TEXTO PARALELO

July 11, 2017 | Autor: Rrobert Orozco | Categoria: Administracion de Empresas
Share Embed


Descrição do Produto

TEXTO PARALELO

LA GENETICA

Introducción
Objetivos
Glosario





























LA GENTICA

ETIMOLOGIA:
El vocablo genética procede del adjetivo griego γεννητικός (gennētikós productivo, que origina o genera), derivado de γεννητός (gennētós algo que ha sido engendrado o creado), de génos (nacimiento, raza, origen). En la palabra genética encontramos el sufijo griego -ike (técnica, estudio), muy común en el nombre de otras ciencias o técnicas, por ejemplo, electrónica, robótica, biónica, informatica, mecatrónica, química, física, y muchos más.

DEFINICION:
La genética es la rama de la biología que trata sobre el estudio científico de los principios y mecanismos de la herencia y la variación de los caracteres, que se transmiten o se transfieren desde los progenitores a la descendencia, a través del proceso reproductivo.

GENETICA COMO CIENCIA:
La genética es una ciencia, y por lo tanto como tal, implica "un conocimiento cierto de las cosas por sus principios y sus causas". Entonces... ¿cuáles son estas cosas que como ciencia la genética estudia?, pues, la "Herencía Biológica", y la "Variación". Y, sus principios y causas, son las "leyes y principios" que gobiernan las "semejanzas" y "diferencias" entre los individuos de una misma "especie".











EL ADN Y LA GENETICA:
El ácido desoxirribonucleico, abreviado como ADN, es un ácido nucleico que contiene instrucciones genéticas usadas en el desarrollo y funcionamiento de todos los organismos vivos conocidos y algunos virus, y es responsable de su transmisión hereditaria. La función principal de la molécula de ADN es el almacenamiento a largo plazo de información. Muchas veces, el ADN es comparado con un plano o una receta, o un código, ya que contiene las instrucciones necesarias para construir otros componentes de las células, como las proteínas y las moléculas de ARN. Los segmentos de ADN que llevan esta información genética son llamados genes, pero las otras secuencias de ADN tienen propósitos estructurales o toman parte en la regulación del uso de esta información genética.

SUBDIVISIONES DE LA GENETICA:
La genética se subdivide en varias ramas, como:
Clásica o [Genética mendeliana" mendeliana]: Se basa en las leyes de Mendel para predecir la herencia de ciertos caracteres o enfermedades. La genética clásica también analiza como el fenómeno de la recombinación o el ligamento alteran los resultados esperados según las leyes de Mendel.
Citogenética: El eje central de esta disciplina es el estudio del cromosoma y su dinámica, así como el estudio del ciclo celular y su repercusión en la herencia. Está muy vinculada a la biología de la reproducción y a la biología celular.
Genética del desarrollo: Estudia como los genes son regulados para formar un organismo completo a partir de una célula inicial.
Cuantitativa: Analiza el impacto de múltiples genes sobre el fenotipo, muy especialmente cuando estos tienen efectos de pequeña escala.
Molecular: Estudia el ADN, su composición y la manera en que se duplica. Así mismo, estudia la función de los genes desde el punto de vista molecular: Como transmiten su información hasta legar a sintetizar proteínas.
Evolutiva y de poblaciones: Se preocupa del comportamiento de los genes en una población y de cómo esto determina la evolución de los organismos.
Mutagénesis: Estudia el origen y las repercusiones de las mutaciones en los diferentes niveles del material genético.







GENOTIPO Y FENOTIPO:





Genotipo: La clase de la que se es miembro según el estado de los factores hereditarios internos de un organismo, sus genes y por extensión su genoma. El contenido genético de un organismo
Fenotipo: la clase de la que se es miembro según las cualidades físicas observables en un organismo, incluyendo su morfología, fisiología y conducta a todos los niveles de descripción. Las propiedades observables de un organismo.






TEORIA DE MENDEL:
Primera ley de Mendel: A esta ley se le llama también Ley de la uniformidad de los híbridos de la primera generación (F1), y dice que cuando se cruzan dos variedades individuos de raza pura, ambos homocigotos, para un determinado carácter, todos los híbridos de la primera generación son iguales.
Los individuos de esta primera generación filial (F1) son heterocigóticos o híbridos, pues sus genes alelos llevan información de las dos razas puras u homocigóticas: la dominante, que se manifiesta, y la recesiva, que no lo hace..
Mendel llegó a esta conclusión trabajando con una variedad pura de plantas de guisantes que producían las semillas amarillas y con una variedad que producía las semillas verdes. Al hacer un cruzamiento entre estas plantas, obtenía siempre plantas con semillas amarillas.


 
Otros casos para la primera ley. La primera ley de Mendel se cumple también para el caso en que un determinado gen dé lugar a una herencia intermedia y no dominante, como es el caso del color de las flores del "dondiego de noche". Al cruzar las plantas de la variedad de flor blanca con plantas de la variedad de flor roja, se obtienen plantas de flores rosas, como se puede observar a continuación:


 
Segunda ley de Mendel: A la segunda ley de Mendel también se le llama de la separación o disyunción de los alelos.
Experimento de Mendel. Mendel tomó plantas procedentes de las semillas de la primera generación (F1) del experimento anterior y las polinizó entre sí. Del cruce obtuvo semillas amarillas y verdes en la proporción que se indica en la figura. Así pues, aunque el alelo que determina la coloración verde de las semillas parecía haber desaparecido en la primera generación filial, vuelve a manifestarse en esta segunda generación.


 
Los dos alelos distintos para el color de la semilla presentes en los individuos de la primera generación filial, no se han mezclado ni han desaparecido , simplemente ocurría que se manifestaba sólo uno de los dos. Cuando el individuo de fenotipo amarillo y genotipo Aa, forme los gametos, se separan los alelos, de tal forma que en cada gameto sólo habrá uno de los alelos y así puede explicarse los resultados obtenidos.

Otros casos para la segunda ley. En el caso de los genes que presentan herencia intermedia, también se cumple el enunciado de la segunda ley. Si tomamos dos plantas de flores rosas de la primera generación filial (F1) y las cruzamos entre sí, se obtienen plantas con flores blancas, rosas y rojas. También en este caso se manifiestan los alelos para el color rojo y blanco, que permanecieron ocultos en la primera generación filial.

 
Retrocruzamiento
Retrocruzamiento de prueba.
En el caso de los genes que manifiestan herencia dominante, no existe ninguna diferencia aparente entre los individuos heterocigóticos (Aa) y los homocigóticos (AA), pues ambos individuos presentarían un fenotipo amarillo.
La prueba del retrocruzamiento, o simplemente cruzamiento prueba, sirve para diferenciar el individuo homo- del heterocigótico. Consiste en cruzar el fenotipo dominante con la variedad homocigótica recesiva (aa).
- Si es homocigótico, toda la descendencia será igual, en este caso se cumple la primera Ley de Mendel.
- Si es heterocigótico, en la descendencia volverá a aparecer el carácter recesivo en una proporción del 50%.








Tercera ley de Mendel. Se conoce esta ley como la de la herencia independiente de caracteres, y hace referencia al caso de que se contemplen dos caracteres distintos. Cada uno de ellos se transmite siguiendo las leyes anteriores con independencia de la presencia del otro carácter.

Experimento de Mendel. Mendel cruzó plantas de guisantes de semilla amarilla y lisa con plantas de semilla verde y rugosa ( Homocigóticas ambas para los dos caracteres).
Las semillas obtenidas en este cruzamiento eran todas amarillas y lisas, cumpliéndose así la primera ley para cada uno de los caracteres considerados , y revelándonos también que los alelos dominantes para esos caracteres son los que determinan el color amarillo y la forma lisa.
Las plantas obtenidas y que constituyen la F1 son dihíbridas (AaBb).
Estas plantas de la F1 se cruzan entre sí, teniendo en cuenta los gametos que formarán cada una de las plantas. Se puede apreciar que los alelos de los distintos genes se transmiten con independencia unos de otros, ya que en la segunda generación filial F2 aparecen guisantes amarillos y rugosos y otros que son verdes y lisos, combinaciones que no se habían dado ni en la generación parental (P), ni en la filial primera (F1).
Asímismo, los resultados obtenidos para cada uno de los caracteres considerados por separado, responden a la segunda ley.

 


















GENES HOMOCIGOTOS Y HETEROCIGOTOS
Un individuo es homocigoto, cuando los 2 genes del locus de cromosomas homólogos son idénticos para un mismo carácter, es decir, significa que posee dos copias idénticas de ese gen para un rasgo dado en los dos cromosomas homólogos, como por ejemplo, el color rojo en las flores o en el pelo negro.

Un individuo es heterocigoto, cuando los 2 genes del mismo locus de cromosomas homólogos son diferentes, ya que el individuo por ser diploide tiene en cada uno de los cromosomas homólogos un alelo distinto, que posee dos formas diferentes de un gen en particular; cada una heredada de cada uno de los progenitores, como por ejemplo, un gen que da tamaño alto en una planta y el otro da el tamaño corto.















Lihat lebih banyak...

Comentários

Copyright © 2017 DADOSPDF Inc.