

 Categoria
 Top Downloads

Entrar
Registrar
Recobrar

Pesquisar

	
Categoria

	
Top Downloads

	
	
Entrar

	
Registrar

Pesquisar

	
Home

	Querying XML documents made easy: Nearest concept queries

 Querying XML documents made easy: Nearest concept queries

June 15, 2017 | Autor: Menzo Windhouwer | Categoria: Data Engineering

 BAIXAR PDF

 Share
 Embed

 Denunciar este link

Descrição do Produto

Querying XML Documents Made Easy: Nearest Concept Queries Albrecht Schmidt

Martin Kersten Menzo Windhouwer CWI Kruislaan 413 NL-1098 SJ Amsterdam The Netherlands

Abstract Due to the ubiquity and popularity of XML, users often are in the following situation: they want to query XML documents which contain potentially interesting information but they are unaware of the mark-up structure that is used. For example, it is easy to guess the contents of an XML bibliography file whereas the mark-up depends on the methodological, cultural and personal background of the author(s). Nonetheless, it is this hierarchical structure that forms the basis of XML query languages. In this paper we exploit the tree structure of XML documents to equip users with a powerful tool, the meet operator, that lets them query databases with whose content they are familiar, but without requiring knowledge of tags and hierarchies. Our approach is based on computing the lowest common ancestor of nodes in the XML syntax tree: e.g., given two strings, we are looking for nodes whose offspring contains these two strings. The novelty of this approach is that the result type is unknown at query formulation time and dependent on the database instance. If the two strings are an author’s name and a year, mainly publications of the author in this year are returned. If the two strings are numbers the result mostly consists of publications that have the numbers as year or page numbers. Because the result type of a query is not specified by the user we refer to the lowest common ancestor as nearest concept. We also present a running example taken from the bibliography domain, and demonstrate that the operator can be implemented efficiently.

1. Introduction Over the past year, XML has been converging towards the role of the standard data representation format in many

World Wide Web applications. XML takes the idea of markup further than HTML: it is not used for visual representation of data, but for encoding semantics in documents which makes not only a document’s character data but also the tags and the way they are nested an interesting target for query languages. In contrast to other hierarchical datamodels (see [2]) like complex data models or the objectoriented models, XML is an incarnation of the semistructured paradigm, which means that the database schema that results from the mapping of a document to a database instance tends to be large and irregular. It may not be immediately clear which parts of the database obey which part of the schema. All this hinders ad hoc users and non domain experts in posing meaningful queries, as state-of-theart query languages do not fully capture the loose schema of many XML data. The database community realized the demand for additional query formulation aids and proposed regular path expressions [3, 11] to allay the problem. Query languages like XML-QL [10], Lorel [3], XQL [18] or Quilt [9] and others (see [7] for a comparative analysis) all support some flavor of schema wildcards and, thus, relieve the user of the burden of having to specify the complete paths to the data. The commonest way to accomplish this is to allow for specifying sets of paths with UNIX command line-like regular expressions that are evaluated against the actual database. However there are cases when regular expression do not provide the power necessary to get the intended results. Consider the following situation taken from the area of bibliographic databases: A user wants to know what ‘Ben Bit’ edited or published in ‘1999’, i.e., find the relevant publication record(s) in an XML bibliography, but hasn’t got any knowledge of the schema of the the XML file sketched in Figure 1. Therefore the user may try the following query1: 1 Due to the lack of a standard query language for XML we use a variant

of SQL enriched with paths and path variables (see [19]). In paths

de-

select from

 !#"$!#"% "$'&)(+*-,/.102*43 where ‘Bit’ "%5&)(+*-,/.102*43

and

‘1999’

The query binds to the tag names of all nodes whose offspring contains as character data the string ‘Bit’ and, respectively, ‘1999’. Evaluated against the example document shown in Figure 1 the answer looks like:

article institute bibliography bibliography

"7/8 "%/8 6 "$98 6 "$98 6

6

Although the answer contains the desired result, it suffers from a serious drawback: we are only interested in a subset of the answers the database generates. Some not so interesting answer elements are implied by the path from the first node that is bound to , to the root node: they are ancestor nodes of this first node (e.g., the institute and the first bibliography elements in the answer set are implied by the article element). Even worse, in larger databases the computation might cause a combinatorial explosion of the result size. One solution to the problem is to refine the query. In general, this involves a fair amount of domain knowledge that cannot be expected of ad hoc users. Therefore, we take an other path and define a special operator, the :8 and the meet operator :^02*4_ node. The function assigns labels D I .1JML I Q [3>,9^02*4_`3>,9^02*4_ D to nodes, i.e., elements; assigns pairs of strings, attributes and their values, to nodes. Character Data (CDATA) are modeled as a special attribute

 GKS [a02*-, D of nodes, establishes a ranking to allow for an order among sibling nodes. The example document in Figure 1 adheres to this data model: element relationships are displayed as straight lines, attribute relationships as labeled arcs. The other representation details are largely self-explanatory; the assignment of OIDs is arbitrary, e.g., depth-first traversal order. We apply the common simplification not to differentiate between PCDATA and CDATA nor do we take rich datatypes into account. Before we discuss techniques how to store a syntax graph as a database instance, we introduce the notion of association. Associations are a binary modeling construct that allows a storage schema where related information is semantically clustered in one relation. This implies that our

bibliography,

o1

institute, o 2 "BB99"

key

author, o 4 firstname, o 5

lastname, o 7

cdata, o 6

cdata, o 8

title, o 9

year, o11

author, o 14

year,

cdata, o10

cdata, o12

cdata, o 15

cdata, o17

string

string

string "How to Hack"

string "Ben"

article, o13

article, o 3

"1999"

string "Bob Byte"

key

"BK99" title, o 18

o16

cdata, o 19

string "1999"

string "Hacking & RSI"

"Bit"

Figure 1. Syntax tree of example document

model is primarily aimed at associative retrieval of XML documents as opposed to navigating retrieval. Associations are the basis of the storage schema that is introduced later. " > b 8 Y

Definition 2. A pair 6 is called an association.

(+0Ec

Vd6

(e02cgfg02*-,Pfg3>,9^02*4_h8

The different types of associations describe different (e02c (e02c V parts of the tree: associations of type represent edges, i.e., parent-child relationships. Both kinds of leaves, attribute values and character data are modeled by associ(+0Ec 3>,9^0E*i_ V ations of type , while associations of type (+0Ec 0E*-, V are used to preserve the topology of a document.

We now show how to map the conceptual data model to a physical database instance. The general idea is to store all associations of the same typebz in one binary relation. A rela"k8 "k8 tion that contains the tuple 6 is named j 6 , conversely a tuple is stored in exactly one relation. Definition 4. Given an XML document H=~�=€�GA‚ , 8 the Monet trans8 where form2 is a quadruple {}|6EA B6 ~

"

" 7

in FigAs an example consider the node with OID "7/8 2qGG=rtsvu]tEwK xkE2 ure 1; e.g., jl6 Bnm mpo ; oy; . "k8 We use jl6 to describe the position of the element in the graph relative to the root node in terms of the overall schema; it plays a similar role as the type or class in object "k8 to denote the type of systems and, therefore, we use jl6 by "k8 the association 6 . The set of all paths in a document is called its path summary. In the rest of the paper, we adhere to the conventional view to identify nodes in the syntax tree with the OIDs assigned to them. However, OIDs by themselves do not indicate in which relation the associations that describe the " node are stored. For a given node with OID we assume "k8 " that we can derive j 6 given an OID . For a justification see [8] who give an overview of similar techniques in object-oriented and object-relational databases.

ƒ jl6 „†…ˆ‡Š‰ …ˆ‹‰ Œ�ŽMNM � � B

j 6 ƒ „†…ˆ‡Š‰ ŒG˜‰ Œ™G�ŠŽ!šœ›�žŠš Ÿ � B

j 6 ƒ „†…ˆ‡Š‰ ‘ �ŠŽ!¡Š›ˆ¢/£ �

€

Definition 3. For an item (string or OID labeled node) in the syntax tree, we denote the sequence of labels along the " "k8 path (vertex and edge labels) from the root to with j 6 . ‚ H

"‘8 “’9”•2"‘ ">–/—

B

" ‘ 8 “ ’ $ ”•2" ‘ ’ % —

"‘8'GkvSv”Š•E"‘ G¤ —

remains the root of the document.

In the preceding definition into one set F¥

B¦!6

F

and o m;9o

N

are combined

N "%8¨ "$ "% ’89§ " $ "%8 YgF< ’ 6 Bo m;po 6

Q T (e02c >3 ,9^0E*i_ 39,>^0E*i_ as a set as o m ;9o is interpreted V V T GKS (e02c 0E*-, re/” well as , and � ;=© denotes that the value V r- of ;=© is a relation name. Figure 2 displays the Monet

transform of the example document. Note we can easily switch from the relational perspective of the Monet transform to a convenient objectoriented view, i.e., nodes in the syntax tree seen as objects [22]: we ‘re-assemble’ an object with OID 2 named

after our implementation platform Monet [21]

ªˆ«zªˆ¬ «y®p¯2°±²>³ «y´µ¶†«y¶z·/¶¸4¹gº9»z¼>½p¾¼¿ÀÁ9¾ ªˆ«zªˆ¬ «z®p¯2°±²/³ «œ´µŠ¶†«œ¶†·/¶¸ °¯¶†«yÂG¬ ¸l¹gº9»z¼¿/¾¼=ÃpÀ¾ˆ»†¼¿>¾¼9½2ÃpÀÁ9¾ ªˆ«zªˆ¬ «z®p¯2°±²/³ «œ´µŠ¶†«œ¶†·/¶¸ °¯¶†«yÂG¬ ¸ Ä ¸ˆ³5¹gº9»z¼Ã¾ À¾ˆ»†¼9½2Ã/¾ ÀÁ9¾ ? “BB99” “BK99” ªÅ«†ªÅ¬ «yŠ®¯2°Å±²>³ «y´µŠ¶z«y¶†·>¶¸ °p¯¶z«zÂˆ¬ ¸ °·>¶y²/p¯ ¹gº9»z¼Ã¾¼=ÆpÀ¾ˆ»†¼9½2Ã/¾¼9½2Æ>ÀEÁ9¾ ªˆ«zªˆ¬ «z®p¯2°±²/³ «œ´µŠ¶†«œ¶†·/¶¸ °¯¶†«yÂG¬ ¸ °·/¶y²/¯ ªÅ«†ªÅ¬ «yŠ®¯2°Å±²>³ «y´µŠ¶z«y¶†·>¶¸ °¯¶†«zÂˆ¬ ¸ °p·>¶y²/¯ ÂŠÇp°¶° ªÅ«†ªÅ¬ «yŠ®¯2°Å±²>³ «y´µŠ¶z«y¶†·>¶¸ °p¯¶z«zÂˆ¬ ¸ °p·>¶y²/¯ ÊÉ ªˆ«zªˆ¬ «z®p¯2°±²>³ œ« ´µŠ¶†«œ¶†·/¶†¸ °¯¶†«yÂG¬ ¸ °·/¶y²/¯ ÍÉ ¯µ¶†´k°ËÌ¸ ªˆ«zªˆ¬ «y®p¯2°±²>³ «y´µ¶†«y¶z·/¶¸ ° ¯¶†«zÂˆ¬ ¸ °p·>¶y²/¯ Í É ¯µŠ¶†´k°ËR¸ ÂŠÇp°¶° ªÅ«†ªÅ¬ «yŠ®¯2°Å±²>³ «y ´ µŠ¶z«y¶†·>¶¸ p° ¯¶z«zÂˆ¬ ¸ °·>¶y²/p¯

ÂŠÇp°¶°R¹gº9»z¼>½2Æ¾¼9½EÈ9ÀEÁ9¾

?

µ¶†¯«y´>®5¹gº9»z¼>½EÈ/¾

“Bob Byte”

ÀEÁ9¾

¯µŠ¶†´k°ËÌ¸l¹gº9»z¼Æ¾¼ÈÀÁ9¾

ÂŠÇp°¶°R¹gº9»z¼È/¾¼=ÎpÀÁ9¾

 ? µ¶†¯«y´>®5¹gº9»z¼Î¾ “Ben” ÀEÁ9¾ ¬ °µŠ¶†´k°ËR¸'¹gº9»z¼Æ¾¼ÏÀÁ9¾

ªˆ«zªˆ¬ «z®p¯2°±²/³ œ« ´µŠ¶†«œ¶†·/¶¸ °¯¶†«yÂG¬ ¸ ° ·/¶y²/¯ ¬ °pµ¶†´k°ËÌ¸ ÂŠÇp°¶°R¹gº9»z¼Ï/¾¼=ÐpÀÁ9¾ ªÅ«†ªÅ¬ «yŠ®¯2°Å±²>³ «y´µŠ¶z«y¶†·>¶¸ p° ¯¶z«zÂˆ¬ ¸ °p·>¶y²/¯ ¬ °µŠ¶z´k°pËR¸ ÂŠÇp°¶° µ ¶†¯«y´>®5¹gº9»z¼Ð¾ ÀEÁ9¾ ? “Bit” ªˆ«zªˆ¬ «z®p¯2°±²/³ œ« ´µŠ¶†«œ¶†·/¶¸ °¯¶†«yÂG¬ ¸ †¶ «œ¶†¬ ¸4¹gº9»z¼Ã¾¼=ÑpÀ¾ˆ»†¼9½2Ã/¾¼9½2Ð>ÀEÁ9¾ ªÅ«†ªÅ¬ «yŠ®¯E°±²>³ «œ´µŠ¶†«œ¶†·>¶¸ °¯¶†«yÂG¬ ¸ ¶†«œ¶†¬ ¸ ÂŠÇp° ¶°R¹gº9»z¼Ñ¾¼9½2Ò/¾G»z¼>½2Ð/¾E¼>½2Ñ9ÀEÀEÁ9¾ ªˆ«zªˆ¬ «z®p¯2°±²/³

«œ´µŠ¶†«œ¶†·/¶¸ °¯¶†«yÂG¬ ¸ ¶†«œ¶†¬ ¸ ŠÂ Çp°¶° µ ¶†¯«y´>®5¹gº9»z¼>½2Ò¾ ÀŠ¾G»z¼>½2Ñ/¾ ÀEÁ9¾ ? “How to Hack” “Hacking & RSI” ªÅ«†ªÅ¬ «yŠ®¯E°±²>³ «œ´Šµ ¶†«œ¶†·>¶¸ ° ¯¶†«yÂG¬ ¸ p³ ¸Š°¯l¹gº9»z¼Ã¾¼9½½GÀ¾ˆ»†¼9½2Ã¾E¼>½2ÎpÀEÁ9¾ ªˆ«zªˆ¬ «y®p¯2°±²>³ «y´µ¶†«y¶z·/¶¸ °¯¶†«zÂˆ¬ ¸ p³ ¸Š°¯ ÂŠpÇ °¶°R¹gº9»z¼>½½p¾¼9½E¿9ÀŠ¾Å»†¼9½2Î¾E¼>½EÏÀEÁ9¾ ªÅ«†ªÅ¬ «yŠ®¯E°±²>³ «œ´µŠ¶†«œ¶†·>¶¸ °p¯¶z«zÂˆ¬ ¸ ³p¸°p¯ ÂŠÇp° ¶° µ¶†¯ «y´>®5¹gº9»z¼>½E¿/¾ ÀŠ¾G»z¼>½EÏ/¾ ÀEÁ ? “1999” “1999”

Figure 2. Monet transform of the example document

"

from those associations whose first component is . Therefore, it is intuitive to identify an object q

9 " 7 8 B by its OID; for example, the object m2Ó9; 6 S ue•2"7 — kwKstq1•2"7 "Ô/— E •2"7 "$kÕ/—¨ ¦ ; “BB99” oy; is easily kE2 converted into an instance of a suitably defined class oy; S u wKOs1q E with members ; , and oy; or an instance of a DOM tree. Therefore an object can be regarded as a set of associations. "

We now formalize and generalize the ideas sketched in the introductory example. First, we borrow some notation to denote offspring relationships in the schema and in the database instance. r1ks

" $ 8ÙØÚr1ks

r1ks

3. Nearest Concept Search We now formalize the semantics of the meet operator in terms of the data model of the previous section. We start ÅÖ from the simple case of finding the meet, denoted :üp÷=þ ÿ«yÇÌ¼>½¾ˆ«zÇR¼¿ «zÇ øœói¼>½ ¹ ¼¿-÷ !ü/õ=üp÷ôõ ¼>½

ü Åü ö Åü ÿz¼>½ ÿ†¼¿ Gü9÷ô õ úýü9üp÷þ4ÿœ±/°¯2¸G´¶ˆÿz¼>½ ¾¼¿ ÿz¼¿ ÿ†¼9½ Gü9÷ô õ úýü9üp÷þ4ÿz¼>½¾O±/°¯2¸G´¶ˆÿz¼¿ vü9ó ô ÷ Gü9÷ô õ úýü9üp÷þ4ÿœ±/°¯2¸G´¶ˆÿz¼ ½ ¾2±>°p¯2¸ˆ´¶Gÿz¼ ¿ ü õ ü/õ ü/ õ

Figure 3. Function

L!L!, Ö

for a pair of OIDs

3.2 Computation In this section we present the fundamental algorithms to ˆÖ and two generalizations. Note that the alcompute :×;; gorithms in this section take advantage of the physical data model introduced earlier. The prefix order among the paths is used to steer the search for the lowest common ancestor so that superfluous look-ups are avoided. The algorithm displayed in Figure 3 computes Ö "$ "%8 for two objects and will be used as a :×;; 6 building block for more general cases. The function r1k t "k8 ; 6 returns the parent association of the node or " association , basically a hash look-up. A remark on the &.13/L " $ 8 " % 8 clause: by comparing j 6 and j 6 we are able to find the meet of these two objects as fast as possible as the comparison steers the search direction of the algorithm and avoids superfluous look-ups. As pointed out in [19] this information is provided with only little additional cost at bulk load time. The previous algorithm operated on two object identiLvL!, Ö fiers. The next step we take is to generalize to work $ % ‘ with sets of OIDs and where all associations in are of the sameY type,[i.e., there is a path ñ in the path sum" ‘ jl6 "k8 BZñ . With this set-up, we may mary that generalize the previous algorithm to what is displayed in Figure 4. rt t $ %>8 This time, the function ; 6 is a shortcut qk $ %/8 $•E"$ "%>— for Ó 6 , a binary join on associations æ %•E"% "7>— q $•E"$ "%/— %)•2"% "7/—ˆ8 and æ so that Ó 62æ æ B •E"$ "7>— (the inner columns are projected out, leaving a æ binary relation – association in our terminology). Note that we avoid a combinatoric explosion of the result size L!L!, as computes minimal meets, i.e., as soon as the first "$ "% >b9b>b1Y meet of $Kf % is found subsequent meets are not considered anymore because the elements are removed from the input sets. This generalizes the minimality criterion (3) of Definition 6 to sets of objects while still being invariant of the input order. Also note that we slightly extended the definition of meet: we now call a node meet if it is the lowest common ancestor of at least two other nodes. A salient feature of this and the following algorithm is that

 Gùvöü 1ôGü'úýü9ü9÷ �ÿ"!$#%'&'½¾!$#%'&l¿ !$#% óù(*v) ¹,h + ÷=ù./ ¹gº=¼10 243 5 ½76 8 8 8 6 9(: 9(;1¿ &=¾¼ 3 ÀEÁ

P ÷=ù>= ü?= ô ÷ / &=< ¹@&== ü?= ô ÷lú�ü>üp÷ ÿy±>°¯E¸ˆ´¶ÅÿM & ½ ¾2±/°¯2¸G´¶ÅÿJ&l¿ ü/õ ü/õ Figure 4. Procedure OIDs

LvL!,

for two sets of

they make heavy use of the relational operations of the underlying database engine. In the analysis we will see they indeed perform favorably. We now present the most general algorithm of this paper: it calculates the meet input set of nodes H $?of LL?L9anˆH arbitrary M grouped into relations according to the type of association they represent. This approach proves useful when we want to combine the results of full-text queries, which may be distributed over a large number of relation, i.e., we extract from the results of the full-text query starting points from where the user can start displaying and browsing the database. The algorithm is displayed in Figure 5. In contrast to the previous algorithm, we cannot simØ ply exploit the function to compare the paths to steer the search, because then the algorithm would become dependent on the input order, as the algorithm does not know which subtrees of the document instance are being searched at a particular moment. Therefore, we rather roll up the tree-shaped schema from the bottom by iteratively contracting the offspring of nodes whose only offspring are leaves until we reach the root or the empty set. This way, all nodes that are meets of other nodes are minimal by construction; they are output and not considered anymore, thus, avoiding a combinatorial explosion of the result set and dependence on the input order. Coming back to the example query, we see that after reformulating the query with the meet operator the cardinality of the answer set reduces (from now on, we interpret the meet operator as an aggregation operation): select from where and

 "$ "%8 :×;; 6 kŠ ì C Ev " $ Ev " % "$Ì&(e*-,>.t02*43 ‘Bit’ "%û&(e*-,>.t02*43

‘1999’

 =ù!öü 1ô=ü úýü>üp÷'ÿOº / ½¾ONONPNÅ¾ / 9 Á !$#% øœó'ÿ Q ¹@R ùS' ÿTQ ¹U+1 õV0 / ½0¹U+ ÷I!ü/õGü9÷ôõ óù(*1) ¹Wh + ÷=ùXQ / ¹gº=¼10Y2 3 5 ½76 8 8 8 6 Z: ZI1; ¿ / < »z¼>¾¼ 3 ÀEÁ / < ¹ / = ü G ô ÷ / ü/õ œ üp÷Q be a relation all of whose children are leaves / ½ ¾ONPNOˆN ¾ /P[ÿTQ]_^\`+ be the children of Q w. l. o. g. let ÿ / ½¾"NON"ˆN ¾ / [¹Ùÿœ±>°p¯2¸ˆ´¶Gÿ / ½ ¾"N"NOˆN ¾O±/°¯2¸G´¶ˆÿ / [a ¹ / ½ ËÌ¸¸G¶†µ ¹bB óù(*1) ¹b4 - ÷=ù.^ ²/«œ¶†µ ¹ a E / < / < ¹`µ¸ˆËR« ˆc «œ´Kÿ / < ¾²>«œ¶†µ ËÌ¸Š¸ˆ¶†µ ¹ÙËR¸Š¸G¶†µ$d ²>«y¶†µ A ²/«œ¶†µ a ¹ a d ÿ / = ü?= ô ÷ ²>«y¶zµ /< remove úýü9ü9÷pÿ / empty ½¾ON"NOGN ¾ /Pe ü/õ Figure 5. Procedure objects

LvL!,

for arbitrary sets of

Evaluated against the example document we now obtain the following result, a true subset of what the solution presented in the introduction with regular path expressions returned: article 6

"7/8

The generated answer now resembles our initial intuition. With some domain-knowledge (gained by looking at a visualization of the answer) the user can interpret the result as follows: Mr. Bit wrote an article in 1999. XML documents may also contain references (IDs and IDREFs) that potentially break the tree structure defined by the element relationships. The algorithms we presented only cover element relationships as we believe that they often carry very natural semantics and because the design of the meet algorithms remains clear and intuitive while execution times enable interactive querying. If we interpret the meet operator as some variant of nearest neighbor search, we might find generalizations on graph structures that prove useful in certain application domains. However, the fact that we then have to take care of circular structures may add significant complexity to our algorithms. Finally, we remark that the meet operator is not expressible in the relational algebra: We need stratified datalog f [2] to calculate it.

1218

4. Extensions and Applications

fulltext and meet fulltext only

:

 Lihat lebih banyak...

Comentários

Relatórios "Querying XML documents made easy: Nearest concept queries "

Por favor, preencha este formulário, tentaremos o mais rápido possível.

Teu nome

Correio eletrônico

Razão
-Escolha um motivo-
Pornografia
Difamação
Ilegal / Haram
Spam
Outros termos de serviço
Arquivar uma reclamação de direitos autorais

Descrição do Produto

Fechar
Enviar

Download "Querying XML documents made easy: Nearest concept queries "

Somos uma comunidade de intercâmbio. Por favor, ajude-nos com a subida 1 um novo documento ou um que queremos baixar:

ARQUIVO DO DOCUMENTO DE ATUALIZAÇÃO

OU DOWNLOAD IMEDIATAMENTE

Fechar

Compartilhar e Incorporar "Querying XML documents made easy: Nearest concept queries "

Copie e cole esse script de incorporação para o local onde deseja incorporar

Incluir Script

Tamanho(px)
750x600
750x500
600x500
600x400

URL

Fechar

Sobre nós |
Termos |
Privacidade |
Direito autoral |
Contato

Copyright © 2017 DADOSPDF Inc.

