Spin-polarized transport in semiconductor nanostructures

June 7, 2017 | Autor: Semion Saikin | Categoria: Monte Carlo, Schottky Barrier, Device Simulation, Device Modeling, Electric Field, Spin Polarization
Share Embed


Descrição do Produto

Spin-Polarized Transport in Semiconductor Nanostructures Semion Saikin, Min Shen, Ming-Cheng Cheng and Vladimir Privman

NSF Center for Quantum Device Technology, Department of Physics, Department of Electrical and Computer Engineering Clarkson University email: [email protected]

1

NSF Center for Quantum Device Technology Modeling of Quantum Coherence for Evaluation of QC Designs and Measurement Schemes

Task: Model the environmental effects and approximate the density matrix Task: Identify measures of decoherence and establish their approximate “additivity” for several qubits Task: Apply to 2DEG and other QC designs; improve or discard QC designs and measurement schemes

Use perturbative Markovian schemes

Relaxation time scales: T1, T2, and additivity of rates

P in Si QC

Q-dot QC

New short-time approximations

“Deviation”

measures of decoherence and their additivity

P in Si QC

(De)coherence in Transport Measureme Coherent Coherent Measurement by charge spin spin by nt charge carriers transport carriers transport

Q-dot QC

Improve and finalize solid-state QC designs once the single-qubit measurement methodology is established

How to measure spin and charge qubits

Spin polarization relaxation in devices/ spintronics

2

Goals • The general goal of the project is to establish device modeling tools at various levels of description, from microscopic transport equations to moment equations (e.g., hydrodynamic, energy-transport, drift-diffusion), with the latter description involving parameters extracted from more microscopic, numerically demanding simulations.

Problem • To model spin polarized transport in a 2DEG at a semiconductor heterointerface in a spintronic device structure. The study is motivated by proposals for SpinFETs (S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990); J. Schliemann, J. C. Egues, D. Loss, Phys. Rev. Lett. 90, 146801 (2003)).

3

Hierarchy of transport models for spintronic devices Boltzmann transport equation (quantum potential corrections, spin) Expansion of moments



Hydrodynamic model



Energy transport model



Drift-diffusion model

Parameters

Monte Carlo simulation model

Ballistic models Compact models 4

Spin dynamics in semiconductor quantum wells 2 p • Hamiltonian: H = * + V (r ) + H SO 2m

• Spin-orbit interaction: H SO = kAσ

(Linear in an electron momentum)

1. Effect of quantum well asymmetry (Rashba term): (Isotropic with respect to crystallographic axes.)

H R = η (k yσ x − k xσ y )

2. Effect of crystal inversion asymmetry (Dresselhaus term): (Anisotropic with respect to crystallographic axes.) H D = β k z2 (k yσ y − k xσ x )

(2D)

H D = σ x {βk y ((k z2 − k||2 )sin 2ξ + βk x2 sin 2ξ + η ) − βk x (k z2 − k||2 )cos 2ξ }+

σ y {βk x ((k z2 − k||2 )sin 2ξ + β 2 k y2 sin 4ξ − η ) + βk y (k z2 − k||2 )cos 2ξ }

(Quasi 2D)

5

Drift-Diffusion Equations Expasion in moments of the Wigner function equation. • Wigner function for an electron with spin: Wss′ ( R, k , t ) = ∫ ρ ( R, ∆r, s, s ′, t )e − ik∆r d 2 ∆r

• Transport equation:

∂W 1 ⎧⎪ ∂W ⎫⎪ 1 ∂V ∂W + ⎨v j , + ik j [v j , W ] = StW ⎬− ∂t 2 ⎪⎩ ∂x j ⎪⎭ h ∂x j ∂k j

• Particle density and current density definitions: nn = ∫ Wn d 2 k ,

J nj = ∫ ( vnjWn + vσjα Wσ α )d 2 k ,

nσ α = ∫ Wσ α d 2 k ,

J σjα = ∫ ( vnjWσ α + vσjα Wn )d 2 k .

6

Drift-Diffusion Equations ∂nn ∂J nj + = 0, ∂t ∂x j



J nj = −

∂nσ ∂J 2m + − [vσj × J σj ] = 0. ∂t ∂x j h j σ

*

Anisotropy of spin transport.

5 4 3 2 1

0

50

100

150

∂nn ∂V ⎞⎟ nn , + ∂x j ∂x j ⎟⎠

⎞ ∂nσ ∂V 2m *kT j J = − * kT nσ − [vσ × nσ ]⎟. + ⎟ ⎜ m ⎝ ∂x j ∂x j h ⎠

6

0

m * ⎜⎝

kT

τ ⎛⎜

j σ

Spin dephasing length L⊥ (µm)

Spin precession length Lp (µm)

Case η = β k z2



τ ⎛⎜

200

Angle ξ (deg)

250

300

350

6

E = -0.01 V/cm E = -100 V/cm E = -300 V/cm E = -1000 V/cm

5 4 3 2 1 0

0

50

100

150

200

250

Angle ξ (deg)

300

350

7

Monte Carlo modeling •

• Charge transport (BTE + Poisson equation)



f (r, k, t )

• Spin dynamics (spin density matrix)

⎛ ρ ↑↑ (t ) ρ ↑↓ (t ) ⎞ ⎟⎟ ρ i (t ) = ⎜⎜ ρ ( ) ρ ( ) t t ↓↓ ⎝ ↓↑ ⎠

⎛∂ f ∂f 1 ∂V +v ⋅∇f − ⋅ ∇ k f = ⎜⎜ ∂t h ∂x ⎝ ∂t

∇V =− 2



ρ i (t + dt ) = e − iH



H SO = H R + H D

SO dt / h

e2

εs

⎞ ⎟⎟ ⎠C

(n(r) − N ) eq

ρ i (t )eiH

SO dt / h

• Statistics

Z Pz

φ X



|P|≤1

1 n Spin polarization: Pα = ∑ Tr (σ α ρ i ) n i =1

θ Px

Py

Y

• Spin current:

J αβ

1 n i = ∑ vβ Tr (σ α ρ i ) n i =1 8

Spin scattering • Spin dynamics ρ i (t ) = S ( k n , dtn ) S (k n −1 , dtn −1 )...S (k1 , dt1 ) ρ i (t0 ) S (k1 , dt1 )...S (k n −1 , dtn −1 ) S ( k n , dtn )

• Scattering matrix

α ⎞ ⎛ i sin(| α | dt ) ⎟ ⎜ cos(| α | dt ) α ⎟ S ( k , dt ) = ⎜ * ⎟ ⎜ α i α dt α dt sin(| | ) cos(| | ) ⎟ ⎜ α ⎠ ⎝ α = h −1{( k y (η + β k z2 sin 2ξ ) − k x β k z2 cos 2ξ ) − i ( k x ( β k z2 sin 2ξ − η ) + k y β k z2 cos 2ξ )}.

k

S(k1,dt1) S(k2,dt2)

S(k3,dt3)

9

Model 1

Study of spin polarized transport properties n-doped In0.52Al0.48As

injection

absorption

In0.52Al0.48As In0.53Ga0.47As In0.52Al0.48As

Z L = 550 nm

Y X

100

T = 300 K

• Injected electrons are 100% spin polarized. • Injected electrons are thermalized. • Electron injection condition is to preserve charge neutrality in the structure. • Absorption boundary is not spin selective. VDS = 0.05 V VDS = 0.1 V VDS = 0.15 V VDS = 0.2 V VDS = 0.25 V

5

Velocity (10 m/sec)

80 70

5

Energy (meV)

90

60 50 40

4 3 2 1

30 0.0

0.1

0.2

0.3

X (µm)

0.4

0.5

0 0.0

0.1

0.2

0.3

X (µ m)

0.4

0.5

10

Spin polarization (1 0 0) transport direction 1.0

1.0

Spin polarization, P

0.6 0.4 0.2 0.0 -0.2

Injection Py=1

0.8 0.6 0.4 0.2 0.0 -0.2 -0.4

-0.4 -0.6 0.0

0.1

0.2

0.3

0.4

-0.6 0.0

0.5

0.1

0.2

0.3

0.5

1.0

Injection Px Py Pz

Injection Pz=1

Spin polarization, |P|

0.8

0.4

X (µm)

X (µm)

1.0

Spin polarization, P

Px Py Pz

Spin polarization, P

Injection Px=1

0.8

0.6 0.4 0.2 0.0 -0.2

0.8 0.6 0.4 0.2

-0.4 -0.6 0.0

0.1

0.2

0.3

X (µm)

0.4

0.5

0.0 0.0

0.1

0.2

0.3

X (µm)

0.4

0.5 11

Spin scattering length (µm)

Anisotropy of spin dynamics

P Drain

Source

z

y

ξ

1.0 0.8 0.6 0.4 0.2 0.0 0

x

linear SO high order

50

100

0.6

0.6

0.4

0.4

Polarization

Polarization

0.8

0.2 0.0 -0.2 -0.4

-0.2 -0.4

-0.8

-0.8

0.1

0.2

0.3 X (µ m)

0.4

0.5

350

0.0

-0.6

0.0

300

0.2

-0.6 -1.0

250

Cubic term

1.0

Linear

0.8

200

Angle ξ (deg)

(1 -1 0) transport direction ξ=-45° 1.0

150

-1.0 0.0

0.1

0.2

0.3

X (µm)

0.4

0.5

12

Model 2

Spin injection from a Fe contact into a GaAs 2D layer Thermionic emission

Energy (eV)

qφB0.8

Injection rate (a.u.)

1.0 Tunneling

0.6 0.4

Ef

0.2 0.0 -0.2

Ef -0.2

n+ 0.0 x tp

0.2

0.4

0.6

0.8

Ec

0.3 1.0

0.4

0.5

0.6 0.7 0.8 Energy (eV)

0.9

1.0

X (µm)

• Spin polarization of electrons for a given energy E in the metal contact is defined by the relative density of states for spin-majority and spin-minority carriers. • Electrons in the metal contact are thermalized. • The probability of an electron injection is defined according to the WKB approximation.

13

0.5 0.0 -0.5 -1.0 -1.5 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2

JySx JySy JySz JyS

1.0

-1

1.0

JxSx JxSy JxSz JxS

19

-1

1.5

Linear SO

Spin current density (10 sec m )

-2

2.0

19

Spin current density (10 sec m )

Spin current

0.5

0.0

-0.5

0.0

0.1

0.2

0.5

0.6

0.5

0.6

0.7

Spin current density (10 sec m )

-2

1.0

-1

2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 0.0

0.4

X (µm)

19

19

-1

-2

Spin current density (10 sec m )

X (µm)

0.3

0.1

0.2

0.3

0.4

X (µm)

0.5

0.6

0.7

0.5

0.0

-0.5

0.0

0.1

0.2

0.3

0.4

X (µm)

0.7

14

Spin current

0.5 0.0 -0.5 -1.0 -1.5 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 -1

1.0

0.4

19

-1

1.5

JxSx JxSy JxSz JxS

Spin current density (10 sec m )

-2

2.0

19

Spin current density (10 sec m )

Cubic SO

0.2

JySx JySy JySz JyS

0.0 -0.2 -0.4 0.0

0.1

0.2

0.5

Current spin polarization

-1

-2

Spin current density (10 sec m )

1.5

19

1.0 0.5 0.0 -0.5 -1.0 0.1

0.2

0.3

0.4

X (µm)

0.4

0.5

0.6

0.7

X (µm)

X (µm)

0.0

0.3

0.5

0.6

0.7

Current spin depolarization Longitudinal component Transverse component

0.4 0.3 0.2 0.1 0.0 0.0

0.1

0.2

0.3

0.4

X (µm)

0.5

0.6

15

0.7

Conclusions ● The ensemble Monte-Carlo method has been developed for investigation of spin polarized transport in semiconductor heterostructures. ● The problems of spin transport in finite length structures and spin injection through the Schottky barrier from a ferromagnetic metal contact into a QW have been studied. ● The characteristic length of non-equilibrium spin polarization transport in a III-V semiconductor QW is in the order of one micron at room temperature. ● The characteristic length of coherent spin dynamics is in a length scale of deep submicrometer. ● Boundary conditions appreciably affects spin transport properties in a spintronic device structure.

16

Lihat lebih banyak...

Comentários

Copyright © 2017 DADOSPDF Inc.