Li2MnSiO4 as a potential Li-battery cathode material

Share Embed


Descrição do Produto

Available online at www.sciencedirect.com

Journal of Power Sources 174 (2007) 457–461

Short communication

Li2MnSiO4 as a potential Li-battery cathode material R. Dominko a,∗ , M. Bele a , A. Kokalj b , M. Gaberscek a , J. Jamnik a a

National Institute of Chemistry, P.O.B. 660, SI-1001 Ljubljana, Slovenia b Institute Joˇzef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia Available online 30 June 2007

Abstract Recently we synthesized and preliminary characterized a new material for potential use in Li-battery cathodes: Li2 MnSiO4 . Although its theoretical capacity is about 330 mAh g−1 , the actual measurements showed a much smaller value (about 120 mAh g−1 ). One of the reasons for the poor performance could be the poor electronic conductivity ( 0.5). 4. Conclusions

Fig. 5. (a) Cycling behaviour of pre-treated Li2 MnSiO4 /C composites. (b) Evolution of irreversible capacity with cycles as a function of pre-treatment.

Neither reduction of particle size nor increased carbon content (and optimized carbon distribution) have significantly

R. Dominko et al. / Journal of Power Sources 174 (2007) 457–461

improved the electrochemical performance of Li2 MnSiO4 . The polarization resistance decreased by merely 20 mV and the capacity increased by ca. 20 mAh g−1 to reach a maximum of about 140 mAh g−1 . The cycling stability has remained poor (about 4 mAh g−1 are lost per cycle). Obviously, the strategy that has proven extremely efficient in the case of LiFePO4 , does not work in the case of Li2 MnSiO4 . Based on ex situ X-ray diffraction measurements of partially charged samples, we speculate that extraction of Li leads to a progressive collapse of the initial structure. Hence, it can be suggested that in future one should focus primarily on the structural stabilization of Li2 MnSiO4 rather than on improvement of electronic/ionic transport. Acknowledgements The financial support from the Ministry of Education, Science and Sport of Slovenia and the support from the European Network of Excellence ‘ALISTORE’ network are acknowledged. References [1] J.M. Tarascon, M. Armand, Nature 414 (2001) 359–367. [2] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188–1194.

461

[3] A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1609–1613. [4] A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 2581–2586. [5] N. Ravet, J.B. Goodenough, S. Besner, M. Simoneau, P. Hovington, M. Armand, Proceedings of the 196th ECS Meeting, Hawaii, October, 1999, pp. 17–22. [6] H. Huang, S.C. Yin, L.F. Nazar, Electrochem. Solid-State Lett. 4 (2001) A170–A172. [7] C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.B. Leriche, M. Morcrette, J.M. Tarascon, C. Masquelier, J. Electrochem. Soc. 152 (2005) A913–A921. [8] R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, J. Jamnik, J. Electrochem. Soc. 152 (2005) A607–A610. [9] V. Legagneur, Y. An, A. Mosbah, R. Portal, A. Le Gal La Salle, A. Verbaere, D. Guyomard, Y. Piffard, Solid-State Ionics 139 (2001) 37–46. [10] C. Wurm, M. Morcrette, G. Rousse, L. Dupont, C. Masquelier, Chem. Mater. 14 (2002) 2701–2710. [11] S. Patoux, C. Wurm, M. Morcrette, G. Rousse, C. Masquelier, J. Power Sources 119–121 (2003) 278–284. [12] A. Nyten, A. Abouimrane, M. Armand, T. Gustafsson, J.O. Thomas, Electrochem. Commun. 7 (2005) 156–160. [13] A. Nyten, S. Kamali, L. H¨anggstrom, T. Gustafsson, J.O. Thomas, J. Mater. Chem. 16 (2006) 2266–2272. [14] R. Dominko, M. Bele, M. Gaberscek, A. Meden, M. Remskar, J. Jamnik, Electrochem. Commun. 8 (2006) 217–222. [15] M.E. Arroyo-de Dompablo, M. Armand, J.M. Tarascon, U. Amador, Electrochem. Commun. 8 (2006) 1292–1298.

Lihat lebih banyak...

Comentários

Copyright © 2017 DADOSPDF Inc.