neither Alive (3) Husband Alive (1) ๏ƒ  Neither Alive (3) Wife Alive (2) ๏ƒ  Neither Alive (3) General Independent Living Unit (0) ๏ƒ  Temporary Health Care (1) Independent Living Unit (0) ๏ƒ  Permanent Health Care (2) Independent Living Unit (0) ๏ƒ  Gone (3) Temporary Health Care (1) ๏ƒ  Independent Living Unit (0) Temporary Health Care (1) ๏ƒ  Gone (3) Temporary Health Care (1) ๏ƒ  Permanent Health Care (2) Permanent Health Care (2) ๏ƒ  Gone (3) Chapman โ€“ Kolmogorov Equations ๐‘› ๐‘–๐‘—

๐‘š๐‘—

๐‘–๐‘š ๐‘˜ ๐‘๐‘ฅ = โˆ‘ ๐‘™ ๐‘๐‘ฅ ๐‘˜โˆ’๐‘™ ๐‘๐‘ฅ+๐‘™ ๐‘š=1

Disability income Disability income model Healthy (0) ๏ƒ  Sick (1) Sick (1) ๏ƒ  Healthy (0) Healthy (0) ๏ƒ  Dead (2) Sick (1) ๏ƒ  Dead (2) Multiple Lives Multiple lives model Both Alive (0) ๏ƒ  Husband Alive (1) Both Alive (0) ๏ƒ  Wife Alive (2) Husband Alive (1) ๏ƒ  Neither Alive (3) Wife Alive (2) ๏ƒ  Neither Alive (3)

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

22 Lesson 44 โ€“ Markov Chains: Continuous โ€“ Probabilities

Probability of moving two states with constant forces of transition:

Assumptions for Markov Chain models: 1) Probabilities of transitions are independent of length of time in state (Markov property) 2) Probability of 2 or more transitions in time โ„Ž is ๐‘œ(โ„Ž). ๐‘–๐‘— 3) ๐‘ก๐‘๐‘ฅ is differentiable function of ๐‘ก for all ๐‘–, ๐‘—.

44.10

44.1 44.2 44.3 44.4

๐‘–๐‘— ๐œ‡๐‘ฅ

= lim

โ„Žโ†’0

๐‘–๐‘— โ„Ž๐‘๐‘ฅ โก

โ„Ž

= ๐œ‡01 ๐œ‡12 (

0โˆ™ ๐‘ก

๐‘’ โˆ’๐œ‡

(๐œ‡1โˆ™ โˆ’๐œ‡0โˆ™ )(๐œ‡2โˆ™ โˆ’๐œ‡0โˆ™ )

+

1โˆ™ ๐‘ก

๐‘’ โˆ’๐œ‡

(๐œ‡0โˆ™ โˆ’๐œ‡1โˆ™ )(๐œ‡2โˆ™ โˆ’๐œ‡1โˆ™ )

+

2โˆ™ ๐‘ก

๐‘’ โˆ’๐œ‡

(๐œ‡0โˆ™ โˆ’๐œ‡2โˆ™ )(๐œ‡1โˆ™ โˆ’๐œ‡2โˆ™ )

)

Kolmogorovโ€™s forward equations: ๐‘‘ ๐‘–๐‘— ๐‘–๐‘— ๐‘—๐‘˜ ๐‘› ๐‘–๐‘˜ ๐‘˜๐‘— 44.11 ๐‘ก๐‘๐‘ฅ = โˆ‘๐‘˜=0( ๐‘ก๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘ก โˆ’ ๐‘ก๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘ก ) ๐‘‘๐‘ก

๐‘–๐‘—

Definition of ๐œ‡๐‘ฅ

02 ๐‘ก๐‘๐‘ฅ

๐‘˜โ‰ ๐‘—

Euler approximate solution to Kolmogorovโ€™s forward equations ๐‘˜๐‘— ๐‘–๐‘— ๐‘—๐‘˜ 44.12 ๐‘ก+โ„Ž๐‘๐‘ฅ๐‘–๐‘— โ‰ˆ ๐‘ก๐‘๐‘ฅ๐‘–๐‘— + โ„Ž โˆ‘๐‘›๐‘˜=0( ๐‘ก๐‘๐‘ฅ๐‘–๐‘˜ ๐œ‡๐‘ฅ+๐‘ก โˆ’ ๐‘ก๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘ก )

โก

๐‘˜โ‰ ๐‘—

๐‘–๐‘— ๐‘–๐‘— โ„Ž ๐‘๐‘ฅ โก = โ„Ž๐œ‡๐‘ฅ + ๐‘œ(โ„Ž) ฬ… ๐‘–๐‘– ๐‘–๐‘– โ„Ž ๐‘๐‘ฅ โก = โ„Ž ๐‘๐‘ฅ โก + ๐‘œ(โ„Ž) ๐‘–๐‘— ฬ… ๐‘–๐‘– โ„Ž ๐‘๐‘ฅ โก = 1 โˆ’ โ„Ž โˆ‘๐‘—โ‰ 1 ๐œ‡๐‘ฅ

+ ๐‘œ(โ„Ž)

Probability of staying in any state continuously: ๐‘ก ๐‘–๐‘— 44.5 ๐‘ก๐‘๐‘ฅ๐‘–๐‘–ฬ… = expโก(โˆ’ โˆซ0 โˆ‘๐‘—โ‰ 1 ๐œ‡๐‘ฅ+๐‘  ๐‘‘๐‘ ) Probability of at least one direct transition from state 0 to state 1 by time t 1 ฬ…ฬ…ฬ…ฬ… 01 44.6 โˆซ0 ๐‘ก๐‘๐‘ฅ00 ๐œ‡๐‘ฅ+๐‘ก ๐‘‘๐‘ก For permanent disability model: ๐‘ก ฬ…ฬ…ฬ…ฬ… 01 ฬ…ฬ…ฬ…ฬ… 11 44.7 ๐‘ก๐‘๐‘ฅ01 = โˆซ0 ๐‘ ๐‘๐‘ฅ00 ๐œ‡๐‘ฅ+๐‘  ๐‘กโˆ’๐‘ ๐‘๐‘ฅ+๐‘  ๐‘‘๐‘  For permanent disability model with constant forces of transition: 44.8

01 ๐‘ก๐‘0

={

๐œ‡ 01 ๐‘’ โˆ’๐œ‡

12 ๐‘ก

01 โˆ’๐œ‡ 12 ๐‘ก

๐œ‡ ๐‘’

(

01 +๐œ‡02 โˆ’๐œ‡12 )๐‘ก

(1โˆ’๐‘’ โˆ’(๐œ‡

๐œ‡ 01 +๐œ‡ 02 โˆ’๐œ‡ 12

)

)โกโกโกโกโก๐œ‡ 01 + ๐œ‡ 02 โ‰  ๐œ‡12

โกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโกโก๐œ‡

01

+๐œ‡

02

=๐œ‡

โก

12

Probability of moving to next state with constant forces of transition: 44.9

01 ๐‘ก๐‘0

= ๐œ‡ 01 (

0โˆ™ ๐‘’ โˆ’๐œ‡ ๐‘ก

๐œ‡ 1โˆ™โˆ’๐œ‡ 0โˆ™

+

1โˆ™ ๐‘’ โˆ’๐œ‡ ๐‘ก

๐œ‡ 0โˆ™โˆ’๐œ‡ 1โˆ™

)

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

23 Lesson 45 โ€“ Markov Chains: Premiums and Reserves โˆž 45.1 ๐‘Žฬ…๐‘ฅ๐‘–๐‘— = โˆซ0 ๐‘’ โˆ’๐›ฟ๐‘ก ๐‘ก๐‘๐‘ฅ๐‘–๐‘— ๐‘‘๐‘ก ๐‘–๐‘— ๐‘˜ 45.2 ๐‘Žฬˆ ๐‘ฅ๐‘–๐‘— = โˆ‘โˆž ๐‘˜=0 ๐‘ฃ ๐‘˜๐‘๐‘ฅ โˆž ๐‘–๐‘— โˆ’๐›ฟ๐‘ก ๐‘–๐‘˜ ๐‘˜๐‘— 45.3 ๐ดฬ…๐‘ฅ = โˆซ0 โˆ‘๐‘˜โ‰ ๐‘— ๐‘’ ๐‘ก๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘ก ๐‘‘๐‘ก 45.4 45.5

๐‘‘ ๐‘‰ (๐‘–) ๐‘‘๐‘ก ๐‘ก ๐‘กโˆ’โ„Ž๐‘‰

(๐‘–)

(๐‘–๐‘—)

(๐‘–)

= ๐›ฟ๐‘ก ๐‘ก๐‘‰ (๐‘–) โˆ’ ๐ต๐‘ก โˆ’ โˆ‘๐‘›๐‘—=0 ๐œ‡๐‘–๐‘—๐‘ฅ+๐‘ก (๐‘๐‘ก

โ‰ˆ ๐‘ก๐‘‰ (๐‘–) (1 โˆ’ ๐›ฟ๐‘ก โ„Ž) +

๐‘—โ‰ ๐‘– (๐‘–) โ„Ž๐ต๐‘ก +

๐‘–๐‘—

Lesson 46 โ€“ Multiple Decrement Models: Probabilities

+ ๐‘ก๐‘‰ (๐‘—) โˆ’ (๐‘–๐‘—)

โ„Ž โˆ‘๐‘›๐‘—=0 ๐œ‡๐‘ฅ+๐‘ก (๐‘๐‘ก ๐‘—โ‰ ๐‘–

๐‘ก๐‘‰

(๐‘–)

)

+ ๐‘ก๐‘‰ (๐‘—) โˆ’ ๐‘ก๐‘‰ (๐‘–) )

Correspondence of Markov Chain notation with multiple decrement notation Markov Chain Notation Multiple Decrement Notation 0๐‘— (๐‘—) ๐‘ก๐‘๐‘ฅ ๐‘ก๐‘ž๐‘ฅ (๐œ) 0โˆ™ ๐‘ก๐‘๐‘ฅ ๐‘ก๐‘ž๐‘ฅ (๐œ) 00 ๐‘ ๐‘ก ๐‘ฅ ๐‘ก๐‘๐‘ฅ Probability Formulas (๐œ) (๐‘—) 46.1 ๐‘ก๐‘ž๐‘ฅ = โˆ‘๐‘›๐‘—=1 ๐‘ก๐‘ž๐‘ฅ 46.2 46.3 46.4 46.5

(๐œ) (๐‘—) ๐‘› ๐‘ก๐‘๐‘ฅ = 1 โˆ’ โˆ‘๐‘—=1 ๐‘ก๐‘ž๐‘ฅ (๐‘—) (๐œ) (๐‘—) ๐‘˜|๐‘ž๐‘ฅ = ๐‘˜ ๐‘๐‘ฅ ๐‘ž๐‘ฅ+๐‘˜ (๐‘—) (๐œ) (๐‘—) ๐‘กโˆ’1 ๐‘ก๐‘ž๐‘ฅ = โˆ‘๐‘˜=0 ๐‘˜ ๐‘๐‘ฅ ๐‘ž๐‘ฅ+๐‘˜ (๐‘—) (๐œ) (๐‘—) (๐œ) (๐‘—) ๐‘ก+๐‘ขโˆ’1 ๐‘˜ ๐‘๐‘ฅ ๐‘ž๐‘ฅ+๐‘˜ ๐‘ก|๐‘ข๐‘ž๐‘ฅ = ๐‘ก๐‘๐‘ฅ ๐‘ข๐‘ž๐‘ฅ+๐‘ก = โˆ‘๐‘˜=๐‘ก

Life Table Formulas (๐‘—) (๐œ) ๐‘‘๐‘ฅ = โˆ‘๐‘š ๐‘—=1 ๐‘‘๐‘ฅ (๐œ)

(๐œ)

(๐œ)

๐‘™๐‘ฅ+1 = ๐‘™๐‘ฅ โˆ’ ๐‘‘๐‘ฅ (๐œ) (๐œ) (๐œ) โก๐‘™๐‘ฅ+๐‘˜ = ๐‘™๐‘ฅ ๐‘˜๐‘๐‘ฅ โก (๐‘—) (๐œ) (๐œ) (๐‘—) (๐œ) (๐‘—) ๐‘‘๐‘ฅ+๐‘˜ = ๐‘™๐‘ฅ ๐‘˜ ๐‘๐‘ฅ ๐‘ž๐‘ฅ+๐‘˜ = ๐‘™๐‘ฅ ๐‘˜|๐‘ž๐‘ฅ โกโก (๐œ)

(๐œ)

๐‘‘๐‘ฅ+๐‘˜ = ๐‘™๐‘ฅ

(๐œ) (๐œ) ๐‘˜ ๐‘๐‘ฅ ๐‘ž๐‘ฅ+๐‘˜

(๐œ)

= ๐‘™๐‘ฅ

(๐œ) ๐‘˜|๐‘ž๐‘ฅ

Expected present value of discrete life insurance (๐‘—) (๐‘—) (๐œ) ๐‘š ๐‘˜ 46.6 ๐ด = โˆ‘โˆž ๐‘˜=1 ๐‘ฃ ๐‘˜โˆ’1๐‘๐‘ฅ โˆ‘๐‘—=1 ๐‘ž๐‘ฅ+๐‘˜โˆ’1 ๐‘๐‘˜

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

24 Lesson 47 โ€“ Multiple Decrement Models: Forces of Decrement ๐‘ก (๐‘—) (๐œ) (๐‘—) 47.1 ๐‘ก๐‘ž๐‘ฅ = โˆซ0 ๐‘ ๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘  ๐‘‘๐‘  (๐‘—)

๐‘‘

(๐‘—) ๐‘ก๐‘ž๐‘ฅ (๐œ) ๐‘ก๐‘๐‘ฅ

47.2 ๐œ‡๐‘ฅ+๐‘ก = ๐‘‘๐‘ก 47.3 47.4 47.5 47.6

๐‘ก (๐œ) (๐œ) ๐‘ก๐‘๐‘ฅ = expโก(โˆ’ โˆซ0 ๐œ‡๐‘ฅ+๐‘  ๐‘‘๐‘ ) (๐‘—) (๐œ) ๐œ‡๐‘ฅ+๐‘ก = โˆ‘๐‘›๐‘—=1 โก๐œ‡๐‘ฅ+๐‘ก ๐œ•(๐น(๐‘ก,๐‘—)โˆ’๐น(๐‘ก,๐‘—โˆ’1)) (๐œ) (๐‘—) ๐‘“๐‘‡,๐ฝ (๐‘ก, ๐‘—) = = ๐‘ก๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘ก ๐œ•๐‘ก โˆž (๐‘—) ๐‘“๐ฝ (๐‘—) = โˆซ0 ๐‘“(๐‘ก, ๐‘—)๐‘‘๐‘ก = โˆž๐‘ž๐‘ฅ (๐œ) (๐œ) ๐‘“๐‘‡ (๐‘ก) = โˆ‘๐‘š ๐‘—=1 ๐‘“(๐‘ก, ๐‘—) = ๐‘ก๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘ก

Fractional Ages Uniform distribution of decrement between integral ages in multiple decrement table: (๐‘—) (๐‘—) ๐‘ ๐‘ž๐‘ฅ = ๐‘ ๐‘ž๐‘ฅ โกโกโก0 โ‰ค ๐‘  โ‰ค 1 Constant Force of decrement between integral ages (๐‘—) ๐‘ž๐‘ฅ (๐‘—) (๐œ) ๐‘  ๐‘ž = (1 โˆ’ (๐‘๐‘ฅ ) )โก ๐‘  ๐‘ฅ (๐œ) ๐‘ž๐‘ฅ

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Lesson 48 โ€“ Multiple Decrement Models: Associated Single Decrement Tables General Formulas and methods: ๐‘ก (๐‘—) โ€ฒ(๐‘—) 48.1 ๐‘ก๐‘๐‘ฅ = expโก(โˆ’ โˆซ0 ๐œ‡๐‘ฅ+๐‘  ๐‘‘๐‘ ) 48.2

โ€ฒ(๐‘—) ๐‘ก๐‘ž๐‘ฅ

๐‘ก

โ€ฒ(๐‘—) (๐‘—)

= โˆซ0 ๐‘ ๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘  ๐‘‘๐‘ 

(๐œ) โ€ฒ(๐‘—) 48.3 โˆ๐‘— ๐‘ก๐‘๐‘ฅ = ๐‘ก๐‘๐‘ฅ

From 46.1 (๐œ) (๐‘—) ๐‘› ๐‘ก๐‘ž๐‘ฅ = โˆ‘๐‘—=1 ๐‘ก๐‘ž๐‘ฅ To go from multiple-decrement probabilities to associated singledecrement probabilities: (๐œ) 1. Calculate ๐‘ก๐‘๐‘ฅ (j) 2. Calculate ยตx+t using equation (47.2) โ€ฒ(๐‘—) 3. Calculate ๐‘ก๐‘๐‘ฅ using equation (48.1) 4. As a check, if you are calculating all of the rates, you can use (๐œ) equation (48.3) and see if you can reproduce ๐‘ก๐‘๐‘ฅ To go from associated single-decrement probabilities to multipledecrement probabilities: (j) 1. Calculate ยตx for all jโ€™s using one of the single-decrement formulas (๐œ) โ€ฒ(๐‘—) 2. Calculate ๐‘ก๐‘๐‘ฅ by multiplying the ๐‘ก๐‘๐‘ฅ โ€™s together, or by (j) summing ยต โ€™s and exponentiating. (๐œ) 3. Calculate ๐‘ก๐‘ž๐‘ฅ using equation (47.1)

Formula Summary of ASM 2014

25 Lesson 49 โ€“ Multiple Decrement Models: Relations between Multiple Decrement Rates and Associated Single Decrement Rates 49.1 49.2

(๐œ)

โ€ฒ(๐‘—) ๐‘ ๐‘๐‘ฅ (๐‘—) ๐‘ž๐‘ฅ

(๐‘—)

= ( ๐‘ ๐‘๐‘ฅ )๐‘ž๐‘ฅ

=

(๐œ)

/๐‘ž๐‘ฅ

โก

Lesson 50 โ€“ Multiple Decrements: Discrete Decrements

0โ‰ค๐‘ โ‰ค1

โ€ฒ(๐‘—)

(๐œ) ln ๐‘ ๐‘ž๐‘ฅ ( ๐‘ฅ(๐œ) ) ln ๐‘๐‘ฅ

49.3

(1) ๐‘ก๐‘ž๐‘ฅ

= ๐‘ž๐‘ฅโ€ฒ(1) (1 โˆ’

49.4

(1) ๐‘ก๐‘ž๐‘ฅ

= ๐‘ž๐‘ฅโ€ฒ(1) (1 โˆ’

โ€ฒ(2)

๐‘ž๐‘ฅ

)

2 โ€ฒ(2) โ€ฒ(3) ๐‘ž๐‘ฅ +๐‘ž๐‘ฅ 2

+

โ€ฒ(2) โ€ฒ(3) ๐‘ž๐‘ฅ

๐‘ž๐‘ฅ

3

)

Table 49.2: Summary of formulas for going between multipledecrement and associated single-decrement tables Assumptions 0 < ๐‘  + ๐‘ก โ‰ค 1 Decrements are uniformly distributed in multiple decrement table There are two decrements uniformly distributed in the associated singledecrement tables There are three decrements uniformly distributed in the associated singledecrement tables

Formula โ€ฒ(๐‘—) ๐‘ ๐‘๐‘ฅ+๐‘ก

(๐œ)

(๐‘—)

= ( ๐‘ ๐‘๐‘ฅ+๐‘ก )๐‘ž๐‘ฅ

(๐œ)

/๐‘ž๐‘ฅ

โ€ฒ(๐‘—)

(๐‘—) (๐œ) ln ๐‘๐‘ฅ ๐‘ž๐‘ฅ = ๐‘ž๐‘ฅ ( ) (๐œ) ln ๐‘๐‘ฅ

โ€ฒ(2)

๐‘ž๐‘ฅ ) 2 ๐‘  (1) โ€ฒ(1) โ€ฒ(2) (1 โˆ’ ( ) ๐‘ž๐‘ฅ ) ๐‘ ๐‘ž๐‘ฅ = ๐‘ ๐‘ž๐‘ฅ 2 โ€ฒ(2) โ€ฒ(3) โ€ฒ(2) โ€ฒ(3) ๐‘ž๐‘ฅ + ๐‘ž๐‘ฅ ๐‘ž๐‘ฅ ๐‘ž๐‘ฅ (1) โ€ฒ(1) ๐‘ž๐‘ฅ = ๐‘ž๐‘ฅ (1 โˆ’ + ) 2 3 2 3 ๐‘  ๐‘  (1) โ€ฒ(1) โ€ฒ(2) โ€ฒ(3) โ€ฒ(2) โ€ฒ(3) (๐‘ž + ๐‘ž๐‘ฅ ) + (๐‘ž๐‘ฅ ๐‘ž๐‘ฅ )) ๐‘ ๐‘ž๐‘ฅ = ๐‘ž๐‘ฅ (๐‘  โˆ’ 2 ๐‘ฅ 3 (1)

โ€ฒ(1)

๐‘ž๐‘ฅ = ๐‘ž๐‘ฅ (1 โˆ’

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

26 Lesson 51 โ€“ Multiple Decrements: Continuous Insurances

Lesson 53 โ€“ Multiple Lives: Joint Life Probabilities (๐‘—)

If ๐‘ is the benefit random variable for an insurance paying ๐‘๐‘ก at time ๐‘ก upon occurrence of decrement ๐‘—, then 51.1 51.2

53.1

๐‘ก๐‘๐‘ฅ๐‘ฆ

+ ๐‘ก๐‘ž๐‘ฅ๐‘ฆ = 1 ๐‘ก|๐‘ข๐‘ž๐‘ฅ๐‘ฆ = ๐‘ก๐‘๐‘ฅ๐‘ฆ ๐‘ข๐‘ž๐‘ฅ+๐‘ก:๐‘ฆ+๐‘ก = ๐‘ก๐‘๐‘ฅ๐‘ฆ โˆ’ ๐‘ก+๐‘ข๐‘๐‘ฅ๐‘ฆ ๐‘ก+๐‘ข๐‘๐‘ฅ๐‘ฆ

โˆž (๐‘—) (๐‘—) (๐œ) ๐ธ[๐‘] = โˆซ0 ๐‘ฃ ๐‘ก ๐‘ก๐‘๐‘ฅ โˆ‘๐‘š ๐‘—=1 ๐œ‡๐‘ฅ+๐‘ก ๐‘๐‘ก ๐‘‘๐‘ก โˆž (๐‘—) (๐‘—) 2 (๐œ) ๐ธ[๐‘ 2 ] = โˆซ0 ๐‘ฃ 2๐‘ก ๐‘ก๐‘๐‘ฅ โˆ‘๐‘š ๐‘—=1 ๐œ‡๐‘ฅ+๐‘ก (๐‘๐‘ก ) โก ๐‘‘๐‘ก

53.2

โˆ—

(2)

Special formula for additional EPV of additional benefit ๐‘ = ๐‘ โˆ’ ๐‘ (1) paid for the first ๐‘› years on secondary decrement with constant force ๐œ‡ (2) : ๐‘ โˆ— ๐œ‡ (2) ๐‘Žฬ…๐‘ฅ:๐‘›| ฬ…ฬ…ฬ…

๐‘ก๐‘ž๐‘ฅ๐‘ฆ

๐‘ก

0โˆ™ 00 = ๐‘ก๐‘๐‘ฅ๐‘ฆ = exp (โˆ’ โˆซ0 ๐œ‡๐‘ฅ+๐‘ก:๐‘ฆ+๐‘ก ๐‘‘๐‘ )

= 1 โˆ’ (1 โˆ’ ๐‘ก๐‘ž๐‘ฅ )(1 โˆ’ ๐‘ก๐‘ž๐‘ฆ ) = ๐‘ก๐‘ž๐‘ฅ + ๐‘ก๐‘ž๐‘ฆ โˆ’ ๐‘ก๐‘ž๐‘ฅ ๐‘ก๐‘ž๐‘ฆ

If lives are independent, then ๐‘ก๐‘๐‘ฅ๐‘ฆ = ๐‘ก๐‘๐‘ฅ ๐‘ก๐‘๐‘ฆ ๐œ‡๐‘ฅ+๐‘ก:๐‘ฆ+๐‘ก = ๐œ‡๐‘ฅ+๐‘ก + ๐œ‡๐‘ฆ+๐‘ก ๐‘ก

๐‘ก๐‘๐‘ฅ๐‘ฆ

= exp (โˆ’ โˆซ (๐œ‡๐‘ฅ+๐‘ก + ๐œ‡๐‘ฆ+๐‘ก ) ๐‘‘๐‘ ) 0

In particular: For CFM: ๐œ‡๐‘ฅ๐‘ฆ = ๐œ‡๐‘ฅ + ๐œ‡๐‘ฆ For beta with parameters ๐›ผ๐‘ฅ ,โก๐›ผ๐‘ฆ and ๐œ”๐‘ฅ โˆ’ ๐‘ฅ = ๐œ”๐‘ฆ โˆ’ ๐‘ฆ, ๐œ‡๐‘ฅ+๐‘ก:๐‘ฆ+๐‘ก is beta with parameters ๐›ผ๐‘ฅ + ๐›ผ๐‘ฆ and ๐œ”๐‘ฅ โˆ’ ๐‘ฅ

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

27 Lesson 54 โ€“ Multiple Lives: Last Survivor Probabilities 54.1 ๐‘‡๐‘ฅ + ๐‘‡๐‘ฆ = ๐‘‡๐‘ฅ๐‘ฆ + ๐‘‡๐‘ฅ๐‘ฆ ฬ…ฬ…ฬ…ฬ… 54.2 ๐‘ก๐‘๐‘ฅ๐‘ฆ = ๐‘ + ๐‘ ฬ…ฬ…ฬ…ฬ… ๐‘ก ๐‘ฅ ๐‘ก ๐‘ฆ โˆ’ ๐‘ก ๐‘๐‘ฅ๐‘ฆ

Lesson 55 โ€“ Multiple Lives: Moments Expected Value Formulas: โˆž 55.1 ๐‘’ฬ‡๐‘ฅ๐‘ฆ = โˆซ0 ๐‘ก๐‘๐‘ฅ๐‘ฆ ๐‘‘๐‘ก โˆž

๐‘’ฬ‡๐‘ฅ๐‘ฆ ฬ…ฬ…ฬ…ฬ… = โˆซ0

ฬ…ฬ…ฬ…ฬ… ๐‘‘๐‘ก ๐‘ก๐‘๐‘ฅ๐‘ฆ ๐‘› โˆซ0 ๐‘ก๐‘๐‘ฅ๐‘ฆ ๐‘‘๐‘ก

If independent, 54.3 ๐‘ก๐‘ฬ…ฬ…ฬ…ฬ… ๐‘ฅ๐‘ฆ = ๐‘ก๐‘๐‘ฅ + ๐‘ก๐‘๐‘ฆ โˆ’ ๐‘ก ๐‘๐‘ฅ ๐‘ก๐‘๐‘ฆ 54.4 ๐‘ก|๐‘ข๐‘ž๐‘ฅ๐‘ฆ ฬ…ฬ…ฬ…ฬ… = ๐‘ก๐‘๐‘ฅ๐‘ฆ ฬ…ฬ…ฬ…ฬ… โˆ’ ๐‘ก+๐‘ข๐‘๐‘ฅ๐‘ฆ ฬ…ฬ…ฬ…ฬ…

๐‘’ฬ‡ ๐‘ฅ๐‘ฆ:๐‘›| ฬ…ฬ…ฬ… = 55.2 ๐‘’ฬ‡๐‘ฅ๐‘ฆ ฬ…ฬ…ฬ…ฬ… = ๐‘’ฬ‡๐‘ฅ + ๐‘’ฬ‡๐‘ฆ โˆ’ ๐‘’ฬ‡๐‘ฅ๐‘ฆ

If independent,

For two independent uniform lives with ๐‘Ž = ๐œ”๐‘ฅ โˆ’ ๐‘ฅ โ‰ค ๐‘ = ๐œ”๐‘ฆ โˆ’ ๐‘ฆ:

54.5 ๐œ‡๐‘ฅ๐‘ฆ ฬ…ฬ…ฬ…ฬ… (๐‘ก) =

๐‘ก๐‘ž๐‘ฅ ๐‘ก๐‘๐‘ฆ ๐œ‡๐‘ฆ+๐‘ก + ๐‘ก๐‘ž๐‘ฆ ๐‘ก๐‘๐‘ฅ ๐œ‡๐‘ฅ+๐‘ก ฬ…ฬ…ฬ…ฬ… ๐‘ก๐‘๐‘ฅ๐‘ฆ

๐‘Ž

๐‘Ž2

2

6๐‘

55.3 ๐‘’ฬ‡๐‘ฅ๐‘ฆ = โˆ’

Variance and Covariance Formulas: โˆž

2

55.4 ๐‘‰๐‘Ž๐‘Ÿ(๐‘‡๐‘ฅ๐‘ฆ ) = 2 โˆซ0 ๐‘ก ๐‘ก๐‘๐‘ฅ๐‘ฆ ๐‘‘๐‘ก โˆ’ (๐‘’ฬ‡๐‘ฅ๐‘ฆ ) โกโก ๐ถ๐‘œ๐‘ฃ(๐‘‡๐‘ฅ๐‘ฆ , ๐‘‡๐‘ฅ๐‘ฆ ฬ…ฬ…ฬ…ฬ… ) = ๐ถ๐‘œ๐‘ฃ(๐‘‡๐‘ฅ , ๐‘‡๐‘ฆ ) + (๐‘’ฬ‡๐‘ฅ โˆ’ ๐‘’ฬ‡๐‘ฅ๐‘ฆ )(๐‘’ฬ‡ ๐‘ฆ โˆ’ ๐‘’ฬ‡ ๐‘ฅ๐‘ฆ ) If independent, 55.5 ๐ถ๐‘œ๐‘ฃ(๐‘‡๐‘ฅ๐‘ฆ , ๐‘‡๐‘ฅ๐‘ฆ ฬ…ฬ…ฬ…ฬ… ) = (๐‘’ฬ‡ ๐‘ฅ โˆ’ ๐‘’ฬ‡๐‘ฅ๐‘ฆ )(๐‘’ฬ‡๐‘ฆ โˆ’ ๐‘’ฬ‡๐‘ฅ๐‘ฆ )

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

28 Lesson 56 โ€“ Multiple Lives: Contingent Probabilities

Lesson 57 โ€“ Multiple Lives: Common Shock

Relationships for probabilities (double bar = 2) 56.1 โˆž๐‘ž๐‘ฅฬ ๐‘ฆ = โˆž๐‘ž๐‘ฅ๐‘ฆฬฟ 56.2 โˆž๐‘ž๐‘ฅฬ ๐‘ฆ + โˆž๐‘ž๐‘ฅ๐‘ฆฬ = 1 56.3 โˆž๐‘ž๐‘ฅฬฟ ๐‘ฆ + โˆž๐‘ž๐‘ฅ๐‘ฆฬฟ = 1 56.4 ๐‘›๐‘ž๐‘ฅฬ ๐‘ฆ = ๐‘›๐‘ž๐‘ฅ๐‘ฆฬฟ + ๐‘›๐‘ž๐‘ฅ ๐‘›๐‘ž๐‘ฆ 56.5 ๐‘›๐‘ž๐‘ฅฬ ๐‘ฆ + ๐‘›๐‘ž๐‘ฅ๐‘ฆฬ = ๐‘›๐‘ž๐‘ฅ๐‘ฆ 56.6 ๐‘›๐‘ž๐‘ฅฬฟ ๐‘ฆ + ๐‘›๐‘ž๐‘ฅ๐‘ฆฬฟ = ๐‘›๐‘ž๐‘ฅ๐‘ฆ ฬ…ฬ…ฬ…ฬ… 56.7 ๐‘›๐‘ž๐‘ฅ = ๐‘›๐‘ž๐‘ฅฬ ๐‘ฆ + ๐‘›๐‘ž๐‘ฅฬฟ ๐‘ฆ

Both Alive (0) ๏ƒ  Husband Alive (1) Both Alive (0) ๏ƒ  Wife Alive (2) Both Alive (0) ๏ƒ  Neither Alive (3) Husband Alive (1) ๏ƒ  Neither Alive (3) Wife Alive (2) ๏ƒ  Neither Alive (3) ๐œ‡ 03 is constant 02 03 ๐œ‡13 ๐‘ฅ+๐‘ก = ๐œ‡๐‘ฅ+๐‘ก:๐‘ฆ+๐‘ก + ๐œ‡ 01 23 ๐œ‡๐‘ฅ+๐‘ก = ๐œ‡๐‘ฅ+๐‘ก:๐‘ฆ+๐‘ก + ๐œ‡ 03

Probabilities when ๐œ‡๐‘ฆ+๐‘ก = ๐‘๐œ‡๐‘ฅ+๐‘ก for 0 โ‰ค ๐‘ก โ‰ค ๐‘› 56.8

๐‘›๐‘ž๐‘ฅฬ ๐‘ฆ

=

1 ๐‘ž 1+๐‘ ๐‘› ๐‘ฅ๐‘ฆ

Formula for contingent survival probabilities for uniform mortality Let (x) and (y) have lifetimes with uniform mortality with ๐œ”๐‘ฅ and ๐œ”๐‘ฆ respectively. Set ๐‘Ž = ๐œ”๐‘ฅ โˆ’ ๐‘ฅ and ๐‘ = ๐œ”๐‘ฆ โˆ’ ๐‘ฆ. Then ๐‘› ๐‘Ž

56.9

๐‘›๐‘ž๐‘ฅฬ ๐‘ฆ

โˆ’

= 1โˆ’ {

๐‘ 2๐‘Ž

๐‘›2

2๐‘Ž๐‘ ๐‘Ž

2๐‘

โกโกโก๐‘› โ‰ค min(๐‘Ž, ๐‘)โกโกโกโก

โกโกโกโกโกโกโก๐‘› โ‰ฅ ๐‘Žโก๐‘Ž๐‘›๐‘‘โก๐‘ โ‰ฅ ๐‘Žโกโกโกโก

โกโกโกโกโกโกโกโกโกโกโกโกโก๐‘› โ‰ฅ ๐‘Žโก๐‘Ž๐‘›๐‘‘โก๐‘ โ‰ค ๐‘Ž

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

29 Lesson 58 โ€“ Multiple Lives: Insurances

Lesson 59 โ€“ Multiple Lives: Annuities

58.1 ๐‘Žฬ…๐‘ฅ + ๐‘Žฬ…๐‘ฆ = ๐‘Žฬ…๐‘ฅ๐‘ฆ + ๐‘Žฬ…๐‘ฅ๐‘ฆ ฬ…ฬ…ฬ…ฬ… 58.2 ๐ดฬ…๐‘ฅ + ๐ดฬ…๐‘ฆ = ๐ดฬ…๐‘ฅ๐‘ฆ + ๐ดฬ…๐‘ฅ๐‘ฆ ฬ…ฬ…ฬ…ฬ… 58.3 ๐ดฬ…๐‘ฅฬ ๐‘ฆ + ๐ดฬ…๐‘ฅ๐‘ฆฬ = ๐ดฬ…๐‘ฅ๐‘ฆ ๐ดฬ…๐‘ฅฬฟ ๐‘ฆ + ๐ดฬ…๐‘ฅ๐‘ฆฬฟ = ๐ดฬ…๐‘ฅ๐‘ฆ ฬ…ฬ…ฬ…ฬ… ๐ดฬ…๐‘ฅฬ ๐‘ฆ + ๐ดฬ…๐‘ฅฬฟ ๐‘ฆ = ๐ดฬ…๐‘ฅ ฬ… ฬ… ๐ดฬ…๐‘ฅฬ ๐‘ฆ โˆ’ ๐ดฬ…๐‘ฅ๐‘ฆฬฟ = ๐ดฬ…๐‘ฅ โˆ’ ๐ดฬ…๐‘ฅ๐‘ฆ ฬ…ฬ…ฬ…ฬ… = ๐ด๐‘ฅ๐‘ฆ โˆ’ ๐ด๐‘ฆ

59.1 ๐‘Ž๐‘ฅ|๐‘ฆ = ๐‘Ž๐‘ฆ โˆ’ ๐‘Ž๐‘ฅ๐‘ฆ

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

To convert last-survivor annuities to joint annuities, use a formula of the following form: ๐‘Žฬ…๐‘ฅ๐‘ฆ ฬ…๐‘ฅ + ๐‘Žฬ…๐‘ฆ โˆ’ ๐‘Žฬ…๐‘ฅ๐‘ฆ ฬ…ฬ…ฬ…ฬ… = ๐‘Ž Techniques for evaluating two-life annuities: 1. Two-annuity technique โ€“ Calculate the annuities for each life, ignoring the other life. Compare the amount paid in the joint status to the amounts paid by the individual annuities, and add the excess (or subtract the deficiency) from the sum of the individual annuities 2. Three-annuity technique โ€“ Calculate the annuities for each life when exactly one is alive and the joint status annuity, and add these three annuities up. 3. Reversionary annuity technique โ€“ If an annuity is paid to (๐‘ง2 ) after (๐‘ง1 ) expires, where (๐‘ง1 ) and (๐‘ง2 ) can be any combination of lives and certain statuses, then ๐‘Ž๐‘ง1|๐‘ง2 = ๐‘Ž๐‘ง2 โˆ’ ๐‘Ž๐‘ง1:๐‘ง2 ๐‘Žฬˆ ๐‘ง1|๐‘ง2 = ๐‘Žฬˆ ๐‘ง2 โˆ’ ๐‘Žฬˆ ๐‘ง1:๐‘ง2 ๐‘Žฬ…๐‘ง1|๐‘ง2 = ๐‘Žฬ…๐‘ง2 โˆ’ ๐‘Žฬ…๐‘ง1:๐‘ง2

Formula Summary of ASM 2014

30 Lesson 61 โ€“ Pension Mathematics

Lesson 62 โ€“ Interest rate risk: Replicating Cash Flows

Salary rate function ๐‘ ฬ…๐‘ฅ is an index of the instantaneously earned salary.

Let ๐‘ฃ(๐‘ก) be the present value of 1 paid at time ๐‘ก. Then

Salary Scale ๐‘ ๐‘ฅ is an index of the salary earned during the year of age (๐‘ฅ, ๐‘ฅ + 1].โก The salary rate earned at age ๐‘ฅ is approximated by ๐‘ ๐‘ฅ โˆ’ 0.5 k-year final average salary is the average of the salaries earned in the last ๐‘˜ years before retirement. Career average salary is the average of salaries earned during the entire career.

The spot rate ๐‘ฆ๐‘ก is the annual interest rate on a ๐‘ก-year zero-coupon bond: 1 (1 + ๐‘ฆ๐‘ก )๐‘ก = ๐‘ฃ(๐‘ก) The forward rate ๐‘“(๐‘ก, ๐‘‡) is the rate for a ๐‘‡ โˆ’ ๐‘ก year zero-coupon bond issued at time ๐‘ก. ๐‘ฃ(๐‘ก) (1 + ๐‘ฆ๐‘‡ )๐‘‡ ๐‘‡โˆ’๐‘ก (1 + ๐‘“(๐‘ก, ๐‘‡)) = = ๐‘ฃ(๐‘‡) (1 + ๐‘ฆ๐‘ก )๐‘ก

Replacement ratio is the ratio of the pension paid in the first year of retirement over the salary earned in the last year before retirement. Service table is a table showing, year by year, the number of decrements from each of four causes: death, withdrawal, disability retirement, age retirement. Accrual rate in a defined benefit plan is the percentage of the benefit basis that is paid annually as a pension for each year of service. For example, if the benefit basis is a 3-year final average, the accrual rate is 1.5%, and a retiree had 40 years of service, then the retireeโ€™s benefit would be 60% of 3-year final average. Salary scale is defined from salary rate as follows: 1 61.1 ๐‘ ๐‘ฅ = โˆซ0 ๐‘ ฬ…๐‘ฅ+๐‘ก ๐‘‘๐‘ก Salary rate is approximated from salary scale as follows: 61.2 ๐‘ ฬ…๐‘ฅ = ๐‘ ๐‘ฅโˆ’0.5

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

31 Lesson 63 โ€“ Interest rate risk: Diversifiable and non-diversifiable risk

Lesson 64 โ€“ Profit Tests: Asset Shares

If ๐ผ is some situation (such as interest rate or mortality rate) which is the same for all policyholders, then ๐‘ ๐ธ[๐‘‰๐‘Ž๐‘Ÿ(๐ฟ |๐ผ )] ๐ฟ๐‘ 63.1 ๐‘‰๐‘Ž๐‘Ÿ ( ) = ๐‘‰๐‘Ž๐‘Ÿ(๐ธ[๐ฟ๐‘ก |๐ผ]) +

Recursive Formula: (๐‘‘) (๐‘ค) ( ๐‘˜โˆ’1๐ด๐‘† + ๐บ(1 โˆ’ ๐‘๐‘˜โˆ’1 ) โˆ’ ๐‘’๐‘˜โˆ’1 )(1 + ๐‘–) โˆ’ ๐‘๐‘˜ ๐‘ž๐‘ฅ+๐‘˜โˆ’1 โˆ’ ๐‘˜๐ถ๐‘‰ ๐‘ž๐‘ฅ+๐‘˜โˆ’1 โก ๐ด๐‘† = ๐‘˜ (๐‘‘) (๐‘ค) 1 โˆ’ ๐‘ž๐‘ฅ+๐‘˜โˆ’1 โˆ’ ๐‘ž๐‘ฅ+๐‘˜โˆ’1

The first summand is non-diversifiable risk. The second summand is diversifiable risk.

Accumulating gross premiums - The accumulated value of unit of gross premium after ๐‘› years is ๐‘๐‘Ÿ โˆ’ ๐‘๐‘“ (1 โˆ’ ๐‘๐‘Ÿ )๐‘ ฬˆ ๐‘ฅ:๐‘›| ฬ…ฬ…ฬ… + ๐‘›๐ธ๐‘ฅ โกโก Where ๐‘๐‘“ is the percentage of first year premium expense and ๐‘๐‘Ÿ is the percentage of renewal premium expense.

๐‘›

๐‘›

q

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

32 Lesson 65 โ€“ Profit Tests: Profit for Traditional Products

Lesson 66 โ€“ Profit Tests: Participating Insurance

Precontract expenses โ€“ Expenses incurred initially before issue of the contract. Placed at the end of year 0 in profit tests.

If dividends are paid as cash, subtract them from the profit. No other change is needed to the profit test.

Profit (๐‘‘) (๐‘‘) 65.1 ๐‘ƒ๐‘Ÿ๐‘˜ = ( ๐‘˜โˆ’1๐‘‰ + ๐บ๐‘˜โˆ’1 โˆ’ ๐‘’๐‘˜โˆ’1 )(1 + ๐‘–) โˆ’ ๐‘ž๐‘ฅ+๐‘˜โˆ’1 (๐‘๐‘˜ + ๐ธ๐‘˜ ) โˆ’ (๐‘ค) (๐œ) ๐‘ž (๐‘ค) (๐ถ๐‘‰๐‘˜ + ๐ธ๐‘˜ ) โˆ’ ๐‘๐‘ฅ+๐‘˜โˆ’1 ๐‘˜๐‘‰

If dividends are used to buy paid-up insurance and are paid in cash to deaths and withdrawals, divide the dividend by the net single premium for the insurance to compute the amount of paid-up insurance purchased. When dividends are used to buy paid-up insurance, the paid-up insurance is called a โ€œreversionary bonusโ€.

Change in Reserve (๐œ) 65.2 ๐›ฅ ๐‘˜๐‘‰ = (1 + ๐‘–) ๐‘˜โˆ’1๐‘‰ โˆ’ ๐‘๐‘ฅ+๐‘˜โˆ’1 ๐‘˜๐‘‰ Profit Vector โ€“ Vector of net profits per policy in force at the beginning of each year. Denoted by ๐‘ƒ๐‘Ÿ๐‘˜ . Profit Signature โ€“ Vector of net profits per policy issued. In singledecrement model, equals ๐‘๐‘ฅ+๐‘˜โˆ’1 ๐‘ƒ๐‘Ÿ๐‘˜ . Denoted by ๐›ฑ๐‘˜ .

If dividends are used to buy paid-up insurance but not paid to all deaths and withdrawals, increase the reversionary bonus by dividing the probability of receiving it. Reversionary bonuses increase the reserves, death benefits, and surrender benefits. Higher reserves lead to higher interest.

Profit Measures IRR โ€“ Internal rate of return. The rate at which the expected present value of the profit signature is 0. NPV โ€“ Net present value of profit signature components discounted at risk discount rate ๐‘Ÿ, which is also called the โ„Ž๐‘ข๐‘Ÿ๐‘‘๐‘™๐‘’โก๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘— 65.3 ๐‘๐‘ƒ๐‘‰ = โก โˆ‘โˆž ๐‘—=1 ๐›ฑ๐‘— ๐‘ฃ๐‘Ÿ

The bonus rate is the bonus divided by the face amount related to the bonus. There are three types of reversionary bonus: Simple: the bonus is applied only to the original face amount. Compound: the bonus is applied to the original face amount + cumulative reversionary bonuses through the end of the previous year. Super-compound: separate bonus rates are computed for the original face amount and for the cumulative reversionary bonuses.

NPV (k) โ€“ Partial NPV. Net present value of profit signature components up to and including time ๐‘˜ discounted at the hurdle rate ๐‘Ÿ. ๐‘— 65.4 ๐‘๐‘ƒ๐‘‰โก(๐‘˜) = โก โˆ‘๐‘˜๐‘—=1 ๐›ฑ๐‘— ๐‘ฃ๐‘Ÿ Profit margin โ€“ Ratio of NPV to present value of premiums computed at the hurdle rate. DPP โ€“ Discounted payback period Zeroization of reserves means setting the reserves so that the profit is 0 in each year except the first.

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

33 Lesson 67 โ€“ Profit tests: Universal life Type B 67.1 ๐ด๐‘‰๐‘ก = (๐ด๐‘‰๐‘กโˆ’1 + ๐‘ƒ๐‘ก โˆ’ ๐‘’๐‘ก โˆ’ ๐‘ฃ๐‘ž ๐‘ž๐‘ฅ+๐‘กโˆ’1 ๐น๐ด)(1 + ๐‘–) 67.2 ๐ด๐‘‰๐‘ก = (๐ด๐‘‰๐‘กโˆ’1 + ๐‘ƒ๐‘ก โˆ’ ๐‘’๐‘ก )(1 + ๐‘–) โˆ’ ๐‘ž๐‘ฅ+๐‘กโˆ’1 ๐น๐ด if ๐‘–๐‘ž = ๐‘– 67.3 ๐ถ๐‘‚๐ผ๐‘ก = ๐‘ฃ๐‘ž ๐‘ž๐‘ฅ+๐‘กโˆ’1 ๐น๐ด Type A 67.4 ๐ด๐‘‰๐‘ก = (๐ด๐‘‰๐‘กโˆ’1 + ๐‘ƒ๐‘ก โˆ’ ๐‘’๐‘ก โˆ’ ๐ถ๐‘‚๐ผ๐‘ก )(1 + ๐‘–) 67.5 (๐ด๐‘‰๐‘กโˆ’1 + ๐‘ƒ๐‘ก โˆ’ ๐‘’๐‘ก )(1 + ๐‘–) โˆ’ ๐‘ž๐‘ฅ+๐‘กโˆ’1 ๐น๐ด ๐ด๐‘‰๐‘ก = 1 โˆ’ ๐‘ž๐‘ฅ+๐‘กโˆ’1 67.6 if ๐‘–๐‘ž = ๐‘– (๐ด๐‘‰๐‘กโˆ’1 + ๐‘ƒ๐‘ก โˆ’ ๐‘’๐‘ก โˆ’ ๐‘ฃ๐‘ž ๐‘ž๐‘ฅ+๐‘กโˆ’1 ๐น๐ด)(1 + ๐‘–) ๐ด๐‘‰๐‘ก = 1 โˆ’ ๐‘ฃ๐‘ž ๐‘ž๐‘ฅ+๐‘กโˆ’1 (1 + ๐‘–) 67.7 ๐‘ฃ๐‘ž ๐‘ž๐‘ฅ+๐‘กโˆ’1 (๐น๐ด โˆ’ (๐ด๐‘‰๐‘กโˆ’1 + ๐‘ƒ๐‘ก โˆ’ ๐‘’๐‘ก )(1 + ๐‘–)) ๐ถ๐‘‚๐ผ๐‘ก = 1 โˆ’ ๐‘ฃ๐‘ž ๐‘ž๐‘ฅ+๐‘กโˆ’1 (1 + ๐‘–) 67.8 ๐‘ฃ๐‘ž๐‘ฅ+๐‘กโˆ’1 (๐น๐ด โˆ’ (๐ด๐‘‰๐‘กโˆ’1 + ๐‘ƒ๐‘ก โˆ’ ๐‘’๐‘ก )(1 + ๐‘–)) ๐ถ๐‘‚๐ผ๐‘ก = 1 โˆ’ ๐‘ž๐‘ฅ+๐‘กโˆ’1 If corridor applies 67.10 (๐ด๐‘‰๐‘กโˆ’1 + ๐‘ƒ๐‘ก โˆ’ ๐‘’๐‘ก )(1 + ๐‘–) ๐ด๐‘‰๐‘ก = 1 โˆ’ ๐‘ฃ๐‘ž ๐‘ž๐‘ฅ+๐‘กโˆ’1 (1 + ๐‘–)(๐›พ โˆ’ 1) 67.9 ๐‘–๐‘ž = ๐‘– (๐ด๐‘‰๐‘กโˆ’1 + ๐‘ƒ๐‘ก โˆ’ ๐‘’๐‘ก )(1 + ๐‘–) ๐ด๐‘‰๐‘ก = 1 โˆ’ ๐‘ž๐‘ฅ+๐‘กโˆ’1 (1 + ๐‘–)(๐›พ โˆ’ 1) 67.11 ๐ถ๐‘‚๐ผ๐‘ก =

Simplified version of account formulas Let the accumulated fund be (๐ด๐‘‰๐‘กโˆ’1 + ๐‘ƒ๐‘ก โˆ’ ๐‘’๐‘ก )(1 + ๐‘–). Then: For Type A, this amount pays ๐ด๐‘‰๐‘ก to those who survive and the face amount to those who die. For Type B, this amount pays ๐ด๐‘‰๐‘ก to everybody plus the face amount to those who die. If the corridor applies, this amount pays the ๐ด๐‘‰๐‘ก to everybody plus (๐›พ โˆ’ 1)๐ด๐‘‰๐‘ก to those who die, where ๐›พ is the corridor factor.

๐‘ฃ๐‘ž ๐‘ž๐‘ฅ+๐‘กโˆ’1 (๐›พ โˆ’ 1)(๐ด๐‘‰๐‘กโˆ’1 + ๐‘ƒ๐‘ก โˆ’ ๐‘’๐‘ก )(1 + ๐‘–) 1 โˆ’ ๐‘ฃ๐‘ž ๐‘ž๐‘ฅ+๐‘กโˆ’1 (1 + ๐‘–)(๐›พ๐‘ก โˆ’ 1)

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

34 Lesson 68: Profit Tests: Gain by Source 68.1 ๐‘ƒ๐‘Ÿ๐‘˜ (๐‘‘) (๐‘‘) (๐‘ค) (๐‘ค) ( ๐‘˜โˆ’1๐‘‰ + ๐บ๐‘˜โˆ’1 โˆ’ ๐‘’๐‘˜โˆ’1 )(1 + ๐‘–) โˆ’ ๐‘ž๐‘ฅ+๐‘˜โˆ’1 (๐‘๐‘˜ + ๐ธ๐‘˜ ) โˆ’ ๐‘ž๐‘ฅ+๐‘˜โˆ’1 (๐ถ๐‘‰๐‘˜ + ๐ธ๐‘˜ ) = โกโก (๐œ) ๐‘๐‘ฅ+๐‘˜โˆ’1 Total profit formula: ( ๐‘˜โˆ’1๐‘‰ + ๐บ๐‘˜โˆ’1 โˆ’ ๐‘’๐‘˜โˆ’1 )(1 + ๐‘–) โˆ’ ๐‘ž๐‘ฅ+๐‘˜โˆ’1 (๐‘๐‘˜ + ๐ธ๐‘˜ ) โˆ’ ๐‘๐‘ฅ+๐‘˜โˆ’1 ๐‘˜๐‘‰ Total gain is the excess of actual profit over expected profit. Components of gain: (In each component, primed are actual, starred are assumed) Interest (๐‘– โ€ฒ โˆ’ ๐‘– โˆ— )( ๐‘˜โˆ’1๐‘‰ + ๐บ๐‘˜ โˆ’ ๐‘’๐‘˜ ) (๐‘’๐‘˜โˆ— โˆ’ ๐‘’๐‘˜โ€ฒ )(1 + ๐‘–) + ๐‘ž๐‘ฅ+๐‘˜โˆ’1 (๐ธ๐‘˜โˆ— โˆ’ ๐ธ๐‘˜โ€ฒ ) Expense: โˆ— โ€ฒ Mortality: (๐‘ž๐‘ฅ+๐‘˜โˆ’1 โˆ’ ๐‘ž๐‘ฅ+๐‘˜โˆ’1 )(๐‘๐‘˜ + ๐ธ๐‘˜ โˆ’ ๐‘˜๐‘‰ ) Lapse:

(๐‘ค)โˆ—

(๐‘ค)โ€ฒ

(๐‘ค)

(๐‘ž๐‘ฅ+๐‘˜โˆ’1 โˆ’ ๐‘ž๐‘ฅ+๐‘˜โˆ’1 )(โก ๐‘˜๐ถ๐‘‰ + ๐ธ๐‘˜

โˆ’ ๐‘˜๐‘‰ )

When computing the components of gain, assumptions should be changed sequentially. In the above order, actual interest would be used in expense and actual settlement expense would be used in mortality, but assumed annual expense would be used in interest. Different orders are possible.

Monica E. Revadulla EXAM MLC โ€“ Models for Life Contingencies

Formula Summary of ASM 2014

Lihat lebih banyak...

Comentรกrios

Copyright ยฉ 2017 DADOSPDF Inc.