On two-parametric quartic families of Diophantine problems

Share Embed


Descrição do Produto

J. Symbolic Computation (1998) 26, 151–171 Article No. sy980205

On Two-parametric Quartic Families of Diophantine Problems ˝ AND ROBERT F. TICHY† ATTILA PETHO Laboratory for Informatics, Medical University Debrecen, Nagyerdei krt. 98, H-4028 Debrecen, Hungary Institute of Mathematics, TU Graz, Steyrergasse 30, A-8010 Graz, Austria

Two-parametric quartic Thue equations are completely solved for sufficiently large values of the parameters. Exceptional units are computed in related quartic number fields. The method depends heavily on A. Baker’s theory of linear forms in logarithms and symbolic computation in MAPLE. c 1998 Academic Press

1. Introduction Let n ≥ 3, v1 (x), . . . , vn−1 (x) ∈ Z[x] and u ∈ {−1, 1}, then x(x − v1 (a)y) · · · (x − vn−1 (a)y) + uy n = ±1 is called a parametrized familiy of Thue equations, if a ∈ Z and the solutions x, y are searched in Z; cf. Thomas (1993). There are several results concerning parametrized families of cubic and quartic families of Thue equations, see Mignotte et al. (1996) and the references therein. 4.85 Thomas (1993) proved that if 0 < b < c and a ≥ [2 × 106 (b + 2c)] c−b , then the only solutions of the equation x(x − ab y)(x − ac y) + uy 3 = ±1

u = ±1

are ±{(1, 0), (0, u), (a u, u), (a u, u)}. As far as we know this is the only case, when a two-parametric familiy of Thue equations is completely solved. In this paper we consider diophantine problems which are related to a two-parametric quartic polynomial. Let 1 < a < b, a, b ∈ Z and b

c

Pa,b (x) = x(x − 1)(x − a)(x − b) − 1. This polynomial is irreducible (see Halter-Koch et al. (1998)). Denoting by α one of the zeros of Pa,b (x) the number field K = Q(α) is quartic. Let O = Z[α] and UO be the group of units of O. In the first part, we study the algebraic properties of K. We prove † Both authors were supported by the Hungarian-Austrian Scientific Cooperation program. The second author was supported by the Jubil¨ aumsfonds of the Austrian National Bank Project 4995.

0747–7171/98/080151 + 21 $30.00/0

c 1998 Academic Press

152

A. Peth˝ o and R. F. Tichy

that K has no quadratic subfields and that α, α − 1, α − a, which are obviously units in O, consist a basis of UO provided a is large enough. A unit η in an algebraic number field is called exceptional if 1 − η is also a unit. Chowla (1962) and Nagell (1965) proved that in any number ring there exist only finitely many exceptional units. Gy˝ ory (1980) gave an effectively computable upper bound which depends only on the degree and on the discriminant of the field for the size of exceptional units. In O, α and 1 − α are obviously exceptional. In Theorem 3.1 we prove that if a0 ≤ a + 1 < b < a(1 + log12 a ), then there are no other exceptional units in O. The constant a0 is absolute and explicitly given. Our final result concerns the Thue equation x(x − y)(x − ay)(x − by) − y 4 = ±1. We prove in Theorem 4.1 that if a1 ≤ a + 1 < b < a(1 + trivial solutions

1 ), log4 a

(1.1) then (1.1) has only the

(x, y) ∈ ±{(1, 0), (0, 1), (1, 1), (a, 1), (b, 1)}, where the constant a1 is absolute and explicitly given, too. 18 Since both a0 and a1 are larger than 1010 a complete determination of exceptional units and a complete solution of Thue equations for the remaining values of the parameters is unobtainable by the current available methods. In the cases when all solutions of parametrized diophantine problems were determined, the upper bounds for the parameters were less than 109 ; see Mignotte et al. (1996) and the references given there. 2. Properties of the Quartic Number Field First we show that the quartic field generated by a root of the polynomial Pa,b (x) = x(x − 1)(x − a)(x − b) − 1 in general has Galois group A4 or S4 . Thus it has no subfields in the general case. Theorem 2.1. Let 1 ≤ a ≤ b and let α be a zero of Pa,b (x). Then the Galois group of K = Q(α) is A4 or S4 except when a ≥ 1, a = 2, a = 3,

b = a + 1, b = 6, b = 3,

where the Galois group is D8 . Proof. The resolvent R(x1 x3 + x2 x4 , Pa,b (x)) is ra,b (x) = x3 − (ab + a + b)x2 + (a2 b + ab2 + ab + 4)x − a2 b2 + a2 + b2 − 2 ab − 2 a − 2 b + 1. The factorization of ra,b (x) reflects the Galois group of K (see for example Kappe and Warren (1989)). Case 1. b = a + 1. In this case, the resolvent polynomial splits as ra,a+1 (x) = (x − a)(x2 − (2a + a2 + 1)x + a3 + 2a2 + a + 4). The quadratic factor is irreducible for all a ≥ 1, hence Gal(K/Q) = D8 or C4 . Applying

On Two-parametric Quartic Families of Diophantine Problems

153

Cohen (1996), Algorithm 6.3.7, with the Tschirnhausen transformation A = 1 + x + x2 we obtain Gal(K/Q) = D8 . Case 2. a = 1, b 6= 2. The resolvent polynomial r1,b = x3 + (−1 − 2 b)x2 + (b2 + 4 + 2 b)x − 4 b splits only if b = 2, so we have Gal(K/Q) = A4 or S4 for b 6= 2. Case 3. a = 2, b 6= 3. The resolvent polynomial splits for b ∈ {1, 3, 6}, otherwise Gal(K/Q) = A4 or S4 . Case 4. a = 3, b = 3. We have Gal(K/Q) = D8 . Case 5. 3 ≤ a < b − 1 or a = b ≥ 4. In this case, we have r(a − 1) < 0, r(a) > 0, r(b) > 0, r(b + 1) < 0, r(ab − 1) < 0 and r(ab) > 0, hence r(x) is irreducible over Z. 2 Now we establish approximations of the roots of Pa,b (x) which will be needed in the following. Lemma 2.1. Let 2 < a < b and α(1) < α(2) < α(3) < α(4) be the zeros of Pa,b (x). Then the following estimates hold for the indicated values of a: 1 a>2 (1) ≤ α ab 1 a>2 (2) ≤ α 1+ ab a≥4 2 ≤ α(3) a− 2 a (b − a) a>2 1 ≤ α(4) b+ 2 b (b − a) −

1 1 2 ab a≥4 2 ≤ 1+ ab a>2

≤ −

1 a2 (b − a) a>2 2 . ≤ b+ 2 b (b − a) a>2

≤ a−

(2.1) (2.2) (2.3) (2.4)

Proof. These inequalities can be verified by considering the sign of Pa,b at the given points. 2 A crucial point is the precise description of the structure of the unit group. Theorem 2.2. Let e20 < a + 1 < b, then α, α − 1, α − a is a system of fundamental units in O = Z[α]. Proof. By Theorem 2.1 we may assume that Q(α) does not have a quadratic subfield. From Lemma 2.1 we obtain 1 2 2 (a b (b − a))2 , |DO | ≥ 16 thus, by Pohst’s theorem (see Pohst and Zassenhaus (1989, p. 366)), " 3 #1/2 1 (log a2 b2 (b − a) − 6 log 2)2 |RO | > 5 8 =

[log a2 b2 (b − a) − 6 log 2]3 √ . 10 10

We are now going to estimate the regulator Rα of the system of units α, α − 1, α − a.

154

A. Peth˝ o and R. F. Tichy

We have

log |α(1) | log |α(1) − 1| log |α(1) − a| Rα = log |α(2) | log |α(2) − 1| log |α(2) − a| log |α(3) | log |α(3) − 1| log |α(3) − a|

.

Lemma 2.1 implies that | log |α(1) − 1||,

| log |α(2) || <

2 , ab

hence |Rα | ≤ | log |α(1) | log |α(2) − 1| log |α(3) − a| − log |α(1) | log |α(2) − a| log |α(3) − 1| 6 log2 a ab 2 6 log a a ab log2 + . ≤ log2 (ab) log a2 (b − a) − 2 log 2 2 ab The index I of < −1, α, α − 1, α − a > in the unit group of O can now be estimated by i √ h 2 2 a 6 log2 a ab 2 10 10 log (ab) log a (b − a) − 2 log log + 2 2 ab |Rα | . < I≤ 3 −6 2 2 |RO | log (2 a b (b − a)) − log |α(1) − a| log |α(2) − 1| log |α(3) || +

Put b = ax with x ≥ 1 + 2/a and define √ h 2 10 10 log2 (a2 x) log a3 (x − 1) − 2 log a2x log2 fa (x) = log3 (2−6 a5 x2 (x − 1))

a 2

+

6 log2 a a2 x

i .

Expanding all products and collecting similar terms, it can be proved that fa (x) < 3 for a > e20 , hence I = 1 or 2. Assume that I = 2. Then there exist h, i, j, k ∈ {0, 1} and a unit ±1 6= ε ∈ O such that ε2 = (−1)h αi (α − 1)j (α − a)k .

(2.5)

As Q(α) is a totally real number field, by considering the various signs of the components of (2.5) in the four possible embeddings we see that we must have (h, i, j, k) = (0, 1, 1, 0). Assume that α(α − 1) = ε2 . It is easy to see that α(α − 1) is a zero of the polynomial q(x) = x4 − (a(a − 1) + b(b − 1))x3 + (ab(a − 1)(b − 1) − 2)x2 − (2ab − a − b + 1)x + 1. As Q(α) does not have a quadratic subfield, ε has degree 4, i.e. q(x2 ) splits into irreducible quartic polynomials. One of them, say q1 (x), is the defining polynomial of ε and the other, q2 (x), that of −ε. Let q1 (x) = x4 + c3 x3 + c2 x2 + c1 x ± 1, then q2 (x) = x4 − c3 x3 + c2 x2 − c1 x ± 1. Considering the case ε(3) > 0 and ε(4) > 0, we have 1 |c3 + a + b − 1| = −ε(1) − ε(2) − ε(3) + a − − ε(4) + b − 2

1 2

On Two-parametric Quartic Families of Diophantine Problems

155

q   q q 1 (1) (1) (2) (2) ≤ α (α − 1) + α (α − 1) + α(3) (α(3) − 1) − a − 2 q   1 + α(4) (α(4) − 1) − b − 2 1 4 ≤ √ + 0 can be proved analogously, the remaining cases can be reduced by putting ε = −ε. Hence I < 2 and Theorem 2.2 is proved. 2 3. Exceptional Units Let UO be the unit group of O = Z[α]. A unit η ∈ UO is called exceptional if 1 − η is also a unit. It is well known, see for example Shorey and Tijdeman (1986), that there exist only finitely many exceptional units in UO and they are effectively computable. It is clear that α and 1 − α are exceptional units in UO and, if a = 2 then α − 2, while if a = b − 1 then also α − a and α − a − 1 are exceptional units. Let us call them “trivial exceptional units”. We shall prove that under certain conditions no more exceptional units exist in UO . First we establish asymptotic bounds between the logarithms of the conjugates and the exponents. Lemma 3.1. Let 1040 < a + 1 < b < 2a and η, η 0 ∈ UO \ {±1}. Write η = ±αu1 (α − 1)u2 (α − a)u3

and

η 0 = ±αv1 (α − 1)v2 (α − a)v3

with ui , vi ∈ Z, 1 ≤ i ≤ 3. Let U = max{|ui |, 1 ≤ i ≤ 3}, V = max{|vi |, 1 ≤ i ≤ 3} and assume that U ≥ V . If η + η 0 = 1, then U log a , 1. E = max{| log |η (i) ||, 1 ≤ i ≤ 4} > 5.58

156

A. Peth˝ o and R. F. Tichy

U log a − 1, 2. E 0 = max{| log |η 0(i) ||, 1 ≤ i ≤ 4} > 11.7 3. There exist 1 ≤ j, h ≤ 4, j 6= h such that U log a , 11.7 U log a + 0.47. log |η 0(h) | < − 17.9 log |η (j) | < −

(3.1) (3.2)

Proof. Considering the logarithms of the absolute values of the conjugates of η we obtain the following system of linear equations for u1 , u2 , u3 log |η (i) | = u1 log |α(i) | + u2 log |α(i) − 1| + u3 log |α(i) − a|,

i = 1, 2, 3.

We solve this by Cramer’s rule and obtain uj =

Dj , Rα

j = 1, 2, 3,

where Dj denotes the determinant which we obtain from Rα by changing the jth column of Rα by the transpose of the vector (log |η (1) |, log |η (2) |, log |η (3) |). We estimate Dj by Hadamard’s inequality and obtain |uj | ≤

√ 15 log2 a + 10 log a 6.66 E 3< E 2 2 3 log a 4 log a − 9 log 2 log a − 8 log 2 log a − 2 log 2 − 6 3

(3.3)

U log a . 6.66 V log a and as The same argument shows that E 0 > 6.66

if a > 1040 . This means that E >

4 X

log |η 0(i) | = 0,

i=1

V log a , thus 20   V log a 1 (h) 0(h) < , |1 − η | = |η | < exp − 20 e

there exists a 1 ≤ h ≤ 4 such that log |η 0(h) | < −

hence

  V log a < 0.5. | log |η (h) || < 1.24 exp − 20

Assume that E = | log |η (i) || ≥ | log |η (j) || ≥ | log |η (k) ||, where i, j, k is the appropriate permutation of the set {1, 2, 3, 4}\{h}. Let | log |η (j) || = P4 zE. Then the identity l=1 log |η (l) | = 0 implies | log |η (k) | + log |η (h) || = | log |η (i) | + log |η (j) ||.

(3.4)

The sign of log |η (i) | and log |η (j) | must be different, because otherwise | log |η (k) || ≥ | log |η (i) || + | log |η (j) || − 0.5 > | log |η (j) ||

(3.5)

On Two-parametric Quartic Families of Diophantine Problems

would be true, as E >

U log a 6.66

157

> 13, if a > 1040 . We have

E = | log |η (j) | + log |η (k) | + log |η (h) || ≤ 2zE + 0.5, which implies z≥

1 0.25 − ≥ 0.48 2 E

for a > 1040 . The identity (3.4) implies also | log |η (k) || ≤ (1 − z)E + 0.5. The estimate for the euclidean norm of the vector (log |η (1) |, log |η (2) |, log |η (3) |) can be refined as follows: log2 |η (1) | + log2 |η (2) | + log2 |η (3) | ≤ f (z), where f (z) = E 2 + z 2 E 2 + ((1 − z)E + 0.5)2 + 0.25. We have to estimate the maximum of f (z) on the interval [0.48, 1]. f (z) is monotonically increasing on [0.48, 1], thus max f (z) = 2E 2 + 0.5 ≤ 2.1E 2 ,

z∈[0.48,1]

if a > 1040 . This implies

√ 2.1 6.66 5.58E E< , U≤ √ log a log a 3

thus (1) is proved. If log |η (i) | < 0, then we obtain at once (3.1) (with j = i), while if log |η (i) | > 0, then log |η (j) | < 0, and U log a U log a > . | log |η (j) || = zE ≥ 0.48 5.58 11.7 If log |η (i) | > 0, then as η (i) + η 0(i) = 1 we have 1 U log a U log a −1> − 1, log |η 0(i) | = log |η (i) | + log 1 − (i) > 5.58 11.7 |η | which proves (2). There exists by the same argument as we used to estimate log η (j) a 1 ≤ h ≤ 4 such that U log a + 0.48, log |η 0(h) | < − 11.7 which proves (3.2) in this case. Finally, if log |η (i) | < 0, then log |η (j) | = zE with a z ≥ 0.48. Moreover | log |η 0(i) || = | log |1 − η (i) || < |η (i) | < e−15 . If z ≥ 2/3 then log |η (j) | > U log a/8.37, hence log |η 0(j) | >

U log a − 1, 8.37

which implies log |η 0(h) | < − for the smallest conjugate of η 0 .

U log a + 0.47 17.9

158

A. Peth˝ o and R. F. Tichy

It remains to consider the case 0.48 < z < 2/3. Then (3.4) implies | log |η (k) || > (1 − z)E − 0.5 >

1 E − 0.5 > 4.5. 3

Moreover log |η (k) | > 0 by the identity | log |η (j) | + log |η (k) || = | log |η (i) | + log |η (h) ||. We have now log |η 0(j) | > zE − 1 >

U log a −1 11.7

and log |η 0(k) | > (1 − z)E − 0.5 − 0.02 = (1 − z)E − 0.52, which implies log |η 0(h) | = − log |η 0(i) | − log |η 0(j) | − log |η 0(k) | < −E + 1.53 < −

U log a + 1.53, 5.58

log a log a ) < 1/2 and |η (h) | < exp(− U17.9 + and (3.2) is proved. Since both |η (j) | < exp(− U11.7 0.47) < 1/2, j = h cannot hold. 2

Next we consider some elementary special cases. Lemma 3.2. Let a, b, u ∈ Z such that 4 ≤ a < b and u ≥ 1. Then 1. η1 = (α − 1)u + 1 ∈ UO ⇐⇒ u = 1, / UO , 2. η2 = (α − 1)u − 1 ∈ / UO , 3. η3 = αu + 1 ∈ 4. η4 = αu − 1 ∈ UO ⇐⇒ u = 1, u / UO , 5. η5 = ( α−a α−b ) + 1 ∈ α−a u 6. η6 = ( α−b ) − 1 ∈ UO ⇐⇒ u = 1 and b = a + 1. Proof. 1. Let u > 1 and denote by N ( ) the norm function in Q(α). If u is even, then as every factor of the product N ((α − 1)u + 1) =

4 Y

((α(i) − 1)u + 1)

i=1

is larger than 1, N (η1 ) > 1 and η1 cannot be a unit. Let u be odd, then η1 /α must be a unit. We have   4 u−1 η  Y X 1  (−1)j (α(i) − 1)j  . = N α i=1 j=0 By Lemma 2.1 we estimate the factors as follows: u−1 X

(−1)j (α(1) − 1)j > u ≥ 3

j=0 u−1 X j=0

u−3

j

(−1) (α

(2)

− 1) = (2 − α j

(2)

)

2 X

j=0

(α(2) − 1)2j + (α(2) − 1)u−1 > 2 − α(2) >

1 2

On Two-parametric Quartic Families of Diophantine Problems u−1 X

159

u−3

j

(−1) (α

(i)

− 1) = 1 + (α j

(i)

− 1)(α

− 2)

(i)

j=0

2 X

(α(i) − 1)2j > 1

for i = 3, 4.

j=0

Thus N (η1 /α) > 1 and η1 cannot be a unit. 2. We have η2 = (α − 1)u − 1 = (α − 2)

u−1 X

(α − 1)j ,

j=0

thus if η2 ∈ UO , then α − 2 ∈ UO too, but this is only possible if a = 2 as N (α − 2) = 7 − 4a − 4b + 2ab. 3. For u even, N (η3 ) > 1. For u odd, we have |α(1) |u < 1/2, for i > 1 we have (α(i) )u + 1 > 2, thus we have N (η3 ) > 1. 4. For u even, we have αu − 1 = (αu/2 − 1)(αu/2 + 1), hence η4 cannot be a unit by 3. Pu−1 For u ≥ 3 odd, it is easy to show that N (η4 /(α − 1)) = N ( j=0 αj ) > 1. / UO . 5. If u is even, then all conjugates of η5 are larger than 1, thus η5 ∈ If u is odd, then we have   u  u−1 j u−1  X  a − α j α−a α−a 2α − a − b X a − α +1= = . +1 η5 = α−b α−b α−b α − b j=0 α − b j=0 Hence η5 ∈ UO implies 2α − a − b ∈ UO . As 2α(1) − (a + b) < −(a + b) ≤ −5 2α(2) − (a + b) < −a − b + 3 ≤ −2 2α(3) − (a + b) = 2(α(3) − a) − (b − a) < −1 2α(4) − (a + b) = 2(α(4) − b) + (b − a) > 1, / UO . we see that |N (2α − (a + b))| > 10, thus η5 ∈ 6. The identity u j  u−1  b−a X α−a α−a −1= η6 = α−b α − b j=0 α − b shows that if η6 ∈ UO then b − a ∈ UO , and therefore b − a = 1. For u = 1, η6 is indeed a unit. Assume that u > 1. u/2 + 1 has to be a unit too, which is impossible by 5. Thus If u is even then ( α−a α−b ) u ≥ 3 is odd. As

α(i) −a α(i) −b

> 0 for i = 1, 2, 3 we obtain u−1 X j=0

As

α(4) −a α(4) −b

α(i) − a α(i) − b

j >1

for i = 1, 2, 3.

> 1, we have u−1 X j=0

α(4) − a α(4) − b

j > u ≥ 3,

thus η6 cannot be a unit and the lemma is proved. 2 In the following we construct linear forms in logarithms and estimate the coefficients.

160

A. Peth˝ o and R. F. Tichy

Lemma 3.3. Let 3.3 × 106 < a < b ≤ a(1 + 1, 2, 3} and for j = 1, 2

1 ), log2 a

u1 , u2 , u3 ∈ Z, U = max{|ui |, i =

Λj = u1 log |α(j) | + u2 log |α(j) − 1| + u3 log |α(j) − a|. If (|Λj | < 1 and u3 6= 2uj ) or (|Λj | < 1/8a and uj 6= 0), then we have U>

log3 a . 3

Proof. We prove this lemma only for j = 1, because the proof for j = 2 is analogous exchanging the role of α(1) and α(1) − 1. We shall use the following estimates, which are easy consequences of Lemma 2.1: log |a − α(1) |

b−a 2b

log |1 − α(1) | b − a < log 1 − b − α(1)

> log a < <

1 ab 1.4(b − a) . b

Rewrite Λ1 as follows Λ1 = u1 log α(1) (α(1) − 1)(α(1) − a)2 + (u2 − u1 ) log |α(1) − 1| + (u3 − 2u1 ) log |α(1) − a|   b−a + (u2 − u1 ) log(α(1) − 1) + (u3 − 2u1 ) log |α(1) − a|. = u1 log 1 − b − α(1) If u3 6= 2u1 , then we have   u1 log 1 − b − a +|(u2 −u1 ) log |α(1) −1|| ≥ |u3 −2u1 | log |α(1) −a|−|Λ1 | > log a−1. (1) b−α Hence either, as |Λ1 | < 1, |u1 |

  1.4(b − a) b − a log a − 1 ≥ |u1 | log 1 − , > b 2 b − α(1)

which implies U ≥ |u1 | >

a(log a − 1) b(log a − 1) log3 a > > 2.8(b − a) 2.8 loga2 a 3

for a > e15 or log a − 1 |u2 − u1 | > |u2 − u1 | log(α(1) − 1) > , ab 2 and so U≥

ab(log a − 1) log3 a |u2 − u1 | ≥ > . 2 4 3

1 , Let now be u3 = 2u1 6= 0. Then we have, as |Λ1 | < 8a   1 b − a b−a 1 1 − ≥ . − |Λ1 | ≥ |u2 − u1 | ≥ |u1 | log 1 − ab 2b 8a 4b b − α(1)

On Two-parametric Quartic Families of Diophantine Problems

161

This implies U≥

a log3 a |u2 − u1 | > > 2 8 3

for a ≥ 2589. 2 For the proof of the next lemma we need the following version of a fundamental theorem from Baker and W¨ ustholz (1993). Let α be an algebraic number with minimal polynomial c0 xδ + c1 xδ−1 + · · · + cδ = Qδ (j) c0 j=1 (x − α ). Then the absolute logarithmic Weil height of α is defined as h0 (α) =

δ Y 1 max(1, |α(j) |). log c0 δ j=1

¨stholz) Let α1 , . . . , αn be algebraic numbers, not 0 Proposition 3.1. (Baker–Wu or 1, K = Q(α1 , . . . , αn ), d the degree of K. For α ∈ K we define the modified height h0 (α) by 1 h0 (α) = max(dh0 (α), | log(α)|, 1). d Let b1 , . . . , bn ∈ Z, Λ = b1 log α1 + · · · + bn log αn 6= 0 and B ≥ max |bj |. Then log |Λ| > −C(n, d)h0 (α1 ) . . . h0 (αn ) log B, where C(n, d) = 18(n + 1)!nn+1 (32d)n+2 log(2nd). An application of the Baker–W¨ ustholz Theorem yields the following Lemma 3.4. Let a < b < 2a, u1 , u2 , u3 ∈ Z, U = max{|ui |, i = 1, 2, 3} and for i = 1, 2, 3, 4 Λi = u1 log |α(i) | + u2 log |α(i) − 1| + u3 log |α(i) − a| Assume that U >

log3 a 3

and there exists an 1 ≤ i ≤ 4 such that   U log a . 0 6= |Λi | < exp − 20

(3.6)

18

Then a < 103×10 . Proof. We have by Lemma 2.1 1 1 1 1 log |α(2) α(3) α(4) | = − log |α| < log ab < log(2a) 4 4 4 2 1 1 1 h0 (α(i) − 1) = log |(α(1) − 1)(α(3) − 1)(α(4) − 1)| = − log |α(2) − 1| < log(2a) 4 4 2 1 1 3 h0 (α(i) − a) = log |(α(1) − a)(α(2) − a)(α(4) − a)| = − log |α(3) − a| < log(2a). 4 4 4 h0 (α(i) ) =

Let 1 ≤ i ≤ 4 such that (3.6) holds. Then applying the Baker–W¨ ustholz Theorem with

162

A. Peth˝ o and R. F. Tichy

the parameters n = 3, d = 4, B = U we obtain log |Λi | > −18 × 24 × 34 × 235 × log 24 ×

3 log3 (2a) × log U 16

= −7.17 × 1014 log3 (2a) log U. Comparing this lower bound with the upper bound we obtain a < 103×10 lemma is proved. 2

18

and the

Next we settle some non-elementary special cases. 18

Lemma 3.5. Let 103×10 < a + 1 < b < a(1 + log12 a ), u1 , u2 ∈ Z such that u1 > 0, u1 6= u2 and |u1 |, |u2 | ≤ 24. Then neither u u   α − a 1 u2 −u1 α−a 1 u2 −u1 (α − 1) ± 1 nor α ±1 α−b α−b can be a unit. u1  (α − 1)u2 −u1 and assume that η + ε ∈ UO with ε = 1 or −1. Proof. Put η = α−a α−b By Theorem 2.2 there exist v1 , v2 , v3 ∈ Z such that η + ε = ±αv1 (α − 1)v2 (α − a)v3 = η 0 .

(3.7)

If v2 = v3 = 0, then η 0 = ±αv1 and (3.7) is not possible by Lemma 3.2. Thus we may assume v2 6= 0 or v3 6= 0 in the following. Assume first that u2 − u1 > 0. Then u1  u2 −u1  (2) 2 2 α −a (2) < 2 |η | < ab a α(2) − b by Lemma 2.1, hence 0

| log |η (2) || = |v1 log α(2) + v2 log(α(2) − 1) + v3 log |α(2) − a|| <

4 a2

3

which implies V > log3 a by Lemma 3.3. As η 0 is assumed to be a unit, there exists by Lemma 3.1 an 1 ≤ i ≤ 4 such that 0

log |η (i) | < −

V log a . 11.7

18

Thus a < 103×10 by Lemma 3.4. Assume now that u2 − u1 < 0 and u1 ≤ 24. Then  (2) 24  u1 −u2 α −a ab (2) |η | > 2 α(2) − b  24 a2 ab 2 > , > 1− 2 2 4 log a if a > 260. From (3.7) we obtain 0

ε η (2) − 1 = (2) , η (2) η

(3.8)

On Two-parametric Quartic Families of Diophantine Problems

163

and as we can write η = αu1 (α − 1)u2 (α − a)2u1 too, we conclude 8 (v1 − u1 ) log |α(2) | + (v2 − u2 ) log |α(2) − 1| + (v3 − 2u1 ) log |α(2) − a| < 2 . a If v2 − u2 6= 0 or v3 − 2u1 6= 0 then V 0 = max{|v1 − u1 |, |v3 − 2u1 |, |v2 − u2 |} > 0

and as

η (2) η (2)

is a unit we conclude a < 103×10

18

log3 a , 3

as in the previous case.

η0 η

= αv1 −u1 and by Lemma 3.2 (3.8) cannot Finally, if v2 = u2 and v3 = 2u1 then hold. The proof of the second assertion is analogous, we only have to change the role of α and α − 1, therefore we omit the details. 2 Theorem 3.1. Let α be a zero of Pa,b (x) and O = Z[α]. 18 If a0 = 103×10 ≤ a + 1 < b < a(1 + log12 a ) then there are only trivial exceptional units in UO . Proof. Let η be an exceptional unit in O. Then there exists an η 0 ∈ UO such that η + η 0 = 1. By Theorem 2.2 the group of units of O is generated by α, α − 1 and α − a. Hence there exist integers ui , vi , 1 ≤ i ≤ 3 such that η = ±αu1 (α − 1)u2 (α − a)u3 and η 0 = ±αv1 (α − 1)v2 (α − a)v3 . We may assume without loss of generality that U = max{|ui |, 1 ≤ i ≤ 3} ≥ V = max{|vi |, 1 ≤ i ≤ 3}. By Lemma 3.1 (3.1) there exists a 1 ≤ j ≤ 4 such that log |η (j) | < −

U log a . 11.7

Case 1. j = 1. As η (j) + η 0(j) = 1 we obtain   U log a < e−1.74 , |1 − η 0(1) | = |η (1) | < exp − 11.7 thus

  U log a log |η 0(j) | < 1.1 exp − 11.7

which means |Λ1 | = |v1 log |α



(1)

| + v2 log |α

(1)

− 1| + v3 log |α

(1)

U log a − a|| < 1.1 exp − 11.7

 . (3.9)

1 for a > 16. If U ≥ V ≥ 25 then the right-hand side of this inequality is less than 8a Hence for (V ≥ 25 and (v1 6= 0 or v3 6= 0)) or (1 ≤ V ≤ 24 and (2v1 6= v3 )), we have 3 U > log3 a by Lemma 3.3 and by Lemma 3.4 a < a0 . If v1 = 0 and v3 = 0, we have

η 0 = (α − 1)v2 therefore η ∈ / UO by Lemma 3.2.

and

− η = (α − 1)v2 − 1,

164

A. Peth˝ o and R. F. Tichy

If 1 ≤ V ≤ 24 and 2v1 = v3 , we have v  α−a 1 and η0 = α−b

 −η =

α−a α−b

v1 (α − 1) − 1,

hence η ∈ / UO by Lemma 3.5. Case 2. j = 2. This case is similar to Case 1, only the role of α and α − 1 has to be changed. 0 0 Case 3. j > 2. Let log |η 0(j ) | = min{log |η 0(k) |, k = 1, . . . , 4}, then log |η 0(j ) | < U log a − 17.9 + 0.47 by Lemma 3.1 (3.2), hence   U log a (j 0 ) + 0.47 . (3.10) | log |η || < 1.1 exp − 17.9 If j 0 ≤ 2, then repeating the argument of Cases 1 and 2 for (3.10) we conclude a < a0 for the non-trivial exceptional units. Finally if j 0 > 2 too, then we obtain k ≤ 2 if log |η (k) | = max{log |η (l) |, l = 1, . . . , 4}. Moreover, log |η (k) | > by the argument of Lemma 3.1. 0 From η + η 0 = 1 we obtain ηη + 1 = |(v1 − u1 ) log |α

and as in Cases 1 and 2 we obtain

− 1| + (v3 − u3 ) log |α(k) − a||     (2U ) log a U log a < 1.1 exp − < 1.1 exp − 11.7 23.4 as |vi − ui | ≤ 2U , and we repeat the argument of cases 1 and 2 for this linear form. 2 (k)

| + (v2 − u2 ) log |α

1 η

U log a 11.7

(k)

4. Thue Equation Let us consider the Thue equation   x 4 = x(x − y)(x − ay)(x − by) − y 4 = u = ±1 y Pa,b y in integers x, y. If y = 0 then only the positive sign is possible on the right-hand side of (1.1) and x = ±1. If y = ±1 and u = −1 then x = 0, y, ay or by, while if u = 1 then x(x − y)(x − ay)(x − by) = 2.

(4.1)

|x(x − y)| = 1 is impossible because y = ±1, thus |x(x − y)| = 2. If |x| = 1, then x and y have opposite sign, hence |x − ay| ≥ a + 1 ≥ 3 and (4.1) does not hold. Finally if |x| = 2, then xy > 0, hence x(x−y) = 2 and (x−ay)(x−by) = 1 which is impossible if 2 ≤ a < b. In the following we may assume y ≥ 2 because if (x, y) is a solution of (1.1), then (−x, −y) is a solution, too. We can rewrite (1.1) as 4 Y

(x − α(i) y) = u.

(4.2)

i=1

Put x − α(i) y = β (i) ∈ Z[α] = O, i = 1, . . . , 4, then β (i) is a unit in O. By Theorem 2.2

On Two-parametric Quartic Families of Diophantine Problems

165

there exist integers u1 , u2 , u3 such that x − α(1) y = β (1) = ±(α(1) )u1 (α(1) − 1)u2 (α(1) − a)u3 .

(4.3)

The following proof is based on a quite standard argument, see Bilu and Hanrot (1996). Lemma 4.1. Let a ≥ 4, (x, y) ∈ Z2 , y ≥ 2 be a solution of (1.1) and 1 ≤ j ≤ 4 such that   (j) x α − = min α(k) − x , 1 ≤ k ≤ 4 . y y Then for u 6= j |yα(j) − x| <

8 0 (α(j) )| × y 3 |Pa,b



1 , 2y

|yα(u) − x| >

|α(u) − α(j) |y 2

(4.4)

and y ≥ a. Proof. For u 6= j we have y|α(u) − α(j) | ≤ 2|x − α(u) y|, which shows the second inequality. The first one in a consequence of 4 4 Y 8 Y 8 0 |α(j) − α(u) | ≤ 3 |x − α(u) y| = 3 . Pa,b (α(j) ) = y u=1 y |x − α(j) y| u=1 u6=j

u6=j

x y

By Lagrange’s theorem and (4.4) is a convergent of the continued fraction expansion of α(j) . Computing the beginning of the continued fraction expansion of α(j) , 1 ≤ j ≤ 4, (1) we can show that y ≥ a. Indeed α(1) = [−1, 1, α2 ] with (1)

α2 =

1 + α(1) 1 = − (1) − 1 > ab − 1 > a, −α(1) α

(1)

thus [α2 ] ≥ a and the third partial quotient is also ≥ a. Similarly (2)

=

[1, α1 ]

α(3)

=

[a − 1, 1, α2 ]

α(4)

=

[b, α1 ]

with α1 = (3)

(4)

ab 1 > > a, 2 −1

(2)

α(2)

α(2) (3)

with α2 = (4)

with α1 =

α(3) − (a − 1) > −1 + a2 (b − a) > a a − α(3)

1 α(4)

−b

>

b2 (b − a) > a. 2 2

By the following lemma, for fixed a “small” solutions cannot exist. Lemma 4.2. Assume that 104 ≤ a + 1 < b ≤ a(1 + log14 a ). Let (x, y) ∈ Z2 be a solution of (1.1) and u1 , u2 , u3 ∈ Z be defined by (4.3). Put U = max{|u1 |, |u2 |, |u3 |}. If y > 1 then log4 a . U> 3

166

A. Peth˝ o and R. F. Tichy

Proof. Let 1 ≤ l, p, q ≤ 4 be distinct integers. In the following we shall frequently use Siegel’s identity: α(l) − α(q) x − α(p) y α(p) − α(q) x − α(l) y − 1 = . α(p) − α(l) x − α(q) y α(p) − α(l) x − α(q) y

(4.5)

Let j = j(x, y) be the index defined in Lemma 4.1. We distinguish four cases according the value of j. Case 1. j = 1. Choosing p = 1, q = 3, l = 4, applying (4.3) and Lemma 4.1 we obtain α(3) − α(1)  α(4) u1  α(4) − 1 u2  α(4) − a u3 − 1 (4) α − α(1) α(3) α(3) − 1 α(3) − a <

1 2 α(4) − α(3) 23 · < 5, · (3) (4) (1) (1) aby 2a α −α (α − α )y

(4.6)

provided a > 32. We obtain (4) α − a α(4) α(4) − 1 α(3) − α(1) < 1 . + u1 log (3) + u2 log (3) + u3 log (3) |Λ1 | = log (4) (1) α −α α α −1 α − a a5 Further α(4) α(4) − 1 α(4) − α(3) α(4) − α(1) < < = 1 + α(3) − α(1) α(3) α(3) − 1 α(3) − 1 because α(1) < 0. As b−a+1 1 2 α(4) − α(3) < < < a−2 4 α(3) − 1 log4 a if a ≥ 8, thus

(3) (1) (4) (4) log α − α + u1 log α + u2 log α − 1 < (2U + 1)2 . (4) (1) (3) (3) α −α α α − 1 log4 a

On the other hand a2 (b − a)2 a2 α(4) − a > ≥ . (3) 2 2 α −a Hence, if u3 6= 0 then

α(4) − a 1 2(2U + 1) − 5 > log a > |u3 | log (3) 4 a α −a log a

and so log4 a log5 a > . 6 3 Thus we may assume u3 = 0 in the following. Rewrite now Λ1 as follows U>

Λ1 = log

α(3) − α(1) α(4) α(4) α(4) − 1 α(3) × (3) + (u1 + u2 − 1) log (3) + u2 log (3) . · (4) (1) α −α α α α − 1 α(4)

We have (α(4) − α(3) )α(1) α(3) − α(1) α(4) = 1 − α(4) − α(1) α(3) α(3) (α(4) − α(1) )

On Two-parametric Quartic Families of Diophantine Problems

and

167

(4) (α − α(3) )α(1) b−a+1 1 1 < (α(4) − α(1) )α(3) < b × ab × (a − 1) < a3 . 8a4

Similarly α(4) − 1 α(3) α(4) − α(3) 2a 2.5 1 < (3) − 1 = (4) (3) < < 2 (4) 2a α −1α α (α − 1) b log4 a(a − 2) a log4 a and α(4) − α(3) 1 α(4) −1= > . (3) a α α(3) If u1 + u2 − 1 6= 0 these inequalities imply α(4) α(3) − α(1) α(4) 2.5|u2 | 2.5U + u − 1| log − |Λ | − log > > |u 1 2 1 α(3) α(4) − α(1) α(3) a log4 a a log4 a 1 9|u1 + u2 − 1| 2 2.5 − 5− 3 > , > 10a a a 3a thus U>

log4 a . 3

Finally, if u1 + u2 − 1 = 0 and u2 6= 0 then (3) (1) (4) (4) (3) 2 log α − α α > |u2 | log α − 1 α − 1 > 1 − 1 > a3 2a2 a5 α(4) − α(1) α(3) α(3) − 1 α(4) a5 which is a contradiction if a ≥ 5. If u3 = 0 and u1 + u2 = 1 and u2 = 0, we have x − α(1) y = ±α(1) , i.e. |y| = 1. Case 2. j = 2. Changing the role of α(1) and α(2) the proof is the same as in case 1, therefore we omit it. Case 3. j = 3. We choose p = 3, q = 1, l = 2 in (4.5), apply (4.3) and Lemma 4.1 and obtain α(3) − α(1)  α(2) u1  α(2) − 1 u2  α(2) − a u3 1 − 1 < 5 , (3) (2) (1) (1) (1) 2a α − α α α −1 α −a if a ≥ 6, hence (2) (2) (2) α α − 1 α(3) − α(1) 1 a − α + u3 log + u1 log (1) + u2 log (1) |Λ3 | = log (3) < , α − α(2) α α − 1 a − α(1) a5 which can be rewritten as (2) (2) (2) α α − 1 α(2) a − α 1 α(3) − α(1) + u3 log + (u1 − u2 ) log (1) + u2 log (1) < . log (3) α − α(2) α α − 1 α(1) a − α(1) a5 We have α(3) − α(1) a − α(1) 1 − 1 < −1= < a−1 a − α(2) α(3) − α(2) α(2) − 1 α(2) · −1= α(1) − 1 α(1)

α(2) − α(1) 2 < a α(3) − α(2) 3 (a − α(1) )(b − α(1) ) −1< a (a − α(2) )(b − α(2) )

(4.7)

168

A. Peth˝ o and R. F. Tichy

and

(2) α ab α(1) > 2 .

Hence, if u1 − u2 6= 0, then 2|u3 | + 3|u2 | + 2 6U ≥ a a (2) (3) α − 1 α(2) − α(1) a − α(2) α + u2 log (1) ≥ log (3) + u3 log α − α(2) α − 1 α(1) a − α(1) 1 ≥ 2|u1 − u2 | log a − 5 > log a, a i.e. U>

log4 a a log a > 6 3

provided a ≥ 4. In the following we may assume u1 = u2 . We rewrite Λ3 as (2) (2) α (α − 1)(α(2) − a) α(3) − α(1) a − α(2) · + u2 log (1) (1) log (3) α − α(2) a − α(1) α (α − 1)(α(1) − a) a − α(2) 1 + (u3 − u2 − 1) log < 5. (1) a−α a An estimation for the constant term leads to (2) (3) (α − α(1) )(a − α(3) ) α − α(1) a − α(2) 3 4 = − 1 (a − α(1) )(α(3) − α(2) ) < a3 (a − 2)(b − a) < a4 , α(3) − α(2) a − α(1) which implies

(1) (2) u2 log b − α + (u3 − u2 − 1) log a − α < 5 . b − α(2) a − α(1) a4

If u2 = 0, then u3 = 1 by (4.7), thus |y| = 1, hence we may assume u2 6= 0. In this case we obtain (1) log b−α u3 − u2 − 1 1 5 b−α(2) + < 2 < a−α(2) a−α(2) 4 u 2a |u2 | 2 a |u2 | log a−α(1) log a−α(1) 2 −1 is a convergent of log b−α / log a−α by provided a ≥ 20. If |u2 | < a2 then u3 −u u2 b−α(2) a−α(1) Lagrange’s theorem. The first partial quotient is −1, the second can be estimated from below as   (1) (2) 9 log a−α log a−α (2) log4 a (1) a−α 10(a−1) a−α   = > > |u2 | ≥ (1) a−α(2) (2) −α(1) ) 3(b−a) 3 log b−α log 1 − (b−a)(α b−α(2) a−α(1) 2b(a−2) (b−α(2) )(a−α(1) ) (1)

 because a + 1 < b ≤ a 1 +

1 log4 a

 .

(2)

On Two-parametric Quartic Families of Diophantine Problems

169

Case 4. j = 4. Choosing p = 4, q = 1, l = 2 in (4.5) we obtain (2) (2) α α − 1 α(4) − α(1) a − α(2) 1 + u1 log (1) + u2 log (1) + u3 log |Λ4 | = log (4) < 5 (2) (1) α −α α α −1 a−α a and u1 = u2 by the same argument as in Case 3. We now rewrite Λ4 as follows: Λ4 = log As

α(4) − α(1) b − α(2) b − α(1) a − α(2) + (u + 1) log + (u − u ) log . 2 3 2 α(4) − α(2) b − α(1) b − α(2) a − α(1)

(2) (4) 2 3 (α − α(1) )(α(4) − b) α − α(1) b − α(2) 2 = < 2 b (b−a) < 3 − 1 (b − α(1) )(α(4) − α(2) ) α(4) − α(2) b − α(1) (b − 2)b a4

we obtain

(1) (2) (u2 + 1) log b − α + (u3 − u2 ) log a − α < 5 . b − α(2) a − α(1) a4

If u2 = −1, then u3 = u1 = −1 too, then x − αy = ±(α(α − 1)(α − a))−1 = ±(α − b), i.e. |y| = 1. 4 Hence u2 6= −1 and we obtain, as in Case 3, either U > log3 a or u2 + 1 = ±1, u3 − u2 = ∓1. If u2 + 1 = 1 then u2 = u1 = 0 and u3 = −1, i.e. 1 = ±α(α − 1)(α − b) = x − αy α−a which is impossible, because α is a quartic algebraic number. Finally, if u2 + 1 = −1 then u2 = u1 = −2 and u3 = −3 and we have ±

x − αy =

1 1 (α − b)2 1 , = α2 (α − 1)2 (α − a)3 α−a

hence −α2 y + α(x + ay) − ax = α2 − 2bα + b2 , i.e. y = −1. 2 Lemma 4.3. Let 1040 ≤ a + 1 < b < a(1 + log14 a ), (x, y) ∈ Z2 be a solution of (1.1) and u1 , u2 , u3 be defined by (4.3). Put U = max{|u1 |, |u2 |, |u3 |}. If y > 1 then 1 |Λj | < − U log a, 5 where j = j(x, y) is the index defined in Lemma 4.1 and |Λj | is the linear form defined in Lemma 4.2. Proof. We prove this lemma only for j = 1, because the proof for j = 2, . . . , 4 is analogous. By (4.4) we have 8 8 − 3 < β (1) < 3 , a a hence 8 x 8 α(1) − 3 < < α(1) + 3 , a y a thus for i 6= 1

 y α

(1)

−α

(i)

8 − 3 a




Lihat lebih banyak...

Comentários

Copyright © 2017 DADOSPDF Inc.