Phd defense 2014 ppt

August 21, 2017 | Autor: S. Sunderrajan | Categoria: Image Processing, Machine Learning
Share Embed


Descrição do Produto

Distributed  Tracking  and  Re-­‐iden3fica3on   in  a  Camera  Network     Santhoshkumar  Sunderrajan   Advisor:  Prof.  B.  S.  Manjunath    

Vision  Research  Lab,   Department  of  Electrical  and  Computer  Engineering,   University  of  California,  Santa  Barbara.      

Wide-­‐Area  Camera  Networks  

•  Surveillance   •  Crowd  Analy=cs  for  Business  Intelligence      

Thesis  Focus   Object  Tracking  in  Camera  Networks   Overlapping  

Object  Tracking  is  difficult  and  challenging  

 Irregular  illumina=on  changes  

 Complex  appearance  and  mo=on  changes  

 Occlusions  cause  confusion  

Automated  Analysis  of  Camera  Networks  

Mul3-­‐Camera  Tracking   Single  Camera   Tracking   ICIP-­‐13  

Overlapping   Views   Thesis  Outline  

ICDSC-­‐13  (Qualifiers)   Journal  (Today)    

Non-­‐ Overlapping   Views   ICDSC-­‐13  (Qualifiers)   Journal  (Today)    

Contribu3ons   •  Single  Camera  Tracking   – 

Robust  Tracking  by  Detec=on  (ICIP’13)  

•  Mul3-­‐Camera  Tracking  with  Overlapping  Views   –  – 

Mul=ple  View  Discrimina=ve  Appearance  Modeling  (ICDSC’13,   Excellent  Paper  Award)   Robust  Mul=-­‐Camera  Tracking  with  Appearance  and  Spa=al   Contexts  (to  be  submiQed  to  PAMI)  

•  Mul3-­‐Camera  Object  Search  and  Retrieval  with   Non-­‐Overlapping  Views   –  – 

Context-­‐Aware  Graph  Modeling  for  Object  Search  and  Retrieval   (ICDSC’13)   Context-­‐Aware  Hypergraph  Modeling  for  Summariza=on  (To  be   submiQed)  

Object  Tracking  

•  Associate  objects  from  one  frame  to  another  frame   •  Object  state  “xt”  at  =me  “t”  is  represented  by:   –  Loca=on  (xt,  yt)     –  Scale  (st)  

Tracking  with  Overlapping  Views   •  Es=mate  object  loca=on  on  both  the  image  plane   (xt)  and  the  common  ground  plane  (xt(g))   consistent  across  mul3ple  camera  views  

xt  

xt(g)  

Ground   Plane  

Assump3ons  

•  Ground  plane  Homography  is  pre-­‐computed   •  Cameras  are  3me  synchronized   •  Object  associa3on  across  mul3ple  cameras  are  known  

Related  Works   •  Mul=camera  People  Tracking  with  a  Probabilis=c   Occupancy  Map  (Fleuret  et  al.  PAMI’09)   –  Dynamic  programming  with  simple  color  based   appearance  modeling  for  global  trajectory  es=ma=on   (Centralized)  

•  Distributed  Mul=-­‐target  Tracking  in  a  Self-­‐ configuring  Camera  Network  (Soto  et  al.  CVPR’08)   –  Consensus  Filtering  on  the  ground  plane  for  trajectory   es=ma=on  (Distributed)  

Perform  es=ma=on  in  the  common  ground  plane  

Tracker  Failure  

Ground   Plane  

Inaccurate  ground  plane  fusion  due  to  outliers    

Observa3ons   •  Objects  in  a  given  scene  exhibit  similar  mo=on   paQerns   –  (1)  Leveraging  Contextual  Informa=on  to  guide  the   ground  plane  fusion  to  reject  outliers    

•  Feedback  from  the  ground  plane  fusion  could  be   used  to  improve  image  plane  tracking   –  (2)  Ac=ve  Collabora=on    

1.  Leveraging  Contextual  Informa3on   Loca=on  and  appearance  of  other  co-­‐occurring  objects      

Rela=ve  distances  and  appearances  vary  similarly    

1.  Leveraging  Contextual  Informa3on   Scene  informa=on:  e.g.,  entry  and  exit  points,   obstacles    

Exit  Point  

Obstacle  

2.  Ac3ve  Collabora3on  

Ground Plane

Closed  loop  interac3on  between  image  plane   and  ground  plane  trackers  

c=1  

Nota3ons  

c=N  

1:t  

N      –  Number  of  cameras   t        –  Time  instance   i,j    –  Object  indices   c  –  Camera  index   z      –  Image  plane  measurements   x      –  Object  es=mate  on  image/ground  planes    

1:t  

Global  Centralized  Tracking   •  Es=mate  the  object  loca=on  given  the   measurements  from  all  the  cameras  

Object  Es=mate  

Measurements  from  all  the   cameras  

•  Direct  maximiza=on  of  the  objec=ve  func=on,  e.g.,   MiQal  IJCV’03,  Kim  ECCV’06  Fleuret  PAMI’09,  Khan   PAMI’09,  Eshel  IJCV’10,  Berclaz  PAMI’11    

Modeling  Assump3ons  for  Distributed  Tracking   No  raw  image  data  is  transferred    

Object   Es=mate  

Measurements   from  camera   “C”  alone  

We  perform  independent  es3ma3on  for  every   object  “i”  

Bayesian  Formula3on   •  Assump=ons   –  Measurement  of  object  “i”  at  =me  “t”  is  condi=onally   independent  of  measurements  from  =me  “1:t-­‐1”   given  the  object  es=mate  at  ground  plane   –  Object  es=mate  at  “t”  do  not  depend  on   measurements  of  other  objects  (i≠j)  at  =me  “t”  

Likelihood  Modeling   An  Appearance  based   Likelihood  Model  

Ground  Plane  Posterior   Density  

Solving  MAP  Es3ma3on  from  t-­‐1  to  t  

•  MAP  es=ma=on  using  Par=cle  Filters   –  Markov  Chain  Monte  Carlo   –  Generalizes  for  Non-­‐linear  and  Non-­‐Gaussian  

Par3cle  Filters   •  Let  Xt  =  [  xt,  yt,  st  ]  be  the  object   state  and  Zt  be  the   measurement  

R-particles

t  

  •   In  Sequen3al  Importance   Resampling  par=cle  filters,  the   posterior  distribu=on  is   approximated  by  a  set  of  “R”   weighted  par=cles:        

Update  

Resample  

Par3cle  Filter  Based  Mul3-­‐View  Tracking  

•  Given  a  par=cle  set  from  =me  “t-­‐1”:  

–  Predict  the  par=cle  set  at  =me  “t”  using  the  proposal   distribu=on  (assumed  to  Gaussian)   –  At  =me  “t”         Update  par=cle     Weights  with     Appearance  Model      

 

  Update  Appearance     Model  with  Context    

  Ground  Plane  Fusion   With    Spa=al  and  Scene     Contexts    

Par=cle  State     Predic=on  from     =me t-1

Update  Par=cle     weight  with    classifier  Ht1,i      

   Trajectory          Database      

 

  Update  classifier     Ht1,i using    Appearance  Context    

 

Update   Par=cle  Weight  with    Ground  Plane     Posterior  Density  

Camera 1 Share Weak Classifiers

Camera N

network channel

 

  Update  classifier     HtN,i using    Appearance  Context     Par=cle  State     Predic=on  from     =me t-1

 

Update  Par=cle     weight  with  classifier    HtN,i    

Update   Par=cle  Weight  with    Ground  Plane     Posterior  Density  

    ADMM  consensus    with  spa=al  Context     for  Ground  Plane    Posterior  Density    Es=ma=on      

Share Average Particle State     ADMM  consensus    with  spa=al  Context     for  Ground  Plane    Posterior  Density    Es=ma=on          Trajectory          Database      

Par=cle  State     Predic=on  from     =me t-1

Update  Par3cle     weight  with    classifier  Ht1,i      

   Trajectory          Database      

 

  Update  classifier     Ht1,i using    Appearance  Context    

 

Update   Par=cle  Weight  with    Ground  Plane     Posterior  Density  

Camera 1 Share Weak Classifiers

Camera N

network channel

 

  Update  classifier     HtN,i using    Appearance  Context     Par=cle  State     Predic=on  from     =me t-1

 

Update  Par3cle     weight  with  classifier    HtN,i    

Update   Par=cle  Weight  with    Ground  Plane     Posterior  Density  

    ADMM  consensus    with  spa=al  Context     for  Ground  Plane    Posterior  Density    Es=ma=on      

Share Average Particle State     ADMM  consensus    with  spa=al  Context     for  Ground  Plane    Posterior  Density    Es=ma=on          Trajectory          Database      

Appearance  Modeling   Ensemble  classifier  is  used  for  learning  discrimina=ve   appearance  model   Posi.ve  Examples  

 

Nega.ve  Examples  

Histogram  of  Oriented  Gradients  and  LAB  color  pixels  

Appearance  Weigh3ng   Par3cles  

Confidence  Map  

Par=cle  weights  computed  based  on  the  classifier   response  

Appearance  Context  

Appearance  of  co-­‐occurring  objects  is  helpful  in   learning  a  beQer  appearance  model  

Discrimina3ve  Appearance  Context  

Use  highly  confident  posi=ve  examples  of  co-­‐occurring   objects  as  nega=ve  examples  for  the  object  of  interest  

Missing  Features  

Exploit   Mul3-­‐view   appearance   informa3on  

t  

t+1  

Objects  undergo  complex  appearance  (shape)  changes   between  frames  

Exploi3ng  Mul3-­‐View  Appearance   Camera  1  

Camera  2  

Share  best  performing  weak  classifiers  across   mul=ple  views  

Par=cle  State     Predic=on  from     =me t-1

Update  Par=cle     weight  with    classifier  Ht1,i      

   Trajectory          Database      

 

  Update  classifier     Ht1,i using    Appearance  Context    

 

Update   Par=cle  Weight  with    Ground  Plane     Posterior  Density  

Camera 1 Share Weak Classifiers

Camera N

network channel

 

  Update  classifier     HtN,i using    Appearance  Context     Par=cle  State     Predic=on  from     =me t-1

 

Update  Par=cle     weight  with  classifier    HtN,i    

Update   Par=cle  Weight  with    Ground  Plane     Posterior  Density  

    ADMM  consensus    with  spa3al  Context     for  Ground  Plane    Posterior  Density    Es3ma3on      

Share Average Particle State     ADMM  consensus    with  spa3al  Context     for  Ground  Plane    Posterior  Density    Es3ma3on          Trajectory          Database      

Context-­‐Aware  Distributed  Consensus   •  Enforces  agreement  of  the   ground  plane  es=mate  across   cameras  

Ground   Plane  

Dynamic  Scene  Context   C5  

C5  

C3  

 

C4 C1  

C6  

C3  

C2  

 

C4

C1  

C6  

C2  

Forces  ground  plane  consensus  es=mate  to  be  closer   to  the  predicted  loca3on  based  on  scene  dynamics    

Sta3c  Scene  Context  

Closest  Exit  Loca3on  

#exit  zones  

Guides  the  ground  plane  consensus  es=mate   towards  the  closest  exit  loca3ons  

Spa3al  Context  

#co-­‐occurring   objects  

Rela3ve  distances  between  co-­‐occurring  objects  to  be   consistent  

Context-­‐Aware  Distributed  Consensus  

Solve  the  consensus  cost  func=on  using  Alterna=ng  Direc=on   Method  of  Mul=pliers  (ADMM)   Boyd,  S.,  Parikh,  N.,  Chu,  E.,  Peleato,  B.,  &  Eckstein,  J.  (2011).  Distributed  op=miza=on  and   sta=s=cal  learning  via  the  alterna=ng  direc=on  method  of  mul=pliers.  Founda=ons  and  Trends®   in  Machine  Learning,  3(1),  1-­‐122.  

Ac3ve  Feedback   •  Ground  plane  Kalman  filter  is   updated  using  the  consensus   es3mate   •  Par3cles  are  re-­‐weighted  using   the  posterior  density  of  Kalman   Filter   •  Final  es3mate  (bounding  box)   on  the  image  plane  is  obtained   by  averaging  par3cles  

Ground   Plane  

Datasets  

•  Algorithms  evaluated  on  outdoor  sequences   (Kirby),  PETS-­‐2009  and  indoor  sequences  (HFH)   •  Videos  (640x480)  captured  at  a  variable  frame  rate   (~20  FPS)  

Indoor  Sequences   Proposed  

Mean  Shi_  

Struck  

No  Scene  Informa=on  

Mul3ple  Instance   Learning  

Outdoor  Sequences  

View  2  

View  1  

Only   Appearance  

Online  Adaboost  

Mul3ple  Instance   Learning  

With  Ground  Plane  Fusion  

PETS-­‐2009  Sequences   Appearance  Based  

Proposed  

No  Spa=al-­‐Context  

Distributed  Filtering  Based  Tracker   (PETS-­‐2009  Sequences)   Algorithm  

MT  

PT  

ML  

IDS  

MOTA   MOTP  

Proposed  

5  

0  

0  

0  

100  

99.51  

MTIC  

1  

4  

0  

0  

45  

58.28  

ICF-­‐NN  

1  

4  

0  

0  

45  

58.27  

JPDA-­‐KCF  

1  

4  

0  

0  

45  

55.58  

CLEAR-­‐MOT   MT              -­‐  Mostly  Tracked   PT                -­‐  Par=ally  Tracked   ML              -­‐  Mostly  Lost   IDS            -­‐  ID  Switches   MOTA  -­‐  Mul=ple  Object  Tracking  Accuracy   MOTP  -­‐    Mul=ple  Object  Tracking  Precision  

PETS-­‐2009  Sequences  

Sta.c  scene  context  forms   the  weakest  constraint    

xity   e l p m al  Co n o . uta ses   a e r c Comp in  

Evalua3on  Metrics   Bgt  

Bp  

•  RMS  pixel  error  and  VOC  detec=on  scores  are  used  for   comparing  single  object  appearance  based  trackers  

Outdoor  Sequences   Algorithms  

OAB  

OAB-­‐PF  

MS  

MIL  

MIL-­‐PF  

Struck  

Proposed  

RMS  

33  

36  

57  

36  

21  

16  

8  

VOC  

0.3  

0.31  

0.15  

0.39  

0.43  

0.51  

0.69  

Indoor  Sequences   Algorithms  

OAB  

OAB-­‐PF  

MS  

MIL  

MIL-­‐PF  

Struck  

Proposed  

RMS  

16  

11  

18  

17  

14  

22  

9  

VOC  

0.52  

0.54  

0.45  

0.49  

0.56  

0.49  

0.64  

PETS-­‐2009   Algorithms  

OAB  

OAB-­‐PF  

MS  

MIL  

MIL-­‐PF  

Struck  

Proposed  

RMS  

63  

128  

93  

92  

128  

104  

16  

VOC  

0.38  

0.1  

0.22  

0.4  

0.1  

0.2  

0.66  

Distributed  Filtering  Based  Tracker   •  STRUCK  tracker  is  used  to  generate  measurements   on  the  image  plane   •  Ground  plane  measurements  for  other  mul=ple   camera  trackers  are  obtained  using  a  pre-­‐ computed  homographic  transforma=on   (Outdoor  Sequences)   Algorithm  

Mean  Error  (m)  

Error  Standard   Devia3on  (m)  

Proposed  

0.31  

0.45  

ICF  

11.3  

1.8  

GKCF  

11.7  

4.7  

KCF  

11.3  

1.8  

CKF  

11.2  

1.8  

Discussion   •  A  distributed  tracking  algorithm  with  Ac=ve  Collabora=on   •  Proposed  mul=-­‐camera  tracker  takes  approximately  1  second   per  frame  with  MATLAB  implementa=on  on  a  machine  with   8GB  RAM  and  2.67  GHZ  processor   •  Proposed  approach  sends  0.5kB  of  data  per  object  per  frame  

Image  Plane  Tracking   Image  Plane  Tracking   Image  Plane  Tracking   Image  Plane  Tracking  

Ground   Plane   Tracking  

Tracking  with  Non-­‐Overlapping  Views  

•  Associate  objects  between  two  different  views   –  Appearance   –  Spa=al-­‐Temporal  Dynamics  

Related  Works  

•  KnightM:  A  Real  Time  Surveillance  System  For   Mul=ple  Overlapping  and  Non-­‐overlapping   Cameras  (Javed  et  al.  CVPR’05)   –  Associates  global  trajectories  using  appearance  and   spa=al  informa=on  

•  Unsupervised  Salience  Learning  for  Person  Re-­‐ iden=fica=on  (Zhao  et  al.  CVPR’13)   –  Finds  salient  regions  in  image  patches  and  performs   pairwise  similarity  matching    

•  Clothing  Co-­‐segmenta=on  for  Recognizing  People   (Gallager  et  al.  CVPR’08)   –  Performs  clothing  segmenta=on    

Challenges   •  Appearance  based  associa=on   –  Viewpoint,  pose  and  ligh=ng  changes  

•  Clothing  based  associa=on   –  Almost  impossible  to  parse  clothing   configura=on  in  surveillance  videos  

•  Spa=al-­‐Temporal  based   associa=on     –  Needs  complete  knowledge  about   the  network  

View  1  

View  2  

Observa3ons  

Color  drius  due  to  illumina=on/ligh=ng  changes  

Contribu3ons   •  Color  driu  aware  graph  matching  framework  for   associa=ng  objects  

Assump3ons   •  No  live  streaming  of  data  available   •  Ground  truth  object  associa=ons  along  with  =mestamps   are  available   •  Cameras  could  perform  primi=ve  tasks   TS  =  1000  

TS  =  1020  

Color  Histogram  Features   •  A  mul=-­‐dimensional  LAB  space  color-­‐ histogram  (D=288)   –  Patch  size  of  10x10  on  a  grid  with  step   size  4  pixels   –  Down-­‐sampled  images  into  3-­‐levels   –  Average  pool  the  L2-­‐normalized  dense   color  histograms  

Offline  Learning  of  Mul3-­‐view  Color-­‐Dri_   •  At  the  offline  training  stage,  color  histogram   associa=ons  (zi,  zj)  are  known  

(ziTorso,  zjTorso)    

(ziLegs,  zjLegs)    

Training  Random  Forest  Classifier   Nega.ve  Examples  

(ziTorso,  zjTorso)    

(ziLegs,  zjLegs)    

Posi.ve  Examples  

(ziTorso,  zjTorso)    

(ziLegs,  zjLegs)    

Color-­‐Dri_  Score   •  Given  any  two  color  histograms  (zi,  zj)  ,  the  color-­‐ driV  score  is  given  by  

Color   Histogram  

#Trees  

Tree’s   Posterior   Score  

Wide Area Camera Network

Camera 1

Transfer 1   Object Records

Human Network Analyst  Color-­‐dri_  Aware    Hypergraph     Modeling  

2  

3  

Camera 2

Query (e.g., finding object instances in camera 1 and 4 between time 10am and 10:02am)

Hypergraph  based    ranking.     4   Camera 3

5   Transfer

  Visualiza=on     Module    

Video Frames

Camera  1  at     Time   10:01:25am  

7  

Camera  2  at     Time   10:01:45am  

6  

Network Camera 10 Camera Network

Channel

Camera  4  at     Time   10:01:35am  

DB  

DB  

DB  

Data Storage Units

Snapshots

1.  Detec3on  and  Tracking   •  A  mean-­‐shiV  with  background  subtrac3on  based   tracker  is  used  for  detec=on/tracking   •  Remote  cameras  send  abstracted  record  to  the   central  node  

Camera ID

Object ID

Timestamp

Object Bounding Box

Object Image Data

2.  Observa3on  Modeling  

•  At  the  central  node,  rela=onship  between  tracklets   “i”  and  “j”  is  computed  based  on   –  Appearance  (wijAppearance)   –  Spa=al-­‐Temporal  (wijSpa=al-­‐Temporal)  

Appearance  Weigh3ng  

wijAppearance  

Superpixel  Graph  Representa3on   •  At  the  tes=ng  stage,  object  is  over-­‐segmented   using  SLIC  superpixel  segmenta=on   View  1  

View  2  

Radhakrishna  Achanta,  Appu  Shaji,  Kevin  Smith,  Aurelien  Lucchi,  Pascal  Fua,  and  Sabine  Süsstrunk,  SLIC   Superpixels  Compared  to  State-­‐of-­‐the-­‐art  Superpixel  Methods,  IEEE  Transac=ons  on  PaQern  Analysis  and   Machine  Intelligence,  vol.  34,  num.  11,  p.  2274  -­‐  2282,  May  2012.  

Color-­‐dri_  Aware  Graph  Matching  

•  Given  two  superpixel  based  graphs  from  two  different  views   •  Match  segments  using  Balanced  Graph  Matching  

Graph   Matching   Results  

Global  Affinity   Matrix  

Affine   Constraint    

Node-­‐to-­‐Node  Similarity  

k,  k’,  k1,  k2  –  Superpixel  Indices   Edge-­‐to-­‐Edge  Similarity   Cour,  T.,  Srinivasan,  P.,  &  Shi,  J.  (2007).  Balanced  graph  matching.  Advances  in  Neural   Informa=on  Processing  Systems,  19,  313.  

Node-­‐to-­‐Node  Similarity  

Likelihood  of  a  color  histogram   geJng  driKed  

Edge-­‐to-­‐Edge  Similarity    

Similar  Feature   Difference  Vectors   get  a  larger  score  

Feature Difference Vector between two nodes

Appearance  Weigh3ng  

•  Given  the  pairwise  graph  associa=ons  (k,k*),  the   appearance  weigh=ng  score  is  given  by  

Color-­‐dri_  Score    x     Histogram  Intersec3on  

#edges  

Computa=onal  complexity  O(mimj)  

Example  Matches  

Spa3al-­‐Temporal  Weigh3ng  

l a r o p m   e T -­‐ l a 3 a Sp w ij

Building  Spa3al-­‐Temporal  Topology   Model     •  Let  td  be  the  =me  delay  for  an  object  to  travel  across  any   two  loca=ons  (li,  li*)  between  two  cameras   •  The  training  samples  (y  =[li,  li*,  td])  are  clustered  using  GMM  

li  

td  

li*  

Spa3al-­‐Temporal  Topology  Weigh3ng  

weights   mean  

co-­‐variance  

Wide Area Camera Network

Camera 1

Transfer 1   Object Records

Human Network Analyst  Color-­‐dri_  Aware    Hypergraph     Modeling  

2  

3  

Camera 2

Query (e.g., finding object instances in camera 1 and 4 between time 10am and 10:02am)

Hypergraph  based    ranking.     4   Camera 3

5   Transfer

  Visualiza=on     Module    

Video Frames

Camera  1  at     Time   10:01:25am  

7  

Camera  2  at     Time   10:01:45am  

6  

Network Camera 10 Camera Network

Channel

Camera  4  at     Time   10:01:35am  

DB  

DB  

DB  

Data Storage Units

Snapshots

2.  Hypergraph  Representa3on   •  Hypergraph  accounts  for  local   grouping  and  models  higher  order   rela3onship   •  Network  wide  graph,  G=(V,  E,  W)  

SpatialTemporal

 V  –  Vertex  (Object/tracklet)    E    -­‐  Edge    W  -­‐  Diagonal  Hyperedge  weight  

•  A  pair  of  Hyperedges  created   per  vertex   EApp    -­‐  Appearance  based  Hyperedges   EST        -­‐  Spa=al-­‐Temporal  based  Hyperedges      

Appearance

3.  Ini3al  Label  Vector  Construc3on  

Object  Searching   “Find  all  objects  related  to  the  selected  object  from   camera  8  at  3me  9:33:02am”    

- A  tracklet/object  of  interest  is  chosen  as  query  to  the   system   - An  ini=al  label  vector  is  defined  i.e.,  ri  =  1  

 

.   .   .   0   0   1   0   0   .   .  

Wide Area Camera Network

Camera 1

Transfer 1   Object Records

Human Network Analyst  Color-­‐dri_  Aware    Hypergraph     Modeling  

2  

3  

Camera 2

Query (e.g., finding object instances in camera 1 and 4 between time 10am and 10:02am)

Hypergraph  based    ranking.     4   Camera 3

5   Transfer

  Visualiza=on     Module    

Video Frames

Camera  1  at     Time   10:01:25am  

7  

Camera  2  at     Time   10:01:45am  

6  

Network Camera 10 Camera Network

Channel

Camera  4  at     Time   10:01:35am  

DB  

DB  

DB  

Data Storage Units

Snapshots

4.  Hypergraph  Based  Ranking  

•  Graph  based  semi-­‐supervised  ranking  algorithm   –  nodes  sharing  many  incidental  hyperedges  are   guaranteed  to  obtain  similar  labels  

Ranking   Scalar  factor   Scores   signifying  the  

Ini=al  Label   L=I  –  Θ  is  the   Vector  

contribu=on   of  ini=al  label   Hypergraph   Laplacian   vector  

Huang,  Y.,  Liu,  Q.,  Zhang,  S.,  &  Metaxas,  D.  N.  (2010,  June).  Image  retrieval  via  probabilis=c   hypergraph  ranking.  In  Computer  Vision  and  PaQern  Recogni=on  (CVPR),  2010  IEEE  Conference   on  (pp.  3376-­‐3383).  IEEE.  

Bike  Path  Dataset  

•  A  wide  area  camera  network  consis=ng  of  10  cameras   (Cisco  wireless-­‐G  WVC2300)  

Test  Bed  

Searching  Results  

Cam  ID  8  

Cam  ID  7  

Searching  Results  

Cam  ID  2  

Cam  ID  3  

ICDSC’13  

By  averaging   Appearance  and  ST   weights  

Number  of  results   returned  

VIPeR  Dataset   •  Benchmark  dataset  for  Person  Re-­‐iden=fica=on   •  Contains  632  pairs  of  person  images   •  316  pairs  used  for  training  and  316  pairs  used  for   tes=ng   •  Cumula3ve  Matching  Curve  (CMC)  for  comparing   person  re-­‐iden=fica=on   Shows percentage of queries ranked accurately at different ranking levels Gray, D., Brennan, S., & Tao, H. (2007, October). Evaluating appearance models for recognition, reacquisition, and tracking. In IEEE International workshop on performance evaluation of tracking and surveillance.

Person  Re-­‐iden3fica3on  Results  

Re-­‐iden3fica3on  results  at  different  ranks  

Marginal   improvements  due  to   learning  color  driK  

Discussion  

•  Color  driV  aware  appearance  matching   •  Hypergraphs  to  encode  contextual  informa3on   •  Extensive  Experimenta3on  on  real-­‐world  large  scale   distributed  camera  networks  

Summary   •  Distributed  Analysis  of  Big  Data   •  Exploit  the  Contextual  Informa=on  to  improve  the   robustness   – Object  tracking  with  overlapping  views   – Object  search  and  retrieval  with  non-­‐overlapping   views  

Future  Works   •  Object  Tracking   – Mul3-­‐view  tracking  by  detec3on  using  human   detector  responses   – Crowd  Sourced  object  tracking  with   measurements  obtained  from  mul3ple  object   tracking  algorithms   •  Object  Search  and  Retrieval   – Human  mo3vated  weakly  supervised  saliency   learning  for  person  re-­‐iden3fica3on  

Publications

Journals:   •  Sunderrajan,  S.,  Jagadeesh,  V.,  Manjunath,  B.  S.  (2014).  Robust  Mul=ple  Camera  Tracking  with  Spa=al  And  Appearance  Contexts,  IEEE   PaQern  Analysis  and  Machine  Intelligence  (to  be  submiked).   •   Sunderrajan,  S.,  Manjunath,  B.  S.  (2014)  Context-­‐Aware  Hypergraph  Modeling  for  Summariza=on  (to  be  submiked).   •   Thakoor*,  N.,  Sunderrajan*,  S.,  Bhanu,  B.,  Manjunath,  B.S.  (2014).  Tracking  People  in  Camera  Networks,  IEEE  Computer  (*equal   contribu3on  authors).   •   Kuo,  T.,  Ni,  Z.,  Sunderrajan,  S.,  Manjunath,  B.  S.  (2014).  ,  Calibra=ng  a  Wide-­‐Area  Camera  Network  with  Non-­‐Overlapping  Views  using   Mobile  Devices,  ACM  Transac=ons  on  Sensor  Networks.     •  Xu,  J.,  Jagadeesh,  V.,  Ni,  Z.,  Sunderrajan,  S.,  Manjunath,  B.  S.  (2013).  Graph-­‐based  Topic-­‐focused  Retrieval  in  Distributed  Camera  Network,   IEEE  Transac=ons  of  Mul=media.       Conference  Proceedings:   •  Summariza=on-­‐Driven  Ac=vity  Analysis  in  Camera  Networks  (in  prepara3on)   •  Sunderrajan,  S.,  Manjunath,  B.  S.  (2013).  Mul=ple  View  Discrimina=ve  Appearance  Modeling  with  IMCMC  for  Distributed  Tracking,  ACM/ IEEE  Interna=onal  Conference  on  Distributed  Smart  Cameras  (Excellent  Paper  Award).     •  Kuo,  T.,  Sunderrajan,  S.,  Manjunath,  B.  S.  (2013).  Camera  Alignment  using  Trajectory  Intersec=ons  in  Unsynchronized  Videos,  IEEE   Interna=onal  Conference  on  Computer  Vision.     •  Sunderrajan,  S.,  Xu,  J.,  Manjunath,  B.  S.  (2013).  Context-­‐Aware  Graph  Modeling  for  Object  Search  and  Retrieval  in  a  Wide  Area  Camera   Network,  ACM/IEEE  Interna=onal  Conference  on  Distributed  Smart  Cameras.     •  Sunderrajan,  S.,  Karthikeyan,  S.,  Manjunath,  B.  S.  (2013).  Robust  Mul=ple  Object  Tracking  by  Detec=on  with  Interac=ng  Markov  Chain   Monte  Carlo,  IEEE  Interna=onal  Conference  on  Image  Processing.     •  Ni,  Z.,  Sunderrajan,  S.,  Rahimi,  A.,  Manjunath,  B.  S.  (2010).  Distributed  par=cle  filter  tracking  with  online  mul=ple  instance  learning  in  a   camera  sensor  network,  IEEE  Interna=onal  Conference  on  Image  Processing.     •  Ni,  Z.,  Sunderrajan,  S.,  Rahimi,  A.,  Manjunath,  B.  S.  (2010).  Par=cle  filter  tracking  with  online  mul=ple  instance  learning,  IEEE  Interna=onal   Conference  on  PaQern  Recogni=on.     Workshop:   •  Sunderrajan,  S.,  Pourian,  N.,  Hasan,  M.,  Zhu,  Y.,  Manjunath,  B.S.,  Chowdhury,  A.R.,  Discrimina=ve  Reranking  based  Video  Object  Retrieval   (2012).  TRECVID  Workshop  Technical  Report.     •  Hasan,  M.,  Zhu,  Y.,  Sunderrajan,  S.,  Pourian,  N.,  Manjunath,  B.S.,  Chowdhury,  A.R.,  Ac=vity  Analysis  in  Unconstrained  Surveillance  Videos   (2012).  TRECVID  Workshop  Technical  Report.    

Research  Contribu3ons  

•  Datasets  

–  Indoor  Mul3-­‐Camera  Tracking  (HFH  )  with  5  Cameras   –  Outdoor  Mul3-­‐Camera  Tracking  (Kirby)  with  6  Cameras   –  10  Cameras  Bike  Path  Object  Search  and  Retrieval  

•  Open  Source  Code   –  Framework  for  Mul=-­‐Camera  Tracking  (C++)  

   

 

Programming  Language  

#lines  of  code  

C++  

~12k  

Matlab  

~30k  

hQp://vision.ece.ucsb.edu/~santhosh/souware.html    

Acknowledgment   •  •  •  •  • 

Prof.B.S.Manjunath  (Chair)   Prof.Kenneth  Rose   Prof.MaQhew  Turk   Prof.Michael  Liebling   Fellow  Lab  Members  

Lihat lebih banyak...

Comentários

Copyright © 2017 DADOSPDF Inc.