LTE -Random Access

June 30, 2017 | Autor: John Monchaku | Categoria: Wireless Communications, Computer Networks
Share Embed


Descrição do Produto

LTE - Random Access Some information concerning PRACH/RACH configuration

1 September 2010 Created by: Peter Stöckl [email protected] NWS LTE RA E2E SA NE LTE © Nokia Siemens Networks 2010. All rights reserved.

LTE - Random Access Some information concerning PRACH/RACH configuration

LTE - Random Access | 01.09.2010

Table of Contents

1

1 RACH - OVERVIEW ............................................................................................................................ 3 1.1 USED FOR ..................................................................................................................................... 3 1.2 RACH TYPES................................................................................................................................ 3 1.3 PRACH CONFIGURATION .......................................................................................................... 4 2 INVOLVED PARAMETER ..................................................................................................................... 7 2.1 RACH CONFIGURATION ............................................................................................................ 7 2.1.1 PRACH CONFIGURATION INDEX ...................................................................................... 7 2.1.2 PRACH FREQUENCY OFFSET ........................................................................................... 10 2.1.3 PRACH ROOT SEQUENCE ................................................................................................ 16 2.1.4 PRACH CYCLIC SHIFT ...................................................................................................... 18 2.1.5 PRACH HIGH SPEED FLAG .............................................................................................. 21 2.2 RACH TIMING .......................................................................................................................... 21 2.2.1 RANDOM ACCESS RESPONSE WINDOW .......................................................................... 21 2.2.2 MAXIMUM CONTENT RESOLUTION TIMER .................................................................... 22 2.2.3 RANDOM ACCESS BACKOFF .............................................................................................. 22 2.2.4 PREAMBLE TRANSMISSION MAXIMUM ............................................................................ 23 2.2.5 C-RNTI REUSE TIMER ....................................................................................................... 23 2.3 PREAMBLE / PREAMBLE GROUPS ............................................................................................ 24 2.3.1 OVERVIEW .......................................................................................................................... 24 2.3.2 NUMBER OF RA PREAMBLES............................................................................................. 24 2.3.3 RA PREAMBLES GROUP A SIZE......................................................................................... 25 2.3.4 RA MESSAGE POWER OFFSET FOR GROUP B SELECTION ............................................. 25 2.4 MESSAGE SIZE MESSAGE CODING ........................................................................................... 25 2.4.1 LARGE SIZE RA MCS IN UL .............................................................................................. 25 2.4.2 LARGE SIZE RA DATA VOLUME IN UL ............................................................................ 25 2.4.3 SAMLL SIZE RA MCS IN UL .............................................................................................. 26 2.4.4 SMALL SIZE RA DATA VOLUME IN UL ........................................................................... 26 2.4.5 MAX CODERATE FOR RA MSG4 ...................................................................................... 26 2.4.6 MAX CODERATE FOR RA MSG2 (RAR) ........................................................................... 26 2.4.7 MAX NUMBER OF MSG3 HARQ TRANSMISSIONS ......................................................... 27 2.4.8 PDCCH AGGREGATION LEVEL FOR RA MSG4 ............................................................. 27 2.4.9 PDCCH AGGREGATION LEVEL FOR PREAMBLE ASSIGNMENTS ................................... 27 2.4.10 PDCCH AGGREGATION LEVEL FOR RAR..................................................................... 28 2.5 RACH POWER ........................................................................................................................... 28 2.5.1 OVERVIEW POWER RAMPING ........................................................................................... 28 2.5.2 PREAMBLE INITIAL RECEIVED TARGET POWER ............................................................. 28 2.5.3 RA POWER RAMPING SETUP ............................................................................................ 29 2.5.4 POWER RAMPING STEP FOR RA ........................................................................................ 29 2.5.5 TPC COMMAND IN RAR ................................................................................................... 29 3 TYPE OF RACH PROCEDURES ......................................................................................................... 30 3.1 CONTENTION BASED ................................................................................................................ 30

LTE - Random Access | 01.09.2010

3.1.1 OVERVIEW .......................................................................................................................... 30 3.1.2 PROCESS WITHOUT PROBLEMS ........................................................................................ 31 3.1.3 PROCESS WITH PROBLEMS PREAMBLE/RAR DETECTION/DECODING.......................... 32 3.1.4 PROCESS WITH PROBLEMS MSG3 PROBLEMS ................................................................. 33 3.2 CONTENTION FREE ................................................................................................................... 34 3.2.1 OVERVIEW .......................................................................................................................... 34 3.2.2 PROCESS .............................................................................................................................. 35 4 RACH/PRACH PLANNING/DIMENSIONING .................................................................................. 36 4.1 RECOMMENDATION .................................................................................................................. 36 4.2 PREAMBLE SELECTION ............................................................................................................. 36 4.2.1 NORMAL CELL.................................................................................................................... 36 4.2.2 HIGH SPEED CELL ............................................................................................................. 38 5 PM-COUNTER ................................................................................................................................... 42 5.1 NUMBER OF AVAILABLE RACH CHANNELS............................................................................ 42 5.2 RACH SETUP ATTEMPTS .......................................................................................................... 42 5.3 RACH SETUP COMPLETIONS ................................................................................................... 43 5.4 UL PRB UTILIZATION PER PRACH, PUCCH, PUSCH ........................................................ 43 6 REFERENCES ...................................................................................................................................... 45

2

1 RACH - Overview 1.1 Used for Relevant scenarios for RACH usage: •

UE in RRC connected state / not uplink-synchronized need to send new UL data or control information



UE in RRC connected state / not uplink-synchronized need to receive new DL data and therefore had to transmit ACK/NACK in UL



UE in RRC connected state / handing over from current serving cell to a target cell



Transition from RRC_IDLE to RRC Connected state (e.g. initial access or tracking area update)



Recovering from radio link failure



Exceptional an uplink-synchronized UE is allowed to send a SR if it has no other UL resource to send the SR.

1.2 RACH types Contention-based: (implying an inherent risk of collision) Contention based Radom Access Procedure

UE

eNB Random Access Preamble ( on PRACH)

( with embedded1- bit indication for L 2/L 3 message size)

1

Random Access Response ( on PDCCH+ PDSCH) ( Timing Adjustment,C- RNTI, UL grant for L2/ 3 message..)

LTE - Random Access | 01.09.2010

2

3

L2/L 3 message (

PUSCH transmission including contentin resolution identity)

3

Contention resolution Message 4 Peter Stöckl Network Engineering March 2010

Contention-free Contention Free Random Access Procedure

UE

eNB

Random Access Preamble Assignment 0 Random Access Preamble ( on PRACH)

1

Random Access Respoonse ( on PDCCH+ PDSCH)

2

For new downlink data or HO eNB has the option of allocating a dedicated signature to a UE => contention free access is possible => faster than contention based and therefore better for time-critical procedures like HO Peter Stöckl Network Engineering March 2010

1.3 PRACH Configuration



PRACH not in PUCCH area



Time-frequency resource semi-statically allocated within PUSCH



Periodicity: Once in 20ms up to every sub-frame / max one RACH resource per subframe



Bandwidth: 6 PRBs (1.08MHz) / (for 1.4 MHz system whole bandwidth) (Sub-carrier spacing 1.5kHz for Preamble Format 0-3 and 7.5kHz for Preamble Format 4)

LTE - Random Access | 01.09.2010

Multiplexing of PRACH with PUSCH & PUCCH:

4

~ 1 data subcarrier guard band

• • •

864 subcarriers

ΔfRA = 1.25kHz

Δf = 15kHz

72 subcarriers (6 RBs)

~ 1 data subcarrier guard band

839 subcarrieres (sc)

12.5 sc

PRACH

12.5 sc

PUSCH

FDD – the start of the RACH burst shall be aligned with UL sub-frame assuming timing advance of zero TDD - for preamble formats 0-3 – the start of the RACH burst shall be aligned with the UL sub-frame assuming timing advance of zero TDD – for preamble format 4 – the start of the RACH burst shall be 4832 * Ts (Ts = 1 / 30.72 MHz ) before the end of the UpPTS at the UE, where the UpPTS is referenced to the UE’s uplink frame timing assuming timing advance of zero.

LTE - Random Access | 01.09.2010

Formats:

5



Length typically one sub-frame (0.1ms CP + 0.8ms Preamble sequence + 0.1ms guard period)



Four different formats available for different environments (e.g. large cells..) (5 formats for TDD)

903µs 800µs

Format 0

CP

Preamble Sequence

1.08MHz (6 PRBs)

103µs 1484µs

CP

Format 1

Preamble Sequence 800µs

684µs 1803µs

Format 2

CP

Preamble Sequence

203µs

800µs

Preamble Sequence 800µs

CP

Preamble Sequence

Preamble Sequence

684µs

800µs

800µs

Format 3

Preamble Format

TCP [µs]

TSEQ [µs]

Typical usage

0

103.13

800

Normal 1 ms RA burst with 800 µs preamble sequence, for small-medium cells (up to ~14 km)

1

684.38

800

2 ms RA burst with 800 µs preamble sequence, for large cells (up to ~77 km) without a link budget problem

2

203.13

1600

2 ms RA burst with 1600 µs preamble sequence, for medium cell (up to ~29 km) and increased path loss

3

684.38

1600

3 ms RA burst with 1600 µs preamble sequence, for very large cells (up to ~100 km) and increased path loss

4

14.58

133.33

Frame structure type 2 and special subframe configurations with UpPTS lengths 4384 Ts and 5120 Ts only. [Ts = 1 / 30.72MHz] (up to 1.4 km cell range)

Zadoff-Chu sequences with length 839 (prime number) for Preamble Format 0-3 and 139 for Preamble Format 4 are used •



Available Sequences. o

838 for Preamble Format 0-3

o

138 for Preamble Format 4

Cyclic shifts: o

16 for Preamble Format 0-3

o

6 for Preamble Format 4

LTE - Random Access | 01.09.2010

2284µs

6



Detection is sensitive to considerable Doppler shifts => special rules for high speed cells



UE selects preamble from 64 different sequences configured for each cell

RACH Procedure Overview •

UE selects randomly a preamble from the list of preambles broadcasted in the BCCH



UE calculates OLPC (open loop power control) parameters (Initial Tx Power)



UE checks contention parameters (i.e. max number of retries)



UE transmits initial RACH and waits for a response before retry. Open loop PC ensures that each retry will be at a higher level.



Upon receipt of successful UL RACH preamble eNB calculates power adjustment and timing advance parameters together with an UL capacity grant.

2 Involved Parameter (Remark: Based on RL10 for FDD and RL15TD for TDD)

2.1 RACH Configuration 2.1.1 PRACH Configuration Index

LTE - Random Access | 01.09.2010

FDD

7

Name:

prachConfIndex:

Description:

PRACH Configuration Index: Defines allowed System frame and sub-frame numbers for random access attempts, and the preamble format

Range/Step:

3...24, step 1

Default:

3

Remark:

For more information see table below. The highlighted configurations are supported by RL10

PRACH Configuration Index

Subframe #

PRACH Configuration Index

Preamble Format

System frame #

Subframe #

Even

1

32

2

Even

1

0

Even

4

33

2

Even

4

0

Even

7

34

2

Even

7

Preamble Format

System frame #

0

0

1 2

Subframe #

PRACH Configuration Index

Any

1

0

Any

5

0

6

Preamble Format

System frame #

Preamble Format

System frame #

Subframe #

3

0

35

2

Any

1

4

4

36

2

Any

4

Any

7

37

2

Any

7

0

Any

1, 6

38

2

Any

1, 6

7

0

Any

2 ,7

39

2

Any

2 ,7

8

0

Any

3, 8

40

2

Any

3, 8

9

0

Any

1, 4, 7

41

2

Any

1, 4, 7

10

0

Any

2, 5, 8

42

2

Any

2, 5, 8

11

0

Any

3, 6, 9

43

2

Any

3, 6, 9

12

0

Any

0, 2, 4, 6, 8

44

2

Any

0, 2, 4, 6, 8

13

0

Any

1, 3, 5, 7, 9

45

2

Any

1, 3, 5, 7, 9

14

0

Any

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

46

N/A

N/A

N/A

15

0

Even

9

47

2

Even

9

16

1

Even

1

48

3

Even

1

17

1

Even

4

49

3

Even

4

18

1

Even

7

50

3

Even

7

19

1

Any

1

51

3

Any

1

20

1

Any

4

52

3

Any

4

21

1

Any

7

53

3

Any

7

22

1

Any

1, 6

54

3

Any

1, 6

23

1

Any

2 ,7

55

3

Any

2 ,7

24

1

Any

3, 8

56

3

Any

3, 8

25

1

Any

1, 4, 7

57

3

Any

1, 4, 7

26

1

Any

2, 5, 8

58

3

Any

2, 5, 8

27

1

Any

3, 6, 9

59

3

Any

3, 6, 9

28

1

Any

0, 2, 4, 6, 8

60

N/A

N/A

N/A

29

1

Any

1, 3, 5, 7, 9

61

N/A

N/A

N/A

LTE - Random Access | 01.09.2010

PRACH Configuration Index

8

PRACH Configuration Index

Subframe #

PRACH Configuration Index

N/A

N/A

Even

9

Preamble Format

System frame #

30

N/A

31

1

Preamble Format

System frame #

Subframe #

62

N/A

N/A

N/A

63

3

Even

9

LTE - Random Access | 01.09.2010

TDD

9

Name:

prachConfIndex:

Description:

PRACH Configuration Index: Defines allowed System frame and sub-frame numbers for random access attempts, and the preamble format

Range/Step:

3...53, step 1

Default:

3

Remark:

For more information see table below. The highlighted configurations are supported by RL15TD. PRACH Configuration Index within range 23…25 and 33…35 can be used only when tddUplinkDownlinkConf [ulDlConfTD] is set to ‘sa1’ and tddSpecialSubframeConf [spcSubConfTD] is set to ‘ssp5’. See next table for PRACH Configuration Index, Preamble Format and RACH Density.

Preamble Format

Density per 10ms (DRA)

Preamble Format

Density per 10ms (DRA)

Version (rRA)

0

0

32

2

0.5

2

1

1

33

2

1

0

0.5

2

34

2

1

1

0

1

0

35

2

2

0

4

0

1

1

36

2

3

0

5

0

1

2

37

2

4

0

6

0

2

0

38

2

5

0

7

0

2

1

39

2

6

0

8

0

2

2

40

3

0.5

0

9

0

3

0

41

3

0.5

1

10

0

3

1

42

3

0.5

2

11

0

3

2

43

3

1

0

12

0

4

0

44

3

1

1

13

0

4

1

45

3

2

0

PRACH Configuration Index

Version (rRA)

PRACH Configuration Index

0.5

0

0

0.5

2

0

3

Preamble Format

Density per 10ms (DRA)

Preamble Format

Density per 10ms (DRA)

Version (rRA)

14

0

46

3

3

0

15

0

47

3

4

0

5

1

48

4

0.5

0

0

5

2

49

4

0.5

1

18

0

6

0

50

4

0.5

2

19

0

6

1

51

4

1

0

20

1

0.5

0

52

4

1

1

21

1

0.5

1

53

4

2

0

22

1

0.5

2

54

4

3

0

23

1

1

0

55

4

4

0

24

1

1

0

56

4

5

0

25

1

2

0

57

4

6

0

26

1

3

0

58

N/A

N/A

N/A

27

1

4

0

59

N/A

N/A

N/A

28

1

5

0

60

N/A

N/A

N/A

29

1

6

0

61

N/A

N/A

N/A

30

2

0.5

0

62

N/A

N/A

N/A

31

2

0.5

1

63

N/A

N/A

N/A

PRACH Configuration Index

Version (rRA)

PRACH Configuration Index

4

2

0

5

16

0

17

2.1.2 PRACH Frequency Offset

Name:

prachFreqOff

Description:

PRACH Frequency Offset: First physical resource block available for PRACH in the UL system frequency band.

Range/Step:

0...94, step 1

Default:

1

Remark:

The values for the parameter PRACH FrequencyOffset should be set in such a way that overlapping of PRACH with PUCCH is avoided, however positioning the PRACH nearby one of the two side of the BW in order to maximize the PUSCH area manageable by the scheduler. If X is the total number of PUCCH

LTE - Random Access | 01.09.2010

FDD

10

resources the PRACH FrequencyOffset shall be calculated as given below: 1.

when PRACH is near to the right side of the BW:

prach-FrequencyOffset = 2.

UL N RB − 6 − X   2

when PRACH is near to the left side of the BW: X 

prach-FrequencyOffset =  2  , where  is floor operation to round the elements of  to the nearest integers towards plus infinity. For example in the case of BW 20MHz, the number of PRB is 100 and MaxNbrOfOFDMSymsForPDCCH =3 the total PUCCH resource are 9 and therefore: prach-FrequencyOffset = 100 - 6 - 5 = 94 - 5 = 89 (if PRACH shall be placed on the right side) or prach-FrequencyOffset = 5 (if PRACH shall be placed on the left side) As said above the configuration of PRACH Offset according to tone of the above formulas is not mandatory but guarantees the non overlapping of PUCCH signaling with PRACH and at the same time maximize the UL scheduler performance providing the largest possible area available for scheduling to PUSCH. In RL09 the scheduler can handle only one PUSCH area.

LTE - Random Access | 01.09.2010

TDD

11

Name:

prachFreqOff

Description:

PRACH Frequency Offset: First physical resource block available for PRACH in the UL system frequency band.

Range/Step:

0...94, step 1

Default:

1

Remark:

In case preamble format 4 is selected prachFreqOff must be set to 0. For preamble format 0-3, the values for the parameter PRACH FrequencyOffset should be set in such a way that overlapping of PRACH with PUCCH is avoided, however positioning the PRACH nearby the border of the BW in order to maximize the PUSCH area manageable by the scheduler. The mapping of the random access preamble in time and frequency can be

taken out of the following table. The quadruples (fRA, t0RA, t1RA, t2RA) in this table indicate the location of a specific random access resource where indicates a frequency resource within the considered time instance

fRA

t0RA =0,1;2 indicates whether the random access resource is reoccurring in all radio frames, in even radio frames, or in odd radio frames t1RA =0,1

indicates whether the random access resource is located in first half frame or in second half frame

t2RA

indicates the uplink sub-frame number where the preamble starts, counting from 0 at the first uplink sub-frame between 2 consecutive downlink-to-uplink switch points, with the exception of preamble format 4 where it is denoted as (*)

Frequency multiplexing for preamble format 0-3 shall be done according to:

𝑅𝐴 𝑛𝑃𝑅𝐵

𝑓𝑅𝐴 𝑝𝑟𝑎𝑐ℎ𝐹𝑟𝑒𝑞𝑂𝑓𝑓 + 6 � � 2 = � 𝑓𝑅𝐴 𝑈𝐿 𝑁𝑅𝐵 − 6 − 𝑝𝑟𝑎𝑐ℎ𝐹𝑟𝑒𝑞𝑂𝑓𝑓 − 6 � � 2

where 𝑈𝐿 𝑁𝑅𝐵

𝑅𝐴 𝑛𝑃𝑅𝐵

𝑖𝑓 𝑓𝑅𝐴 𝑚𝑜𝑑2 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

is the number of uplink resource blocks is the first physical resource block allocated to the PRACH opportunity

and 𝑈𝐿 −6 0 ≤ 𝑝𝑟𝑎𝑐ℎ𝐹𝑟𝑒𝑞𝑂𝑓𝑓 ≤ 𝑁𝑅𝐵

6 𝑓𝑅𝐴 𝑅𝐴 = � 𝑈𝐿 𝑛𝑃𝑅𝐵 𝑁𝑅𝐵 − 6 (𝑓𝑅𝐴 + 1)

1 𝑖𝑓 ��𝑛𝑓 𝑚𝑜𝑑2� ∗ (2 − 𝑁𝑆𝑃 ) + 𝑡𝑅𝐴 � 𝑚𝑜𝑑2 = 0

where 𝑛𝑓

𝑁𝑆𝑃

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

is the system frame number is the number of DL to UL switch points within the radio frame

LTE - Random Access | 01.09.2010

and for preamble format 4 according to :

12

PRACH Configuration Index

(0,1,0,2) (0,1,0,1) (0,1,0,0) (0,1,0,2) (0,1,0,1) (0,1,0,0) (0,1,0,2)

1 2 3 4

(0,2,0,2) (0,1,1,2) (0,0,0,2) (0,0,1,2)

(0,2,0,1) (0,1,1,1) (0,0,0,1) (0,0,1,1)

5 6

(0,0,0,1) (0,0,0,2) (0,0,1,2) (0,0,0,1) (0,0,1,1) (0,0,0,0) (0,0,1,0)

(0,0,0,0) N/A (0,0,0,0) N/A N/A (0,0,0,1) (0,0,0,1) (0,0,0,0) (0,0,0,1) (0,0,0,0) (0,0,0,0) (0,0,0,2) (0,0,1,1) (0,0,1,0) (0,0,0,2) (0,0,0,1) (1,0,0,0) (0,0,1,1) (0,0,0,0) N/A (0,0,0,0) N/A N/A (0,0,0,1) (0,0,1,0) (0,0,0,2) (0,0,1,0) N/A N/A (0,0,0,0) N/A N/A (0,0,0,0) (0,0,0,1) (0,0,1,1)

(0,0,0,1) (0,0,0,2) (0,0,1,2) (0,0,0,0) (0,0,1,0) (0,0,1,1) N/A

(0,0,0,0) (0,0,0,1) (0,0,1,1) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,1,0)

(0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,1,2) (0,0,0,0) (0,0,0,2) (0,0,1,0) (0,0,1,2) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,1,2) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (0,0,1,2)

(0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) N/A

8 9

10

11

12

13

14

LTE - Random Access | 01.09.2010

sa6

0

7

13

sa0

tddUplinkDownlinkConf [ulDlConfTD] sa1 sa2 sa3 sa4 sa5

15

16

N/A

(0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,1) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,1,1)

(0,2,0,0) (0,1,1,0) (0,0,0,0) (0,0,1,0)

(0,2,0,2) (0,1,0,1) (0,0,0,2) (0,0,0,1)

(0,2,0,1) (0,2,0,0) (0,2,0,2) (0,1,0,0) N/A (0,1,1,1) (0,0,0,1) (0,0,0,0) (0,0,0,2) (0,0,0,0) N/A (0,0,1,1)

(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,0,1) (0,0,0,1) (1,0,0,0) (0,0,0,2) (1,0,0,0) (0,0,0,2) (1,0,0,1) (2,0,0,0) (0,0,1,1) (0,0,0,0) N/A (0,0,0,0) N/A 0,0,0,0) (0,0,1,0) (0,0,0,1) (0,0,0,2) (1,0,1,0) (1,0,0,0) (0,0,1,0) N/A N/A N/A N/A (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,0,1) (0,0,0,1) (1,0,0,0) (0,0,0,2) (1,0,0,0) (0,0,0,2) (1,0,0,0) (2,0,0,0) (0,0,1,0) (1,0,1,0) (1,0,0,2) (1,0,0,1) (3,0,0,0) (0,0,1,1) N/A (0,0,0,0) N/A N/A (0,0,0,0) (0,0,0,1) (0,0,0,1) (0,0,0,2) (0,0,0,2) (1,0,0,1) (0,0,1,1) N/A (0,0,0,0) N/A N/A (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,0,2) (0,0,1,0) (1,0,0,0) (0,0,1,1) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,1,0) (0,0,0,1) (0,0,0,1) (1,0,0,0) (0,0,0,1) (1,0,0,0) (0,0,0,2) (1,0,0,0) (2,0,0,0) (0,0,0,2) (1,0,1,0) (1,0,0,1) (1,0,0,1) (3,0,0,0) (0,0,1,0) (2,0,0,0) (1,0,0,2) (2,0,0,1) (4,0,0,0) (0,0,1,1) (0,0,0,0) (0,0,0,0) (0,0,0,0) N/A N/A (0,0,1,0) (0,0,0,1) (0,0,0,1) (1,0,0,0) (0,0,0,2) (1,0,0,0) (1,0,1,0) (1,0,0,0) (1,0,0,1) (2,0,1,0) (1,0,0,2) (2,0,0,0)

17

sa0

tddUplinkDownlinkConf [ulDlConfTD] sa1 sa2 sa3 sa4 sa5

19

(0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (0,0,1,2) N/A

20 / 30 21 / 31 22 / 32 23 / 33

(0,1,0,1) (0,2,0,1) (0,1,1,1) (0,0,0,1)

(0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,1) (1,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,0) (1,0,1,0) (0,1,0,0) (0,2,0,0) (0,1,1,0) (0,0,0,0)

24 / 34 25 / 35

(0,0,1,1) (0,0,0,1) (0,0,1,1) (0,0,0,1) (0,0,1,1) (1,0,0,1) (0,0,0,1) (0,0,1,1) (1,0,0,1) (1,0,1,1) (0,0,0,1) (0,0,1,1) (1,0,0,1) (1,0,1,1) (2,0,0,1)

(0,0,1,0) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (2,0,0,0)

(0,0,0,1) (0,0,1,1) (1,0,0,1) (1,0,1,1) (2,0,0,1) (2,0,1,1) (0,1,0,0)

(0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (2,0,0,0) (2,0,1,0) N/A

18

26 / 36

27 / 37

28 / 38

29 /39

40

N/A

(0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (2,0,0,0) (2,0,1,0) N/A

(0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,0) (1,0,0,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,0) (1,0,0,1) (1,0,0,2) N/A

N/A

N/A

N/A

(0,0,0,0) (0,0,0,1) (1,0,0,0) (1,0,0,1) (2,0,0,0) (2,0,0,1) N/A

(0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0) (5,0,0,0) N/A

(0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (1,0,0,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (1,0,1,1) (0,1,0,1) (0,2,0,1) (0,1,1,0) (0,0,0,1)

N/A N/A N/A N/A

(0,1,0,1) (0,1,0,0) (0,2,0,1) (0,2,0,0) N/A N/A (0,0,0,1) (0,0,0,0)

N/A N/A N/A N/A

N/A N/A

N/A (0,0,0,1) (1,0,0,1) (0,0,0,1) (1,0,0,1) (2,0,0,1) (0,0,0,1) (1,0,0,1) (2,0,0,1) (3,0,0,1) (0,0,0,1) (1,0,0,1) (2,0,0,1) (3,0,0,1) (4,0,0,1)

N/A (0,0,0,0) (1,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0)

N/A N/A

(0,0,0,1) (1,0,0,1) (2,0,0,1) (3,0,0,1) (4,0,0,1) (5,0,0,1) (0,1,0,0)

(0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0) (5,0,0,0) N/A

N/A

N/A

N/A

N/A

N/A

sa6

N/A

N/A

N/A

N/A

N/A

(0,0,1,0) (0,0,0,1) (0,0,1,0) (0,0,0,1) (0,0,1,0) (1,0,0,1) (0,0,0,1) (0,0,1,0) (1,0,0,1) (1,0,1,0) (0,0,0,1) (0,0,1,0) (1,0,0,1) (1,0,1,0) (2,0,0,1) (0,0,0,1) (0,0,1,0) (1,0,0,1) (1,0,1,0) (2,0,0,1) (2,0,1,0) (0,1,0,0)

LTE - Random Access | 01.09.2010

PRACH Configuration Index

14

PRACH Configuration Index

sa0

41

(0,2,0,0)

N/A

N/A

(0,2,0,0)

N/A

N/A

(0,2,0,0)

42 43 44 45

(0,1,1,0) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A

N/A N/A N/A N/A

N/A N/A N/A N/A

N/A N/A N/A N/A

N/A N/A N/A N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

(0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A

(0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A

N/A (0,0,0,0) N/A (0,0,0,0) (1,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (0,1,0,*) (0,2,0,*) N/A (0,0,0,*) N/A (0,0,0,*) (1,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (5,0,0,*) N/A N/A N/A N/A

(0,1,0,*) (0,2,0,*) N/A (0,0,0,*) N/A (0,0,0,*) (1,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (5,0,0,*) N/A N/A N/A N/A

(0,1,0,*) (0,2,0,*) N/A (0,0,0,*) N/A (0,0,0,*) (1,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (5,0,0,*) N/A N/A N/A N/A

N/A (0,0,0,0) N/A (0,0,0,0) (1,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A

46

47

48 49 50 51 52 53 54

55

LTE - Random Access | 01.09.2010

56

15

57

58 59 60 61

tddUplinkDownlinkConf [ulDlConfTD] sa1 sa2 sa3 sa4 sa5

sa6

PRACH Configuration Index

sa0

tddUplinkDownlinkConf [ulDlConfTD] sa1 sa2 sa3 sa4 sa5

sa6

62

N/A

N/A

N/A

N/A

N/A

N/A

N/A

63

N/A

N/A

N/A

N/A

N/A

N/A

N/A

2.1.3 PRACH Root sequence Name:

rootSeqIndex:

Description:

RACH Root Sequence: The preamble generation is started from the Root Sequence which is pointed by the logical root sequence number. 64 preambles can be transmitted in the PRACH frame. If one root is not enough to generate all the 64 preambles, then the consecutive number is selected until the full set is generated. RACH root sequence is cell specific information and neighboring cells should have a different value. RACH root sequence is transmitted in system information.

Range/Step:

0...837, step 1 / for preamble format 0-3 0…137, step 1 / for preamble format 4

Default:

-

Remark:

see tables below (Source: 3GPP 36.211 Table 5.7.2-4 / and Table 5.7.2-5)

Physical root sequence index u (in increasing order of the corresponding logical sequence number) Preamble formats 0-3

0–23

129, 710, 140, 699, 120, 719, 210, 629, 168, 671, 84, 755, 105, 734, 93, 746, 70, 769, 60, 779, 2, 837, 1, 838

24–29

56, 783, 112, 727, 148, 691

30–35

80, 759, 42, 797, 40, 799

36–41

35, 804, 73, 766, 146, 693

42–51

31, 808, 28, 811, 30, 809, 27, 812, 29, 810

52–63

24, 815, 48, 791, 68, 771, 74, 765, 178, 661, 136, 703

64–75

86, 753, 78, 761, 43, 796, 39, 800, 20, 819, 21, 818

76–89

95, 744, 202, 637, 190, 649, 181, 658, 137, 702, 125, 714, 151, 688

90–115

217, 622, 128, 711, 142, 697, 122, 717, 203, 636, 118, 721, 110, 729, 89, 750, 103, 736, 61, 778, 55, 784, 15, 824, 14, 825

116–135

12, 827, 23, 816, 34, 805, 37, 802, 46, 793, 207, 632, 179, 660, 145, 694, 130, 709, 223, 616

136–167

228, 611, 227, 612, 132, 707, 133, 706, 143, 696, 135, 704, 161, 678, 201, 638, 173, 666, 106, 733, 83, 756, 91, 748, 66, 773, 53, 786, 10, 829,

LTE - Random Access | 01.09.2010

Logical root sequence number

16

Logical root sequence number

Physical root sequence index u (in increasing order of the corresponding logical sequence number) Preamble formats 0-3

LTE - Random Access | 01.09.2010

9, 830

17

168–203

7, 832, 8, 831, 16, 823, 47, 792, 64, 775, 57, 782, 104, 735, 101, 738, 108, 731, 208, 631, 184, 655, 197, 642, 191, 648, 121, 718, 141, 698, 149, 690, 216, 623, 218, 621

204–263

152, 687, 144, 695, 134, 705, 138, 701, 199, 640, 162, 677, 176, 663, 119, 720, 158, 681, 164, 675, 174, 665, 171, 668, 170, 669, 87, 752, 169, 670, 88, 751, 107, 732, 81, 758, 82, 757, 100, 739, 98, 741, 71, 768, 59, 780, 65, 774, 50, 789, 49, 790, 26, 813, 17, 822, 13, 826, 6, 833

264–327

5, 834, 33, 806, 51, 788, 75, 764, 99, 740, 96, 743, 97, 742, 166, 673, 172, 667, 175, 664, 187, 652, 163, 676, 185, 654, 200, 639, 114, 725, 189, 650, 115, 724, 194, 645, 195, 644, 192, 647, 182, 657, 157, 682, 156, 683, 211, 628, 154, 685, 123, 716, 139, 700, 212, 627, 153, 686, 213, 626, 215, 624, 150, 689

328–383

225, 614, 224, 615, 221, 618, 220, 619, 127, 712, 147, 692, 124, 715, 193, 646, 205, 634, 206, 633, 116, 723, 160, 679, 186, 653, 167, 672, 79, 760, 85, 754, 77, 762, 92, 747, 58, 781, 62, 777, 69, 770, 54, 785, 36, 803, 32, 807, 25, 814, 18, 821, 11, 828, 4, 835

384–455

3, 836, 19, 820, 22, 817, 41, 798, 38, 801, 44, 795, 52, 787, 45, 794, 63, 776, 67, 772, 72, 767, 76, 763, 94, 745, 102, 737, 90, 749, 109, 730, 165, 674, 111, 728, 209, 630, 204, 635, 117, 722, 188, 651, 159, 680, 198, 641, 113, 726, 183, 656, 180, 659, 177, 662, 196, 643, 155, 684, 214, 625, 126, 713, 131, 708, 219, 620, 222, 617, 226, 613

456–513

230, 609, 232, 607, 262, 577, 252, 587, 418, 421, 416, 423, 413, 426, 411, 428, 376, 463, 395, 444, 283, 556, 285, 554, 379, 460, 390, 449, 363, 476, 384, 455, 388, 451, 386, 453, 361, 478, 387, 452, 360, 479, 310, 529, 354, 485, 328, 511, 315, 524, 337, 502, 349, 490, 335, 504, 324, 515

514–561

323, 516, 320, 519, 334, 505, 359, 480, 295, 544, 385, 454, 292, 547, 291, 548, 381, 458, 399, 440, 380, 459, 397, 442, 369, 470, 377, 462, 410, 429, 407, 432, 281, 558, 414, 425, 247, 592, 277, 562, 271, 568, 272, 567, 264, 575, 259, 580

562–629

237, 602, 239, 600, 244, 595, 243, 596, 275, 564, 278, 561, 250, 589, 246, 593, 417, 422, 248, 591, 394, 445, 393, 446, 370, 469, 365, 474, 300, 539, 299, 540, 364, 475, 362, 477, 298, 541, 312, 527, 313, 526, 314, 525, 353, 486, 352, 487, 343, 496, 327, 512, 350, 489, 326, 513, 319, 520, 332, 507, 333, 506, 348, 491, 347, 492, 322, 517

630–659

330, 509, 338, 501, 341, 498, 340, 499, 342, 497, 301, 538, 366, 473, 401, 438, 371, 468, 408, 431, 375, 464, 249, 590, 269, 570, 238, 601, 234, 605

660–707

257, 582, 273, 566, 255, 584, 254, 585, 245, 594, 251, 588, 412, 427, 372, 467, 282, 557, 403, 436, 396, 443, 392, 447, 391, 448, 382, 457, 389, 450, 294, 545, 297, 542, 311, 528, 344, 495, 345, 494, 318, 521, 331, 508, 325, 514, 321, 518

708–729

346, 493, 339, 500, 351, 488, 306, 533, 289, 550, 400, 439, 378, 461,

Physical root sequence index u (in increasing order of the corresponding logical sequence number) Preamble formats 0-3

Logical root sequence number

374, 465, 415, 424, 270, 569, 241, 598 730–751

231, 608, 260, 579, 268, 571, 276, 563, 409, 430, 398, 441, 290, 549, 304, 535, 308, 531, 358, 481, 316, 523

752–765

293, 546, 288, 551, 284, 555, 368, 471, 253, 586, 256, 583, 263, 576

766–777

242, 597, 274, 565, 402, 437, 383, 456, 357, 482, 329, 510

778–789

317, 522, 307, 532, 286, 553, 287, 552, 266, 573, 261, 578

790–795

236, 603, 303, 536, 356, 483

796–803

355, 484, 405, 434, 404, 435, 406, 433

804–809

235, 604, 267, 572, 302, 537

810–815

309, 530, 265, 574, 233, 606

816–819

367, 472, 296, 543

820–837

336, 503, 305, 534, 373, 466, 280, 559, 279, 560, 419, 420, 240, 599, 258, 581, 229, 610

Logical root sequence number 0–19

1

138

2

137

3

136

4

135

5

134

6

133

7

132

8

131

9

130

10

129

20–39

11

128

12

127

13

126

14

125

15

124

16

123

17

122

18

121

19

120

20

119

40–59

21

118

22

117

23

116

24

115

25

114

26

113

27

112

28

111

29

110

30

109

60–79

31

108

32

107

33

106

34

105

35

104

36

103

37

102

38

101

39

100

40

99

80–99

41

98

42

97

43

96

44

95

45

94

46

93

47

92

48

91

49

90

50

89

100–119

51

88

52

87

53

86

54

85

55

84

56

83

57

82

58

81

59

80

60

79

120–137

61

78

62

77

63

76

64

75

65

74

66

73

67

72

68

71

69

70

-

-

138–837

N/A

2.1.4 PRACH Cyclic Shift Name:

prachCS

LTE - Random Access | 01.09.2010

Physical root sequence index u (in increasing order of the corresponding logical sequence number) Preamble format 4

18

LTE - Random Access | 01.09.2010

19

Description:

PRACH Cyclic Shift: Preamble cyclic shift defines the configuration which is used for preamble generation. The configuration determines how many cyclic shifts are needed to generate preamble. Unrestricted set is supported. Configuration also defines the zero correlation zone and respective maximum cell range.

Range/Step:

0...15, step 1

Default:

-

Remark:

For more information please see tables below: NCS for preamble generation (preamble formats 0-3) NCS value

NCS configuration

Unrestricted set

Restricted set

0

0

15

1

13

18

2

15

22

3

18

26

4

22

32

5

26

38

6

32

46

7

38

55

8

46

68

9

59

82

10

76

100

11

93

128

12

119

158

13

167

202

14

279

237

15

419

-

NCS configuration

NCS value

0

2

1

4

2

6

3

8

4

10

5

12

6

15

7

N/A

8

N/A

9

N/A

10

N/A

11

N/A

12

N/A

13

N/A

14

N/A

15

N/A

LTE - Random Access | 01.09.2010

NCS for preamble generation (preamble format 4) Remark: RL15TD supports NCS configuration 4,5 and 6

20

NCS values in relation to Preamble Format and Cell Range 14.53 km

29.53 km

Format 1 Format 1 & 3 Format 0 13 – 0.79 km 18 – 1.51 km 26 – 2.65 km 38 – 4.37 km 59 – 7.37 km 93 – 12.23 km

167 – 22.82 km

119 – 15.95 km

419 – 58.86 km

279 – 38.84 km

839 (=0) – 118.93 km

76 – 9.80 km 46 – 5.51 km 32 – 3.51 km 22 – 2.08 km 15 – 1.08 km

2.1.5 PRACH High Speed Flag Name:

prachHsFlag

Description:

PRACH High Speed Flag: High speed flag for PRACH preamble generation determines whether an unrestricted or a restricted set has to be used by UE. The unrestricted set, and thus the parameter value 'false', is supported.

Range/Step:

false

Default:

false

2.2 RACH Timing

LTE - Random Access | 01.09.2010

2.2.1 Random Access Response Window

21

Name:

raRespWinSize

Description:

Random Access Response Window Size: Random Access Response Window Size parameter defines the window size for the random access response in TTIs.

Range/Step:

2 (0), 3 (1), 4 (2), 5 (3), 6 (4), 7 (5), 8 (6), 10 (7)

Default:

10 (7)

Remark:

raRespWinSize: The start of this UE timer is the subframe number containing the end of the preamble + 3 subframes => 2 ms after this subframe. The UE

must receive the RAR within this window otherwise it assumes the RACH procedure as failed.

2.2.2 Maximum Content Resolution Timer Name:

raContResoT

Description:

Maximum Content Resolution Timer: The Maximum Content Resolution Timer parameter defines the maximum amount of time allowed for contention resolution.

Range/Step:

8ms (0), 16ms (1), 24ms (2), 32ms (3), 40ms (4), 48ms (5), 56ms (6), 64ms (7)

Default:

32ms (3)

Remark:

raContResoT: Trigger for this UE Timer is the transmission of the MSG 3. In case the UE does not receive the MSG 4 within this time window it assumes that the contention resolution fails. In this case the UE will restart the RACH procedure.

Remark:

This Parameter is deleted for RL10/RL15TD and later releases

Name:

raBackoff

Description:

Random Access Backoff: The Random Access Backoff parameter defines the backoff in TTIs that should be applied if a random access fails.

Range/Step:

2 (0), 5 (1), 10 (2), 20 (3), 50 (4), 100 (5), 200 (6), 500 (7), 1000 (8):

Default:

-

Remark:

According to SFS (RL2 from January 2010 - SFS-RL2_683): If the MAC entity detects overload/contention in access to RA preambles, it shall include a backoff indicator into RA Response message to force backoff parameter value update in UEs. The backoff indicator shall be included into succeeding RA Response messages until the contention situation is resolved. The criteria for detection of overload/contention are FFS; in the meantime, the WA is that the backoff indicator value will be statically configured using the raBackoffSize management parameter. (SLS-RL2_1060). If the backoff indicator value is zero, then the backoff indicator subheader will not be signaled to the UE. Coding of the backoff indicator is detailed in 3GPP-36.321

LTE - Random Access | 01.09.2010

2.2.3 Random Access Backoff

22

2.2.4 Preamble Transmission Maximum Name:

preambTxMax

Description:

Preamble Transmission Maximum: The parameter Preamble Transmission Maximum defines the maximum number of random access transmissions. Note: The values n50, n100 and n200 should not be used.

Range/Step:

3 (0), 4 (1), 5 (2), 6 (3), 7 (4), 8 (5), 10 (6), 20 (7), 50 (8), 100 (9), 200 (10)

Default:

8 (5)

LTE - Random Access | 01.09.2010

2.2.5 C-RNTI Reuse Timer

23

Name:

raCrntiReuseT

Description:

C-RNTI Reuse Timer: On receiving information that a UE has gone to RRC_IDLE, the eNB is not able to re-allocate the C-RNTI of an UE to another UE until this time has elapsed. This parameter is a vendor-specific parameter.

Range/Step:

1...60 s, step 1 s

Default:

20 s

2.3 Preamble / Preamble Groups 2.3.1 Overview Overview Preamble Groups

RA preamble selection

Dedicated RA preambles

Yes

Preambel signaled to UE (e.g. HO..)

# of RA preambles for Group A [raPreGrASize / Default = 32]

Total # of non dedicated RA preambles [raNondedPreamb / Default = 40]

Preamble Group B

Preamble Group B

Continue with RA procedure

Non dedicated RA preambles

Total number of preambles = 64

Use the signaled preamble (dedicated preamble)

NO

MSG 3 has been transmitted

Yes

NO

Select the same group of RA preambles as used for the first attempt

Continue with RA procedure Preamble Group B exists And If UE needs to send a large MSG3 AND its measured path loss is less than Pmax PREAMBLE_INITIAL_RECEIVED_TARGET_POWER - DELTA_PREAMBLE_MSG3 – messagePowerOffsetGroupB [raMsgPoffGrB / Default = 10dB]

Yes

Other parameter: - raLargeMcsUl – Default = 5 - raSmallMcsUl – Default = 5 - raLargeVolUl – Default = 512 - raSmallVolUl – Default = 144

Peter Stöckl Network Engineering March 2010

No

Select Preamble from Group B

Select Preamble from Group A

Continue with RA procedure

Continue with RA procedure

Name:

raNondedPreamb

Description:

Number Of Random Access Preambles: This parameter determines the total number of non dedicated RA preambles that UE can select from (i.e. for contention based RA). The minimum cannot be zero.

Range/Step:

4 (0), 8 (1), 12 (2), 16 (3), 20 (4), 24 (5), 28 (6), 32 (7), 36 (8), 40 (9), 44 (10), 48 (11), 52 (12), 56 (13), 60 (14), 64 (15)

Default:

40 (9)

LTE - Random Access | 01.09.2010

2.3.2 Number of RA Preambles

24

2.3.3 RA Preambles Group A Size Name:

raPreGrASize

Description:

Random Access Preambles Group A Size: Defines the size of the Random Access Preambles Group A.

Range/Step:

4 (0), 8 (1), 12 (2), 16 (3), 20 (4), 24 (5), 28 (6), 32 (7), 36 (8), 40 (9), 44 (10), 48 (11), 52 (12), 56 (13), 60 (14)

Default:

32 (7)

2.3.4 RA Message Power Offset for Group B selection Name:

raMsgPoffGrB

Description:

RA Message Power Offset For Group B Selection: Path loss threshold in dB required for selecting one of the two groups of Random Access Preambles. The UE will only use preambles from group B if it needs to send a large Msg3 AND its measured path loss is less than Pmax PREAMBLE_INITIAL_RECEIVED_TARGET_POWER - DELTA_PREAMBLE_MSG3 messagePowerOffsetGroupB (see 36.321 ch 5.1.2)

Range/Step:

-infinity (0), 0 dB (1), 5 dB (2), 8 dB (3), 10 dB (4), 12 dB (5), 15 dB (6), 18 dB (7)

Default:

10 dB (4)

2.4 Message Size Message Coding

LTE - Random Access | 01.09.2010

2.4.1 Large Size RA MCS in UL

25

Name:

raLargeMcsUl

Description:

Large Size Random Access MCS in Uplink: Defines the modulation and coding scheme (MCS) to be used for large size Random Access Message 3 in case of initial access or handover

Range/Step:

0...15, step 1

Default:

5

2.4.2 Large Size RA Data Volume in UL Name:

raLargeVolUl

Description:

Large Size Random Access Data Volume In Uplink: This parameter defines the data volume to be used for large size Random Access Message 3 in the case of an initial access or handover. This parameter is vendor specific.

Range/Step:

216...512 bit, step 8 bit

Default:

512 bit

2.4.3 Samll Size RA MCS in UL Name:

raSmallMcsUl

Description:

Small Size Random Access MCS in Uplink: Defines the modulation and coding scheme (MCS) to be used for the small size Random Access Message 3 in case of UL or DL data arrival. Parameter is vendor specific parameter

Range/Step:

0...15, step 1

Default:

5

2.4.4 Small Size RA Data Volume in UL Name:

raSmallVolUl

Description:

Small Size Random Access Data Volume in Uplink: Defines the data volume to be used for small size Random Access Message 3 in case of UL or DL data arrival.

Range/Step:

56 bits (0), 144 bits (1), 208 bits (2), 256 bits (3)

Default:

144 bits (1)

Name:

maxCrRa4Dl

Description:

Maximum Coderate For Random Access Messge 4: The parameter defines the maximum coderate for Random Access Procedure messages 4 (SRB0 message) This maximum coderate is taken into account during PDSCH scheduling.

Range/Step:

0.05...0.5, step 0.01

Default:

0.12

2.4.6 Max Coderate for RA MSG2 (RAR)

LTE - Random Access | 01.09.2010

2.4.5 Max Coderate for RA MSG4

26

Name:

maxCrRaDl

Description:

Maximum Coderate For Random Access Messge 2: The parameter defines the maximum coderate for Random Access Procedure messages 2 (RA response) This maximum coderate is taken into account during PDSCH scheduling.

Range/Step:

0.05...0.5, step 0.01

Default:

0.12

2.4.7 Max Number of MSG3 HARQ Transmissions Name:

harqMaxMsg3

Description:

Maximum Number Of Message 3 HARQ Transmissions: Indicates the maximum number of HARQ transmissions used for Message 3 of the contention based random access procedure.

Range/Step:

1...8, step 1

Default:

5

2.4.8 PDCCH Aggregation Level for RA MSG4 Name:

pdcchAggMsg4

Description:

PDCCH Aggregation For RA Msg4: The parameter defines the reserved number of Control Channel Elements (CCEs) for dedicated Random Access Message 4 assingment on PDCCH.

Range/Step:

4...8, step 4

Default:

4

LTE - Random Access | 01.09.2010

2.4.9 PDCCH Aggregation Level for Preamble assignments Name: pdcchAggPreamb

27

Description:

PDCCH Aggregation Level For Preamble Assignments: The parameter defines aggregation level by means of control channel elements (CCEs) for preamble assignments on PDCCH. The preamble assignment is message 0 sent during the non-contention based Random Access procedure in the case of DL data arrival during UL out-of-sync.

Range/Step:

4...8, step 4

Default:

4

2.4.10 PDCCH Aggregation Level for RAR Name:

pdcchAggRaresp

Description

PDCCH Aggregation For Random Access Response Message: PDCCH Aggregation for Random Access Response Message. Defines how many CCEs are used for one PDCCH.

Range/Step:

4...8, step 4

Default:

4

2.5 RACH Power 2.5.1 Overview Power Ramping •

Open loop power control together with optional power ramp-up is used during the random access process at the beginning of the connection until more accurate control information is available.



PPRACH = min {Pmax, Preamble_Initial_Received_Target_Power + Path Loss}



The open loop power control is performed by the UE, based on received information transmitted on system information block in broadcast channel (BCH) and the measured path loss in downlink



The eNB broadcasts the initial transmission power level and the power step to the UE in the BCH (Broadcast channel)



The UE sets the initial transmission power in the first preamble and waits for the UL grant on PDCCH. If not acknowledged, the MS increases the preamble transmission power by a specified power offset step.

Name:

ulpcIniPrePwr

Description:

Preamble Initial Received Target Power: The Preamble Initial Received Target Power parameter defines the initial power for Random Access Preamble transmission.

Range/Step:

-120 dBm (0), -118 dBm (1), -116 dBm (2), -114 dBm (3), -112 dBm (4), -110 dBm (5), -108 dBm (6), -106 dBm (7), -104 dBm (8), -102 dBm (9), -100 dBm (10), -98 dBm (11), -96 dBm (12), -94 dBm (13), -92 dBm (14), -90 dBm (15):

Default:

-104 dBm (8)

LTE - Random Access | 01.09.2010

2.5.2 Preamble Initial Received Target Power

28

2.5.3 RA Power Ramping Setup Remark:

This Parameter is deleted for RL10/RL15TD and later releases

Name:

raPowRampSetup

Description:

RA Power Ramping Setup: Power Ramping Setup - WA in 3GPP

Range/Step:

0...1, step 1

Default:

-

2.5.4 Power ramping Step for RA Name:

prachPwrRamp

Description:

Power Ramping Step: The Power Ramping Step Size parameter defines the power increment step size for Random Access Preamble transmission.

Range/Step:

0dB (0), 2dB (1), 4dB (2), 6dB (3)

Default:

2dB (1)

LTE - Random Access | 01.09.2010

2.5.5 TPC Command in RAR

29

Name:

ulpcRarespTpc

Description:

TPC Command In Random Access Response: TPC command indicated in the random access response related to Random Access message 3 or 1st scheduled uplink transmission.

Range/Step:

-6...8 dB, step 2 dB:

Default:

-

3 Type of RACH procedures 3.1 Contention Based 3.1.1 Overview Contention based Radom Access Procedure

UE

eNB Random Access Preamble ( on PRACH)

( with embedded1- bit indication for L 2/L 3 message size)

1

Random Access Response ( on PDCCH+ PDSCH) ( Timing Adjustment,C- RNTI, UL grant for L2/ 3 message..)

2

L2/L 3 message (

PUSCH transmission including contentin resolution identity)

3

Contention resolution Message 4

LTE - Random Access | 01.09.2010

Peter Stöckl Network Engineering March 2010

30

31

UL @ eNB

UL @ UE

Propagation RTT

DL @ UE

Propagation delay

DL @ eNB

RACH Preamble RX @ eNB

RACH Preamble TX @ UE

RAR RX @ UE

MSG3 RX @ eNB

MSG3 TX @ UE

5TT – Propagation RTT Minimum delay for sending MSG3 after RX of RAR @ UE

5 TTI

MSG4 RX @ UE => RA procedure successful

MSG4 TX @ eNB

Peter Stöckl Network Engineering March 2010

MACCountResoTimer [raContResT - default: 32ms]

After TX or re-TX of MSG3 @ UE; UE start CR timer / If UE does not receive MSG4 addressed to its C-RNTI when timer expires, UE considers contention resolution not successful / or if UE receives a MSG4 with an UE’s identity different from its own / in case RA procedure fails then UE should wait „raBackoff“ until starting new RA procedure)

Propagation RTT

RAR Window Size / raRespWinSize [default 10 TTI = 10ms]

1 TTI [1 ms]

Contention Based RA Procedure without problems

Start of RAR Window = Subframe containing the end of the preamble + 3 subframes (or in other words 2 ms after the end of the subframe containing the end of the preamble

RAR TX @ eNB (e.g. 4 ms after RX of preamble)

LTE - Random Access | 01.09.2010

3.1.2 Process without problems

X

1

2

3

4

4

5

8

9

0

RAR TX @ eNB (e.g. 4 ms after RX of preamble)

7

1

2

6

X 7

8

9

0

Or (b) PDSCH part of RAR @ UE not decoded in case PDCCH successful decoded

1

2

3

RACH Preamble not received @ UE [first possibility]

4

3

4

1 TTI [1 ms]

RACH Preamble TX @ UE Initial Power for Preamble (open loop power control) PRACH = min{PMAX; ulpcIniPrePwr + PL} ulpcIniPrePwr = Preamble initial received target power [Default: -104dBm] PL = path loss measured by UE from RS-Signals

3

6

RAR Window Size / raRespWinSize [default 10 TTI = 10ms]

5

Either (a) PDCCH part of RAR @ UE not decoded [Aggregation level of RAR PDCCH defined by pdcchAggRaresp]

2

LTE - Random Access | 01.09.2010

UL @ eNB

UL @ UE

Propagation RTT

DL @ UE

Propagation delay

DL @ eNB

1

Sub-Frame

Depicted example: PrachConfIndex = 3 (Default)

8

9

6

0

1

2

7

8

3

9

0

1

2

3

min 4ms min delay after RAR window for retransmission in case of no RAR detection

min 3ms min delay after RAR window for retransmission in case of no RAR detection

7

4

4

Sub-Frame 5

5

Peter Stöckl Network Engineering March 2010

Power for Preamble retransmission PRACH-Retrans = min{PMAX; PRACH-Previous + prachPwrRamp} prachPwrRamp [Default: 2dB] Retransmission unitil maximum amount of preamble transmissions is reached: preambTxMax [default = 8]

5

6

RACH Preamble RE-TX @ UE [only in Sub-Frame # 1 as prachconfIndex = 3]

5

Contention Based RA Procedure with problems -> Preamble detection or RAR detection/decoding

3.1.3 Process with problems Preamble/RAR detection/decoding

32

33

UL @ eNB

UL @ UE

Propagation RTT

DL @ UE

Propagation delay

DL @ eNB

RACH Preamble RX @ eNB

RACH Preamble TX @ UE

RAR RX @ UE

MSG3 RX @ eNB not correctly decoded

MSG3 TX @ UE

5TT – Propagation RTT Minimum delay for sending MSG3 after RX of RAR @ UE

5 TTI MSG 3 NACK

X

Propagation RTT

RAR Window Size / raRespWinSize [default 10 TTI = 10ms]

Start of RAR Window Size = Subframe containing the end of the preamble + 3 subframes (or in other words 2 ms after the end of the subframe containing the end of the preamble

1 TTI [1 ms]

Restart of raContResT

Parameter ‚ Maximum number of message 3 HARQ retransmission’ defines the max number of HARQ transmission for MSG3 [parmeter: harqMaxMsg3 / default = 5]

Peter Stöckl Network Engineering March 2010

MACCountResoTimer [raContResT - default: 32ms]

MSG 3 first retransmission

Contention Based RA Procedure with problems -> MSG3 retransmissions

RAR TX @ eNB (e.g. 4 ms after RX of preamble)

LTE - Random Access | 01.09.2010

3.1.4 Process with problems MSG3 problems

3.2 Contention Free 3.2.1 Overview Contention Free Random Access Procedure

UE

eNB

Random Access Preamble Assignment 0 Random Access Preamble ( on PRACH)

1

Random Access Respoonse ( on PDCCH+ PDSCH)

2

For new downlink data or HO eNB has the option of allocating a dedicated signature to a UE => contention free access is possible => faster than contention based and therefore better for time-critical procedures like HO

LTE - Random Access | 01.09.2010

Peter Stöckl Network Engineering March 2010

34

3.2.2 Process

Contention free Random Access procedure in case of handover

In principle the contention free RA procedure is equal to the contention based RA procedure however: uses dedicated preambles and ends after the RAR

If no dedicated preambles are available eNB shall command contention based RA procedure [done by omitting the preamble]

Source cell shall select a free dedicated RA preamble and shall signal the selected RA preamble together with the related C-RNTI for this HO to the UE in the Handover Command Message

UE shall access the new cell by using this dedicated preamble [Timing: PrachConfIndex => default = 3 => one PRACH type 0 per radio frame / always in sub-frame 1] [Power: PRACH = min{PMAX; ulpcIniPrePwr + PL} ulpcIniPrePwr = Preamble initial received target power [Default: 104dBm] PL = path loss measured by UE from RS-Signals {referenceSignalPower transmitted in SIB2 subtable 1}]

After transmission of Preamble UE expects the RA response (RAR) from the eNB with the RAR Window: Start of RAR Window: Subframe containing the end of the preamble + 3 subframes Size of RAR Window: raRespWinSize [default 10 TTI = 10ms]

Yes

End of contention free random access procedure

LTE - Random Access | 01.09.2010

The RAR is typically transmitted by the eNB app 4TTI after the receiving the preamble

35

RAR received by UE

No RAR during RAR Window

Min delay after RAR window for retransmission of preamble is 3 ms

No

RAR detection problem

Detect PDCCH part of RAR but problems with decoding PDSCH part of RAR

Min delay for retransmission of preamble is increased to 4 ms

Retransmission of preamble with increased power. Peter Stöckl Network Engineering March 2010

unitil maximum amount of preamble transmissions is reached: preambTxMax [default = 8] PRACH-Retrans = min{PMAX; PRACH-Previous + prachPwrRamp} prachPwrRamp [Default: 2dB]

4 RACH/PRACH planning/dimensioning 4.1 Recommendation PRACHs from neighboring cells can be separated: •

by CDMA -> PRACH cyclic shift. (The larger the cell is, the longer is the required zero correlation value. Note that the processing power is directly scaled with the number of root sequences)



by frequency domain -> PRACH frequency Offset (PRACH could be varied in frequency domain, however avoid fragmentation of PUSCH area -> therefore place the PRACH next to the PUCCH area)



by Time domain, -> PRACH configuration Index (the time domain is almost deployable)

4.2 Preamble Selection 4.2.1 Normal Cell Select an appropriate preamble format based on the cell range. See table below:

burst format (preamble format)

subframes

0

max. delay spread (due to CP) [µs]

max. cell radius (due to guard and CP) [km]

CP [µs]

PRE [µs]

Guard [µs]

max. cell radius (due to guard) [km]

1

103.1

800.0

96.9

14.53

6.3

97.9

14.69

14.53

1

2

684.4

800.0

515.6

77.34

168.8

679.2

101.88

77.34

2

2

203.1

1600.0

196.9

29.53

6.3

197.9

29.69

29.53

3

3

684.4

1600.0

715.6

107.34

-31.3

679.2

101.88

101.88

max. cell radius (due to CP considering 5,2 us delay spread) [µs] [km]

Example: Assume a cell range of 37km. So an appropriate preamble format could be format 1 or format 3. As there is no need for preamble format 3; format 1 should be chosen (requires less resources than format 3).

LTE - Random Access | 01.09.2010

First:

36

Second:

Select zero correlation or NCS Index out of the table below:

NCs Config.

NCS

sign. per root seq.

1

13

64

2

15

3

#root seq.

no delay spread

delay spread = 5,2 us

With preamble guard

us

km

Us

km

Guard

NCS

us

km

us

km

1

12.4

1.86

7.2

1.08

2.25

10.75

10.3

1.54

5.1

0.76

55

2

14.3

2.15

9.1

1.37

2.25

12.75

12.2

1.82

7.0

1.04

18

46

2

17.2

2.57

12.0

1.79

2.25

15.75

15.0

2.25

9.8

1.47

4

22

38

2

21.0

3.15

15.8

2.37

2.25

19.75

18.8

2.82

13.6

2.04

5

26

32

2

24.8

3.72

19.6

2.94

2.25

23.75

22.6

3.40

17.4

2.62

6

32

26

3

30.5

4.58

25.3

3.80

2.25

29.75

28.4

4.26

23.2

3.48

7

38

22

3

36.2

5.44

31.0

4.66

2.25

35.75

34.1

5.11

28.9

4.33

8

46

18

4

43.9

6.58

38.7

5.80

2.25

43.75

41.7

6.26

36.5

5.48

9

59

14

5

56.3

8.44

51.1

7.66

2.25

56.75

54.1

8.12

48.9

7.34

10

76

11

6

72.5

10.87

67.3

10.09

2.25

73.75

70.3

10.55

65.1

9.77

11

93

9

8

88.7

13.30

83.5

12.52

2.25

90.75

86.5

12.98

81.3

12.20

12

119

7

10

113.5

17.02

108.3

16.24

2.25

116.75

111.3

16.70

106.1

15.92

13

167

5

13

159.2

23.89

154.0

23.11

2.25

164.75

157.1

23.56

151.9

22.78

14

279

3

22

266.0

39.90

260.8

39.12

2.25

276.75

263.9

39.58

258.7

38.80

15

419

2

32

399.5

59.93

394.3

59.15

2.25

416.75

397.4

59.61

392.2

58.83

0

839

1

64

800.0

120.00

794.8

119.22

2.25

836.75

797.9

119.68

792.7

118.90

LTE - Random Access | 01.09.2010

Example: In the above given example for a cell range of 37km the best choice for NCS would be 14 as it allows cell ranges with 38.8km. Therefore a lower index would not meet the distance requirements and choosing a higher index will require more root sequences and therefore higher processing power. As given in the above depicted table 3 signatures per root sequence are available and therefore 22 root sequences are needed to fulfill the requirement of 64 sequences.

37

Third:

Select 22 successive root sequences out of the table given in 2.13. Example: e.g. Select logical root sequence numbers 0-21.

4.2.2 High Speed Cell Out of the below given table, it can be seen that the maximum cell range for a high speed cell is 32.8 km. (limited by the cyclic shift sets and not by the preambles)

NCs Config.

NCS

sign. per root seq.

0

15

18

1

18

2

#root seq.

no delay spread

delay spread = 5,2 us

With preamble guard

us

km

Us

km

Guard

NCS

us

km

us

km

4

14.3

2.15

9.1

1.37

2.25

12.75

12.2

1.82

7.0

1.04

15

6

17.2

2.57

12.0

1.79

2.25

15.75

15.0

2.25

9.8

1.47

22

12

6

21.0

3.15

15.8

2.37

2.25

19.75

18.8

2.82

13.6

2.04

3

26

10

8

24.8

3.72

19.6

2.94

2.25

23.75

22.6

3.40

17.4

2.62

4

32

8

9

30.5

4.58

25.3

3.80

2.25

29.75

28.4

4.26

23.2

3.48

5

38

7

11

36.2

5.44

31.0

4.66

2.25

35.75

34.1

5.11

28.9

4.33

6

46

6

14

43.9

6.58

38.7

5.80

2.25

43.75

41.7

6.26

36.5

5.48

7

55

4

17

52.4

7.87

47.2

7.09

2.25

52.75

50.3

7.54

45.1

6.76

8

68

4

20

64.8

9.73

59.6

8.95

2.25

65.75

62.7

9.40

57.5

8.62

9

82

3

26

78.2

11.73

73.0

10.95

2.25

79.75

76.0

11.41

70.8

10.63

10

100

2

32

95.4

14.30

90.2

13.52

2.25

97.75

93.2

13.98

88.0

13.20

11

128

2

44

122.1

18.31

116.9

17.53

2.25

125.75

119.9

17.99

114.7

17.21

12

158

1

64

150.7

22.60

145.5

21.82

2.25

155.75

148.5

22.28

143.3

21.50

13

202

1

64

192.6

28.89

187.4

28.11

2.25

199.75

190.5

28.57

185.3

27.79

14

237

1

64

226.0

33.90

220.8

33.12

2.25

234.75

223.8

33.58

218.6

32.80

Out of the below given table the logical root sequence number should be selected.

CM group

Subgroup No.

NCS (high speed)

Logical root sequence number

Low

0

-

0–23

Physical root sequence index u (in increasing order of the corresponding logical sequence number) Preamble formats 0-3 129, 710, 140, 699, 120, 719, 210, 629, 168, 671, 84, 755, 105, 734, 93, 746, 70, 769, 60,

LTE - Random Access | 01.09.2010

Example: For this example assume a cell range of 20km radius. For 20 km cell range preamble format 1 or 2 could be selected. As format 2 is not supported by NSN at the moment, and the only benefit of format 2 would be to be more robust as it requires lower SINR, format 1 is chosen. Out of the above given table for this example NCS index 12 would be the best choice. Anyhow as given in this table with index 12 already 64 root sequences are required.

38

CM group

Subgroup No.

NCS (high speed)

Logical root sequence number

Physical root sequence index u (in increasing order of the corresponding logical sequence number) Preamble formats 0-3 779, 2, 837, 1, 838

1

15

24–29

56, 783, 112, 727, 148, 691

2

18

30–35

80, 759, 42, 797, 40, 799

3

22

36–41

35, 804, 73, 766, 146, 693

4

26

42–51

31, 808, 28, 811, 30, 809, 27, 812, 29, 810

5

32

52–63

24, 815, 48, 791, 68, 771, 74, 765, 178, 661, 136, 703

6

38

64–75

86, 753, 78, 761, 43, 796, 39, 800, 20, 819, 21, 818

7

46

76–89

95, 744, 202, 637, 190, 649, 181, 658, 137, 702, 125, 714, 151, 688

8

55

90–115

217, 622, 128, 711, 142, 697, 122, 717, 203, 636, 118, 721, 110, 729, 89, 750, 103, 736, 61, 778, 55, 784, 15, 824, 14, 825

9

68

116–135

12, 827, 23, 816, 34, 805, 37, 802, 46, 793, 207, 632, 179, 660, 145, 694, 130, 709, 223, 616

136–167

228, 611, 227, 612, 132, 707, 133, 706, 143, 696, 135, 704, 161, 678, 201, 638, 173, 666, 106, 733, 83, 756, 91, 748, 66, 773, 53, 786, 10, 829, 9, 830

168–203

7, 832, 8, 831, 16, 823, 47, 792, 64, 775, 57, 782, 104, 735, 101, 738, 108, 731, 208, 631, 184, 655, 197, 642, 191, 648, 121, 718, 141, 698, 149, 690, 216, 623, 218, 621

204–263

152, 687, 144, 695, 134, 705, 138, 701, 199, 640, 162, 677, 176, 663, 119, 720, 158, 681, 164, 675, 174, 665, 171, 668, 170, 669, 87, 752, 169, 670, 88, 751, 107, 732, 81, 758, 82, 757, 100, 739, 98, 741, 71, 768, 59, 780, 65, 774, 50, 789, 49, 790, 26, 813, 17, 822, 13, 826, 6, 833

264–327

5, 834, 33, 806, 51, 788, 75, 764, 99, 740, 96, 743, 97, 742, 166, 673, 172, 667, 175, 664, 187, 652, 163, 676, 185, 654, 200, 639, 114, 725, 189, 650, 115, 724, 194, 645, 195, 644, 192, 647, 182, 657, 157, 682, 156, 683, 211, 628, 154, 685, 123, 716, 139, 700, 212, 627, 153,

10

LTE - Random Access | 01.09.2010

11

39

12

13

82

100

128

158

CM group

Subgroup No.

NCS (high speed)

Logical root sequence number

Physical root sequence index u (in increasing order of the corresponding logical sequence number) Preamble formats 0-3

14

15

16

17

202

237

237

202

328–383

225, 614, 224, 615, 221, 618, 220, 619, 127, 712, 147, 692, 124, 715, 193, 646, 205, 634, 206, 633, 116, 723, 160, 679, 186, 653, 167, 672, 79, 760, 85, 754, 77, 762, 92, 747, 58, 781, 62, 777, 69, 770, 54, 785, 36, 803, 32, 807, 25, 814, 18, 821, 11, 828, 4, 835

384–455

3, 836, 19, 820, 22, 817, 41, 798, 38, 801, 44, 795, 52, 787, 45, 794, 63, 776, 67, 772, 72, 767, 76, 763, 94, 745, 102, 737, 90, 749, 109, 730, 165, 674, 111, 728, 209, 630, 204, 635, 117, 722, 188, 651, 159, 680, 198, 641, 113, 726, 183, 656, 180, 659, 177, 662, 196, 643, 155, 684, 214, 625, 126, 713, 131, 708, 219, 620, 222, 617, 226, 613

456–513

230, 609, 232, 607, 262, 577, 252, 587, 418, 421, 416, 423, 413, 426, 411, 428, 376, 463, 395, 444, 283, 556, 285, 554, 379, 460, 390, 449, 363, 476, 384, 455, 388, 451, 386, 453, 361, 478, 387, 452, 360, 479, 310, 529, 354, 485, 328, 511, 315, 524, 337, 502, 349, 490, 335, 504, 324, 515

514–561

323, 516, 320, 519, 334, 505, 359, 480, 295, 544, 385, 454, 292, 547, 291, 548, 381, 458, 399, 440, 380, 459, 397, 442, 369, 470, 377, 462, 410, 429, 407, 432, 281, 558, 414, 425, 247, 592, 277, 562, 271, 568, 272, 567, 264, 575, 259, 580

562–629

237, 602, 239, 600, 244, 595, 243, 596, 275, 564, 278, 561, 250, 589, 246, 593, 417, 422, 248, 591, 394, 445, 393, 446, 370, 469, 365, 474, 300, 539, 299, 540, 364, 475, 362, 477, 298, 541, 312, 527, 313, 526, 314, 525, 353, 486, 352, 487, 343, 496, 327, 512, 350, 489, 326, 513, 319, 520, 332, 507, 333, 506, 348, 491, 347, 492, 322, 517

630–659

330, 509, 338, 501, 341, 498, 340, 499, 342, 497, 301, 538, 366, 473, 401, 438, 371, 468, 408, 431, 375, 464, 249, 590, 269, 570, 238, 601, 234, 605

High

18

19

158

128

LTE - Random Access | 01.09.2010

686, 213, 626, 215, 624, 150, 689

40

CM group

Subgroup No.

20

LTE - Random Access | 01.09.2010

21

41

NCS (high speed)

100

82

Logical root sequence number

Physical root sequence index u (in increasing order of the corresponding logical sequence number) Preamble formats 0-3

660–707

257, 582, 273, 566, 255, 584, 254, 585, 245, 594, 251, 588, 412, 427, 372, 467, 282, 557, 403, 436, 396, 443, 392, 447, 391, 448, 382, 457, 389, 450, 294, 545, 297, 542, 311, 528, 344, 495, 345, 494, 318, 521, 331, 508, 325, 514, 321, 518

708–729

346, 493, 339, 500, 351, 488, 306, 533, 289, 550, 400, 439, 378, 461, 374, 465, 415, 424, 270, 569, 241, 598

22

68

730–751

231, 608, 260, 579, 268, 571, 276, 563, 409, 430, 398, 441, 290, 549, 304, 535, 308, 531, 358, 481, 316, 523

23

55

752–765

293, 546, 288, 551, 284, 555, 368, 471, 253, 586, 256, 583, 263, 576

24

46

766–777

242, 597, 274, 565, 402, 437, 383, 456, 357, 482, 329, 510

25

38

778–789

317, 522, 307, 532, 286, 553, 287, 552, 266, 573, 261, 578

26

32

790–795

236, 603, 303, 536, 356, 483

27

26

796–803

355, 484, 405, 434, 404, 435, 406, 433

28

22

804–809

235, 604, 267, 572, 302, 537

29

18

810–815

309, 530, 265, 574, 233, 606

30

15

816–819

367, 472, 296, 543

31

-

820–837

336, 503, 305, 534, 373, 466, 280, 559, 279, 560, 419, 420, 240, 599, 258, 581, 229, 610

Example: For the above given example the 64 required root sequences can be selected out of the logical root sequence numbers from 264 up to 629 since for those the possible NCS restricted index is at least 158.

5 PM-Counter 5.1 Number of available RACH channels Title

Number of available RACH channels

Mtype

Cell Load

Shortname

RACH_CHANNELS

Description

This measurement provides the minimum, maximum and mean number of reserved and available RACH channels. Reserved RACH channels are those channels that can be used for random access procedure. Available means that they must be in operational state ‘enabled’ and in administrative state ‘unlocked’ or ‘shutting down’

Number of Counters

3

Counters

Minimum number of available RACH channels. Maximum number of available RACH channels. Mean number of available RACH channels.

Adm. Object

eNB

Measured Object

Cell

Counter Type

Real

Counter Unit

None

Trigger Event

This measurement is triggered by the creation/deletion of RACH channels as well as each state change of those channels

Remark

None

History

Introduced in RL09

Title

Number of RACH setup attemps

Mtype

Cell Load

Shortname

RACH_SETUP_ATT

Description

This measurement provides the number of RACH setup attempts. Both RA preamble groups shall be monitored.

Number of Counters

2

Counters

Number of RACH setup attempts for small size messages. Number of RACH setup attempts for large size messagess.

Adm. Object

eNB

LTE - Random Access | 01.09.2010

5.2 RACH setup attempts

42

Measured Object

Cell

Counter Type

Integer

Counter Unit

None

Trigger Event

Receipt of a RA preamble sent by the UE to the eNB 3GPP TS36.321 (RA preamble)

Remark

None

History

Introduced in RL09

LTE - Random Access | 01.09.2010

5.3 RACH setup completions

43

Title

Number of RACH setup completions

Mtype

Cell Load

Shortname

RACH_SETUP_SUCC

Description

This measurement provides the number of RACH setup completions.

Number of Counters

1

Counters

Number of RACH setup completions.

Adm. Object

eNB

Measured Object

Cell

Counter Type

Integer

Counter Unit

None

Trigger Event

Transmission of a RA Response sent from eNB to UE. 3GPP TS36.321 (RA Response)

Remark

If RA Response message consists of information for N (N>1) RA preambles, the measurement is increased by N.

History

Introduced in RL09

5.4 UL PRB utilization per PRACH, PUCCH, PUSCH Title

PRB utilization per channel (UL/DL)

Mtype

Cell Resource

Shortname

PRB_UTIL_CHANNEL

Description

These measurements provide the PRB utilization per physical channel. The reference point is the Service Access Point between MAC and L1. A sum counter allows to calculate the relative utilization of each channel.

Number of Counters

8

Counters

Total PRB used UL PRBs used for PRACH PRBs used for PUCCH PRBs used for PUSCH Total PRB used in DL PRBs used for PBCH

Adm. Object

eNB

Measured Object

Cell

Counter Type

Integer

Counter Unit

None

Trigger Event

Cumulative measurement. Triggered for each scheduling period by an internal trigger.

Remark

3GPP TS32425 v.030, 3GPP TS36314 v.100

History

Introduced in RL10

LTE - Random Access | 01.09.2010

PRBs used for PDCCH PRBs used for PDSCH

44

LTE - Random Access | 01.09.2010

6 References

45

[1]

3GPP TS36.211 V8.8.0 (2009-09) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Envolved Universal Terrestrial Radio Access (E-UTRAN); Physical Channels and Modulation (Release 8)

[2]

NSN SFS TF LTE SFS Radio Layer 1 (RL1) (FDD & TDD releases)

[3]

NSN SFS (FDD & TDD releases) TF LTE SFS Radio Layer 2 (RL2) [PDCP/RLC/MAC]

[4]

NSN SFS (FDD & TDD releases) RRM LTE SFS eNB Radio Resource Management

[5]

NSN SFS PMO LTE SFS Radio related Performance

[6]

LTE for UMTS OFDMA and SC-FDMA Based Radio Access Harri Holma and Antti Toskala John Wiley & Sons Ltd. – 2009

[7]

LTE – The UMTS Long Term Evolution From Theory to Practice Edited by: Stefania Sesia; Issam Toufik; Matthew Baker John Wiley & Sons Ltd. – 2009

[8]

LTE for 4G Mobile Broadband Air Interface Technologies and Performance Farooq Khan Cambridge University Press, 2009

[9]

NSN Academy Training Documentation for LTE Parameter LTEPAR-Pilot RL09 – January 2010

[10]

NSN NE Enabling RL10 Handouts to session ‘Radio Layer 1 Fundamentals’ January 2010

Lihat lebih banyak...

Comentários

Copyright © 2017 DADOSPDF Inc.